60
“AÑO DE LA DIVERSIFICACION PRODUCTIVA Y DEL FORTALECIMIENTO DE LA EDUCACION” ESCUELA ACADÉMICO PROFESIONAL DE INGENIERIA CIVIL TEMA: 1EL ROL DE LA TOPOGRAFÍA EN EL DISEÑO Y CONSTRUCCIÓN DE REDES DE AGUA POTABLE Y DESAGUE. LEVANTAMIENTO TOPOGRÁFICO, LEVANTAMIENTO HIDROGRÁFICO. APLICACIÓN DE LA TOPOGRAFÍA EN LA CONSTRUCCIÓN DE REPRESAS. TOPOGRAFIA EN EL DISEÑO Y CONSTRUCCION DE CANAL DE RIEGO CURSO: TOPOGRAFÍA II ING. JULIO CUADROS ESCOBEDO GRUPO 03 PRESENTADO POR: 1. SANCHEZ CUBA, RICARDO 2. CARRILLO APAZA, LUIS ALBERTO 3. QUISPE MAMANI, ALEXANDER UAP UNIVERSIDAD ALAS PERUANAS

TOPOGRAFIA

Embed Size (px)

DESCRIPTION

EL ROL DE LA TOPOGRAFÍA EN EL DISEÑO Y CONSTRUCCIÓN DE REDES DE AGUA POTABLE Y DESAGUE.

Citation preview

Page 1: TOPOGRAFIA

“AÑO DE LA DIVERSIFICACION PRODUCTIVA Y DEL FORTALECIMIENTO DE LA EDUCACION”

ESCUELA ACADÉMICO PROFESIONALDE INGENIERIA CIVIL

TEMA:

1EL ROL DE LA TOPOGRAFÍA EN EL DISEÑO Y CONSTRUCCIÓN DE REDES DE AGUA POTABLE Y DESAGUE.

LEVANTAMIENTO TOPOGRÁFICO, LEVANTAMIENTO HIDROGRÁFICO.

APLICACIÓN DE LA TOPOGRAFÍA EN LA CONSTRUCCIÓN DE REPRESAS.

TOPOGRAFIA EN EL DISEÑO Y CONSTRUCCION DE CANAL DE RIEGO

CURSO:

TOPOGRAFÍA II

ING. JULIO CUADROS ESCOBEDO

GRUPO 03

PRESENTADO POR:

1. SANCHEZ CUBA, RICARDO2. CARRILLO APAZA, LUIS ALBERTO3. QUISPE MAMANI, ALEXANDER4. SALCEDO PFOCCORI, CLETO

AREQUIPA – PERU OCTUBRE 2015

UAP UNIVERSIDAD ALAS PERUANAS

Page 2: TOPOGRAFIA

Dedicatoria

Dedicamos este trabajo al nuestros compañeros de clase ya que juntos con ellos emprenderemos y futuro comprometedor.

Page 3: TOPOGRAFIA

Agradecimientos

Un agradecimiento especial al Ingeniero Julio Cuadros que nos incentiva a la investigación de este curso.

Page 4: TOPOGRAFIA

TABLA DE CONTENIDOS

1. EL ROL DE LA TOPOGRAFÍA EN DISEÑO Y CONSTRUCCIÓN DE REDES DE AGUA POTABLE Y DESAGÜE 1

1.2. TOPOGRAFÍA_________________________________________________________________21.2.1. Levantamiento Topográfico.___________________________________________________21.2.2. Objetivos y Metodología de Levantamiento Topográfico____________________________21.2.3. Plano de Ubicación_________________________________________________________31.2.4. Levantamiento Planimetrico___________________________________________________31.2.5. Levantamiento Altimetrico.____________________________________________________5

2. LEVANTAMIENTO HIDROGRÁFICO_______________________________________10

2.1. LEVANTAMIENTO HIDROLÓGICO___________________________________________10

2.2. IMPORTANCIA DEL LEVANTAMIENTO HIDROGRÁFICO______________________10

2.3. CUENCA__________________________________________________________________112.3.1. Cuencas Hidrológico___________________________________________________________112.3.2. Cuencas Hidrogeológicas_______________________________________________________11

2.4. CARACTERÍSTICAS GEOMORFOLÓGICAS DE UNA CUENCA_________________11

2.5. CURSO FLUVIAL___________________________________________________________112.5.1. Sistema de curso fluvial________________________________________________________122.5.2. Sección Transversal de un Curso Fluvial__________________________________________122.5.3. Divisoria de Agua o Parte Agua__________________________________________________12

2.6. CUENCA ENDORREICA____________________________________________________12

2.7. CUENCA EXORREICA______________________________________________________13

2.8. FLOTADORES_____________________________________________________________15

2.9. APLICACIÓN______________________________________________________________16

2.10. CLASIFICACIÓN DE LOS LEVANTAMIENTOS________________________________192.10.1. Orden Especial________________________________________________________________192.10.2. Orden 1a_____________________________________________________________________202.10.3. Orden 1b_____________________________________________________________________202.10.4. Orden 2______________________________________________________________________21

3. APLICACIÓN DE LA TOPOGRAFÍA EN LA CONSTRUCCIÓN DE REPRESAS_213.1. TIPOS DE PRESA_________________________________________________________21

3.1.1. presas de contrafuerte__________________________________________________________213.1.4. presa de bóveda_______________________________________________________________22

3.2. CRITERIOS DE DISEÑO DE UNA REPRESA__________________________________22

3.3. ESTUDIO TOPOGRAFICO__________________________________________________23

Page 5: TOPOGRAFIA

3.3.1. Levantamiento de la cuenca_____________________________________________________233.3.2. Levantamiento de vasos para almacenamiento____________________________________233.3.3. Levantamiento de la zona de riego_______________________________________________243.3.4. Levantamiento de la boquilla____________________________________________________24

3.4. Impactos ambientales______________________________________________________24

4. TOPOGRAFIA EN EL DISEÑO Y CONSTRUCCION DE CANAL DE RIEGO____25

4.1. ELEMENTOS BASICOS EN DISEÑOS DE CANAL____________________________264.1.1. Trazo de canales______________________________________________________________264.1.2. Reconocimiento del terreno_____________________________________________________264.1.3. Trazo preliminar_______________________________________________________________264.1.4. Trazo definitivo________________________________________________________________27

4.2. CANALES DE RIEGO POR SU FUNCION_________________________________________274.2.1. Canal de primer orden__________________________________________________________274.2.2. Canal de segundo orden________________________________________________________274.2.3. Canal de tercer orden__________________________________________________________27

4.3. RADIO MINIMO DE UN CANAL______________________________________________28

4.4. ELEMENTOS DE UNA CURVA DE UN CANAL________________________________29

4.5. RASANTE DE UN CANAL___________________________________________________30

4.6. ELEMENTOS GEOMÉTRICOS DE LOS CANALES_____________________________32a) tirante de agua o profundidad de flujo d________________________________________________33b) Ancho superficial o espejo de agua T_________________________________________________33c) Talud_____________________________________________________________________________33d) Coeficiente de rugosidad____________________________________________________________33f) Perímetro mojado (P)_______________________________________________________________344.7. DETERMINACIÓN DE LA VELOCIDAD MÁXIMA DEL CAUDAL EN LOS CANALES__________________354.8. IMPORTANCIA DE LA PENDIENTE O GRADIENTE__________________________________________374.9. DETERMINACIÓN DE LA SOBREELEVACIÓN DEL CANAL____________________________________38

4.10. ETAPAS EN LA CONSTRUCCIÓN___________________________________________384.10.1. Reconocimiento de sitio________________________________________________________38

5. CONCLUSIONES____________________________________________________________406. LISTA DE REFERENCIA______________________________________________________ 39

Page 6: TOPOGRAFIA

EL ROL DE LA TOPOGRAFÍA EN DISEÑO Y CONSTRUCCIÓN DE REDES DE

AGUA POTABLE Y DESAGÜE

En la mayoría de pueblos del Perú se puede comprobar que uno de los principales

problemas es el abastecimiento de agua potable, así como de la eliminación de aguas

servidas. Ante esta realidad que pone en peligro la salud de sus habitantes, se hace

necesario contar con dichos servicios puesto que ello reducirá los índices de morbilidad

y elevara el nivel Socio-Cultural de los mismos, este problema de saneamiento básico

en las localidades de nuestra región, es la escasa importancia que se le da al tema,

sumado a la carencia de recursos económicos hacen que el problema de saneamiento

se agrave.

Investigando encontré una tesis denominada ampliación de redes de agua potable y

alcantarillado del IV sector del Pueblo Joven Nuevo San Lorenzo en el Distrito de José

Leonardo Ortiz. El cual tome como referencia para el presente trabajo, contaba con 9

capítulos importantes para su desarrollo y ejecución:

Generalidades

La Topografía

Estudio de Mecánica de Suelos

Bases de Diseño

Agua Potable

Alcantarillado

Especificaciones técnicas del alcantarillado

Estudio de impacto ambiental

Estudio financiero

Page 7: TOPOGRAFIA

1.2. TOPOGRAFÍA

1.2.1. LEVANTAMIENTO TOPOGRÁFICO.

Es el conjunto de operaciones que se necesita realizar para poder

confeccionar una correcta representación grafica planimetría, o plano de una

extensión cualquiera de terreno, sin dejar de considerar las diferencias de

cotas o desniveles que presente dicha extensión. Este plano es esencial para

emplazar correctamente cualquier obra que se desee llevar a cabo, así como

lo es para elaborar cualquier proyecto. Es primordial contar con una buena

representación grafica, que contemple tanto los aspectos altimétricos como

planimétricos, para ubicar de buena forma un proyecto.

Para la realización de un levantamiento topográfico se cuenta con varios

instrumentos, como el nivel y la estación total, en el caso de este proyecto se

utilizo un nivel y un teodolito, empleando el método planimetrico para realizar

el levantamiento topográfico de este sector ubicado en el distrito de José

Leonardo Ortiz.

Para la elaboración de los planos de planimetría y altimetría se ha realizado el

respectivo levantamiento topográfico, habiéndose efectuado la medición de

manzanas y calles (manzaneo) y de lotes (Lotización) con sus respectivas

áreas.

IV sector del pueblo Joven Nuevo San Lorenzo cuenta con un suelo llano ,

presentando un ligero desnivel hacia la parte sur , los principales accidentes

físicos que presenta este sector es el dren que se encuentra en la parte norte

de este Sector.

1.2.2. OBJETIVOS Y METODOLOGÍA DE LEVANTAMIENTO

TOPOGRÁFICO

El objetivo principal es la obtención de planos veraces y fidedignos, mientas

que el objetivo secundario es obtener Bench Mark o puntos de control en un

Page 8: TOPOGRAFIA

número suficiente como para realizar trabajos de verificación de cotas

(principalmente buzones y otras estructuras existentes como calles para las

redes secundarias proyectadas) y tener cotas de referencia para los trabajos a

realizarse.

Como trabajo de campo se ha realizado la ubicación de los vértices de la

poligonal básica teniendo como finalidad la visibilidad entre vértices, que

normalmente se ha ubicado en las esquinas de las vías, se han realizado la

poligonal cerrada.

1.2.3. PLANO DE UBICACIÓN

Este plano fue obtenido de la municipalidad del distrito de José Leonardo

Ortiz, tiene como referencia el distrito de José Leonardo Ortiz, observándose

sus límites como su localización, tiene actualmente un plan de ordenamiento y

expansión urbana.

1.2.4. LEVANTAMIENTO PLANIMETRICO

1.2.4.1. Trabajo de Campo.

En el levantamiento planimetrico utilice como base un plano

proporcionado por la municipalidad distrital de José Leonardo Ortiz, a

partir del cual replanteé y concluí algunos detalles que no existían en el

plano proporcionado por la entidad ya mencionada.

Teniendo en cuenta las características del terreno en estudio, utilice un

solo tipo de poligonal (cerrada), realizando el siguiente proceso:

Reconocimiento del terreno

Ubicación de los vértices de la poligonal

Page 9: TOPOGRAFIA

Medición de los lados de la poligonal

Medición de los ángulos de la poligonal

Calculo de la poligonal y dibujo

Para el levantamiento planimétrico del IV sector del pueblo Joven Nuevo

San Lorenzo en el distrito de José Leonardo Ortiz se tomo como punto de

partida el vértice formado por el eje de las calles conocido como (Av. La

Despensa y Av. Lambayeque), la medición se hizo lote por lote en todas

las manzanas y calles, ubicándose los centros entre las intersecciones de

los vértices de las manzanas una vez ubicados estos puntos se midió la

distancia correspondiente empleando una wincha de 30.00m, luego se

procedió a estacionar el equipo Topográfico (Teodolito) y tomar la lectura

de los ángulos entre los ejes de las calles. En todos los casos estas

distancias están referidas a lecturas Horizontales.

Este trabajo se realizo en las calles mencionadas para la ampliación de

redes de agua y alcantarillado.

1.2.4.2. Trabajo de Gabinete.

Al elaborar el nuevo plan básico del IV sector del pueblo Joven Nuevo

San Lorenzo en el distrito de José Leonardo Ortiz, con los datos obtenidos

en campo y comparado con el plano antiguo, se encontró algunas

variaciones en las medidas del manzaneo y el eje de las calles, además

se han incluido algunos lotes que han sido poblados posteriormente a la

realización de los planos iniciales.

1.2.4.3. Dibujo.

Page 10: TOPOGRAFIA

Para la realización del dibujo se tomo la orientación respecto al Norte

Magnético. En base a los datos de campo y los cálculos realizados se

dibujo el plano básico planimétrico del IV Sector del pueblo Joven Nuevo

San Lorenzo en el Distrito de José Leonardo Ortiz, En este plano también

aparece el detalle del dren existente.

1.2.5. LEVANTAMIENTO ALTIMETRICO.

La altimetría o nivelación tiene por objetivo la determinación de la diferencia

de alturas entre distintos puntos del espacio, a partir de una superficie de

referencia. A la altura de un punto determinado se denomina cota del punto.

Si la altura está definida respecto al nivel del mar se dice que la cota es

absoluta, mientras que si se trata de cualquier otra superficie de referencia se

dice que la cota es relativa. A la diferencia de altura entre dos puntos de

referencia en el espacio se denomina diferencia de Nivel, Con la Altimetría se

determina la tercera coordenada (h) perpendicular al plano de referencia.

1.2.5.1. Trabajo de Campo

Para elaborar el nuevo plan Altimétrico del IV Sector del pueblo Joven

Nuevo San Lorenzo en el distrito de José Leonardo Ortiz, se tuvo que

hacer un levantamiento de altimetría de todas las calles mencionadas en

el proyecto, esto es debido a que en la zona en estudio se ha efectuado

movimiento de tierras en ampliaciones y en mejoramiento de la zona.

Para este levantamiento planimétrico, se empleó un nivel, 2 miras y una

Wincha de acero. Con los instrumentos se tomo las medidas de los

puntos necesarios que permitan obtener la real configuración del terreno a

levantarse. Los puntos considerados corresponden a los ejes de las

Page 11: TOPOGRAFIA

calles, colocando la mira en la tapa de los buzones existentes y en los

puntos donde se ha proyectado la construcción de un nuevo Buzón.

Para llevar a cabo la nivelación se hizo uso de B.M el buzón numero 15,

Calle los Rosales C.t=23387 y Cf= 21.337, Esta cota ha sido planteada

por EPSEL S.A, La nivelación aplicada para realizar el levantamiento

altimétrico de la zona en estudio consistió en lanzar visuales obteniendo

vistas atrás y adelante determinando con ello las cotas en los puntos

designados a eje de calles, estas cotas serán verificadas al visar

nuevamente algunos de estos puntos. El levantamiento altimétrico se

realizo partiendo del BM, hasta encontrar primero las cotas de todos los

vértices de la poligonal perimétrica.

1.2.5.2. Trabajo de gabinete.

Una vez obtenidos los datos sobre el terreno se procedió al respectivo

cálculo, obteniéndose los desniveles entre los puntos de cambio, con los

cuales se determino las cotas de los puntos necesarios.

Las cotas de los diferentes puntos de las poligonales, se ha determinado

tomando como punto el apoyo de las cotas predeterminadas en las tapas

de los buzones existentes cercanos.

Para una nivelación de precisión de error máximo de cierre es:

E = ± 0.01 D1/2

Donde:

E = Error en mts.

D = Distancia en Km.

Page 12: TOPOGRAFIA

1.2.5.3. Anexos.

Page 13: TOPOGRAFIA
Page 14: TOPOGRAFIA
Page 15: TOPOGRAFIA

2. LEVANTAMIENTO HIDROGRÁFICO

La Histolo

Gila aplicada o ingeniería hidrológica es la parte de la hidrología, que se encarga del estudio, diseño y operación de proyectos de ingeniería para el control y aprovechamiento del agua, por lo que esta se ocupa del diseño y operación de puentes, estructura para el control de avenidas (Hidrográfico), presas vertedoras, sistemas de drenajes para probaciones, carretera y aeropistas, además de abastecimientos de agua para consumo humano, animal y la agricultura.  Sin acepción estos diseños requieren  de análisis hidrológicos cuantitativos para la selección del evento de diseño necesario.

2.1. LEVANTAMIENTO HIDROLÓGICO

Consiste en la recolección y levantamiento de todos los datos e informaciones hidrológicas necesarias para el diseño y construcción de una obra hidráulica.

2.2. IMPORTANCIA DEL LEVANTAMIENTO HIDROGRÁFICO

En el levantamiento Hidrográfico proporciona los datos y porciones climatológicas, utilizadas en la toma de decisión para la construcción de

Page 16: TOPOGRAFIA

una obra de Infraestructura Hidráulica en una cuenca determinada. Entre estas informaciones tenemos área de la cuenca,  precipitación, temperatura, pendiente, orden la cuenca así como la morfología de la misma. 

Entre las Obras de Ingeniería Hidráulica podemos citar entre otras las presas para fines agrícolas y para fines hidroeléctricos, acueductos, túneles para transporte de agua, canales de riego, canales de drenaje, puentes, diques.

2.3. CUENCA

Es una zona de la superficie terrestre en donde (si fuera impermeable) las gotas de lluvia que caen sobre ella tienden a ser drenadas por el sistema de corrientes hacia un mismo punto de salida.Desacuerdo a la morfología las cuencas puedes ser, cuencas hidrológicas y cuencas hidrogeológicas.

    2.3.1. Cuencas Hidrológico

Es el conjunto de áreas medidas en proyección Horizontal, cuyo escurrimiento superficial de agua tiene una salida única por una sección transversal de un curso fluvial dado.

2.3.2. Cuencas HidrogeológicasEs el conjunto de áreas medidas en proyección Horizontal cuyo escurrimiento de aguas superficiales y subterráneas tiene una salida única por una sección transversal de un curso fluvial dado o determinado.

2.4. CARACTERÍSTICAS GEOMORFOLÓGICAS DE UNA CUENCA

Las Características Geomorfológicas de una cuenta se caracterizan en dos tipos:

Las que condicionan el volumen de escurrimiento, como lo son el área de la cuenca y el tipo de suelo.

Las que condicionan la velocidad de respuesta como son el orden de las corrientes, pendiente de la cuenca y los causes.

Page 17: TOPOGRAFIA

2.5. CURSO FLUVIAL

Es cualquier cause, por donde transita agua permanente o no, por ejemplo caña (con o sin agua permanente), un arroyos, un rio, etc.

2.5.1. Sistema de curso fluvial Es todo continua  interconexión de cañada a arroyos a ríos secundarios, de rió secundarios a ríos principales y de los ríos principales a grandes depósitos de masas de agua, tales como mares, océanos, lagos, etc.  Los Ríos secundarios son afluentes de los ríos Principales.

2.5.2. Sección Transversal de un Curso FluvialEs cualquier corte que se dé en algún punto de un curso fluvial transversal a su eje longitud.

2.5.3. Divisoria de Agua o Parte AguaEs una línea imaginaria, formada por los puntos de mayor altura topografía y que separa la cuenca, de las cuencas vecina.  

2.6. CUENCA ENDORREICA

Es aquella que tiene el punto de salida, dentro de los límites de la cuenca, generalmente es un lago.  Este tipo de cuenca toda el agua la drena hacia un mismo punto

Page 18: TOPOGRAFIA

Punto DivisorEs cada una de los puntos consecutivos, de la línea divisoria de agua.

2.7. CUENCA EXORREICAEs aquella que tiene el punto de salida en los límites de la cuenca y está en otra corriente o en el mar.

Page 19: TOPOGRAFIA

área de la cuencaSe define como la superficie en proyección  horizontal, delimitada por el parte agua.

corrientes principal de una cuencaEs la corriente que pasa por la salida de la misma (Solo en cuenca Exorreica).

corrientes tributariasSon Aquellas que alimentan la corriente principal. Toda cuenca tiene una y solo una corriente principal.

orden de una corrienteEl orden de una corriente se determina por el número de ramificaciones que tenga una corriente.

orden de una cuenca

Page 20: TOPOGRAFIA

El orden de una cuenca, es el mismo que el de la corriente principal a su salida.

Cuencas Tributarias o Sub-CuencaLas cuencas correspondientes  a las corrientes tributarias a los puntos de salida se llaman cuencas tributarias o sub-cuencas. Mientras más corrientes tributarias tengan una cuenca, márápiserá su respuesta a la precipitación. 

2.8. FLOTADORES

Page 21: TOPOGRAFIA

Consisten en objetos flotantes que adquieren la velocidad del agua que los circundan. Pueden ser de tres tipos.

a) Simples o de superficie: El inconveniente presentado por este flotador se debe al hecho de ser muy influido por el viento, por las corrientes secundarias y por las olas.

b) Dobles o superficiales: Constituyen un pequeño flotador de superficies, al cual está unido por una cuerda un cuerpo sumergido, a la profundidad deseada. Se hace que el volumen del primero sea despreciado frente al segundo. En estas condiciones, manteniéndose el cuerpo sumergido cerca de seis décimos de la profundidad, se determina la velocidad media.

c) Bastones  flotadores  o  flotadores  lastrados:  Son  tubos  metálicos  huecos  o  de madera, que tienen en la parte inferior un lastre de plomo para que flote en una posición próxima a la vertical. L debe ser igual o aproximadamente 0,95 H, Figura 4-7.

 

Entre los objetos que pueden

servir como buenos flotadores se encuentra una bola de caucho, un trozo de madera, un limón, una hoja seca o un envase plástico tapado.Observación  general Actualmente,   los   flotadores   rara   vez   son   usados   para mediciones  precisas  debido  a  muchas  causas  de  errores  (causas perturbadoras como los vientos,  irregularidades  del  lecho  del  curso  del  agua,  etc.).  Son sólo empleados para determinaciones rápidas y a falta de otros recursos, o cuando no se justifica la compra de dispositivos de aforo más precisos.

2.9. APLICACIÓN

Page 22: TOPOGRAFIA

 El método del flotador, al igual que los molinetes, tubos Pitot, métodos de la trayectoria y trazadores, se utiliza para medir la velocidad superficial  del flujo, no el caudal directamente, y se utiliza en el aforo de surcos, acequias, canales, ríos, diques, etc.

En  el  sitio  que  se  decidió  hacer  el  aforo,  se  hace  un  levantamiento  topográfico completo de la sección transversal, el cual dependiendo de su ancho y profundidad, puede hacerse con una cinta métrica o con un equipo de topografía Figura 4-8.

El lugar elegido para hacer el aforo o medición debe cumplir los siguientes requisitos:

La sección transversal debe estar bien definida y que en lo posible no se presente agravación o degradación del lecho.

Debe tener fácil acceso. Debe estar en un sitio recto, para evitar las sobre elevaciones y

cambios en la profundidad producidos por curvas. El sitio debe estar libre de efectos de controles aguas abajo, que

puedan producir remansos que afecten luego los valores obtenidos con la curva d.

 

FIGURA 4-8.

Levantamiento Topográfico de la Sección Transversal.

El flotador debe ser soltado repetidas veces unos cuantos metros aguas arriba de la sección de prueba, cronometrando el tiempo que tarda en recorrer una distancia conocida (usualmente de 15 a 50 m.), marcada previamente sobre un tramo recto y uniforme. Dicho tramo es seleccionado para las observaciones a lo largo del ducto de prueba, como lo indica la Figura 4-8

Page 23: TOPOGRAFIA

Una vez hallados los tiempos de recorrido, se obtiene un promedio.

 

Luegola velocidad superficial se determina dividiendo la distancia recorrida entreel   tiempo promedio de viaje del flotador.

 

Como la velocidad superficial es mayor que la velocidad promedio del caudal, es necesario corregir la medición del flotador multiplicándola por   un coeficiente que varía de 94 0.65 a 0.80; misma que debe ser de 0.65 para pequeños caudales (acequias) y de 0.80 para grandes caudales (ríos, diques y canales).

 

Generalmente las acequias y canales de uso agrícola no están revestidos. Su secciónTransversal, construida en tierra, no es uniforme, por tanto, la determinación del área debe hacerse dividiendo el espejo del agua en varios segmento iguales, de tal forma que se tenga una serie de figuras geométricas consistente en triángulos y trapecios, cuyos lados estarán dados por las profundidades (di) del agua y, las alturas, por la longitud del segmento (x/n), tal como se muestra en la Figura 4-9.

Page 24: TOPOGRAFIA

 

Finalmente  al  multiplicar  el  área  de  la  sección  transversal  (A)  por  la  velocidad promedio del flujo (Vpromedio), se obtiene el caudal (Q) para la corriente aforada.

2.10. CLASIFICACIÓN DE LOS LEVANTAMIENTOS

Este capítulo describe los Órdenes del Levantamiento que se consideran aceptables para permitir a las Oficinas Hidrográficas/ Organizaciones producir productos para la navegación que permitirán al tráfico marítimo navegar con seguridad a través de las áreas levantadas. Los requisitos varían con respecto a la profundidad del agua y por los tipos de embarcaciones que se espera naveguen en el área; por tal motivo, se han definido cuatro órdenes de levantamiento; cada uno diseñado para solventar una gama de necesidades.

Los cuatro órdenes se describen a continuación junto con una indicación de la necesidad que se espera que resuelva cada tipo de orden. La Tabla 1, especifica la norma mínima para cumplir con cada uno de estos órdenes y deben ser leídos conjuntamente con el texto detallado en los capítulos siguientes.

La agencia responsable de la ejecución de los levantamientos debe seleccionar el orden del levantamiento que es el más apropiado a los requisitos de la navegación segura en el área. Se debe observar que un sólo orden puede no ser apropiado para el área entera a ser levantada y

Page 25: TOPOGRAFIA

en estos casos, la agencia responsable de llevar a cabo el levantamiento debe definir explícitamente donde se utilizarán los diversos órdenes. También se debe observar que la situación descubierta en el campo por el técnico, puede diferir suficientemente con lo que se esperaba a fin de garantizar un cambio de orden. Por ejemplo en un área navegada por los Buques Tanques muy grandes (VLCCs) y en la que se espera profundidades mayores de 40 metros puede ser especificada mediante un levantamiento de orden 1a; sin embargo si el técnico descubre bajos que se extienden a menos de 40 metros, entonces para estos bajos podría ser más apropiado realizar un levantamiento de Orden Especial

2.10.1. Orden Especial Este es el más riguroso de los órdenes y su uso se destina solamente para aquellas áreas donde es crítica la separación entre la quilla de las embarcaciones y el fondo marino (quilla fondo). Donde esta separación es crítica se requiere una búsqueda completa del fondo y el tamaño de los rasgos a ser detectados por esta búsqueda se mantiene deliberadamente pequeño. Puesto que la separación quilla-fondo es crítica, se considera inverosímil que los levantamientos de orden especial sean conducidos en aguas más profundas a 40 metros. Los ejemplos de las áreas que pueden justificar levantamientos de orden especial son: áreas de atraque, puertos y áreas críticas de los canales de navegación.

2.10.2. Orden 1a Este orden se destina para aquellas áreas donde el mar es suficientemente poco profundo como para permitir que rasgos naturales o artificiales en el fondo marino constituyan una preocupación para el tráfico marítimo esperado que transite el área, pero donde la separación quilla - fondo es menos crítica que para el orden Especial. Donde puedan existir rasgos artificiales o naturales que sean de preocupación para la navegación, se requiere una búsqueda completa del fondo marino, no obstante el tamaño de la característica a ser detectadas es más grande que para las de Orden Especial. En donde la separación quilla – fondo llega a ser menos crítica a medida que la profundidad aumenta, el tamaño de la característica a ser detectada por la búsqueda completa del fondo marino también es incrementada a partir de aquellas áreas donde la profundidad es mayor que 40 metros. Los levantamientos

Page 26: TOPOGRAFIA

de Orden 1a pueden ser limitados para aguas más bajas que 100 metros.

2.10.3. Orden 1b Este Orden es apropiado para áreas menos profundas que 100 metros, donde una descripción general del fondo marino es adecuada para el tipo de embarcaciones que se espera transiten por el área. No se requiere una búsqueda completa del fondo marino, lo que significa que algunos rasgos pueden ser perdidos, aunque el máximo espaciamiento entre líneas permisibles limitará el tamaño de los rasgos que probablemente permanecerán in-detectadas. Este Orden de levantamiento se recomienda solamente donde la separación quilla-fondo no sería considerado un problema. Un ejemplo sería un área donde las características del fondo son tales que la probabilidad de que exista un rasgo artificial o natural en fondo marino que represente un peligro para la navegación esperada en el área sea bajo.

2.10.4. Orden 2 Este Orden es el menos riguroso y se destina para aquellas áreas donde la profundidad es tal que una descripción general del fondo marino se considera adecuada. No se requiere una búsqueda completa del fondo marino. Se recomienda que los levantamientos de Orden 2 estén limitados para áreas más profundas que 100 metros, ya que una vez que la profundidad excede los 100 metros, la existencia de rasgos artificiales o naturales que sean lo suficientemente grandes como para afectar a la navegación y que todavía permanezcan indetectados por un levantamiento de orden 2, se considera improbable.

3. APLICACIÓN DE LA TOPOGRAFÍA EN LA CONSTRUCCIÓN DE REPRESAS

3.1. TIPOS DE PRESA

Page 27: TOPOGRAFIA

Las presas se clasifican según la forma de su estructura y los materiales empleados. Las grandes presas pueden ser de hormigón o de elementos sin trabar.

3.1.1. presas de contrafuerte

Presas de Contrafuertes Estas presas son construidas en valles anchos, y su costo en materiales es mínima. Estas presas poseen una pared que soporta el agua y una serie de contrafuertes que transmiten la carga del agua a la base Y que sujetan la pared. 

3.1.2. presa o represa

Es una barrera fabricada con piedra, hormigón o materiales sueltos, que se construye habitualmente en una cerrada o desfiladero sobre un río u arroyo. Tiene la finalidad de embalsar el agua en el cauce fluvial para su posterior aprovechamiento en abastecimiento o regadío, para elevar su nivel con el objetivo de derivarla a canalizaciones de riego, para laminación de avenidas o para la producción de energía mecánica al transformar la energía potencial del almacenamiento en energía cinética y ésta nuevamente en mecánica al accionar la fuerza del agua un elemento móvil.

3.1.3. presa de gravedad

Las presas de gravedad son estructuras de hormigón de sección triangular; la base es ancha y se va estrechando hacia la parte superior; la cara que da al embalse es prácticamente vertical. Vistas desde arriba son rectas o de curva suave.

La estabilidad de estas presas radica en su propio peso. Es el tipo de construcción más duradero y el que requiere menor mantenimiento. Su altura suele estar limitada por la resistencia del terreno.

3.1.4. presa de bóveda

Presas de Bóveda Son presas que se construyen con hormigón armado y pretensado. Utiliza los fundamentos teóricos de la bóveda, ya que su curvatura presenta una convexidad dirigida hacia el

Page 28: TOPOGRAFIA

embalse, así la carga se distribuye por toda la presa hacia los extremos. Presas de elementos sin trabarEstas presas generalmente están construidas con materiales impermeables en su totalidad y pueden estar formadas por un núcleo de material impermeable reforzado por los dos lados con materiales más permeables ya sea de grava, de roca o arena.Las presas permiten controlar y disponer de agua con los siguientes fines:

• Consumo humano• Consumo industrial• Riego• Navegación• Generación Eléctrica• Turismo, Esparcimiento y Recreación• Piscicultura

3.2. CRITERIOS DE DISEÑO DE UNA REPRESA

Según las funciones que deban desempeñar las presas reciben la siguiente clasificación:

Hidroeléctricas, abastecimiento, uso mixto, riegos, Para poder realizar el diseño de una presa se requiere de un conocimiento previo de las condiciones del sitio en lo que respecta a la topografía, geología, hidrología y mecánica de suelos.

En esta etapa de reconocimiento del sitio principalmente se localiza el lugar donde se llevara a cabo la obra, se indaga con los habitantes cercanos las condiciones climáticas, las vías de acceso, entre otras características del terreno que ayudan a determinar la longitud, el sitio supuesto para la boquilla, la capacidad del vaso y el tipo de estructura a realizar, luego se procede a realizar un croquis con las características encontradas. 

3.3. ESTUDIO TOPOGRAFICO

Page 29: TOPOGRAFIA

3.3.1. Levantamiento de la cuenca

Se hace para determinar la superficie de la misma y forma de concentración de las aguas, con el fin de utilizarlo como base para el estudio hidrológico del proyecto.

Para este levantamiento es necesario ubicar primero el parte aguas, se hace un recorrido del mismo y se deja señalizado para trabajos posteriores, luego de localizar el parte aguas se traza una poligonal verificando su cierre, también se trazan poligonales auxiliares para determinar los cauces principales que determinan la forma de concentración y pendientes generales de la cuenca

3.3.2. Levantamiento de vasos para almacenamiento

Se efectúa para determinar la capacidad y el área inundada a diferentes alturas de cortina, y también para estimar las perdidas por evaporación, antes de realizar el levantamiento debe hacerse un reconocimiento ocular del vaso localizando puntos de referencia que ayuden al trabajo.A partir de la margen izquierda del arroyo o río se localizará el eje probable de la cortina, monumentando sus extremos. Apoyándose en esta línea, que será la base de todos los trabajos topográficos subsecuentes

3.3.3. Levantamiento de la zona de riego

A partir del eje de la obra de toma, señalado por medio del cadenamiento en el eje de la cortina, se llevará una poligonal que circunde la parte más alta del área de riego probable, apoyándose en poligonales auxiliares si fuese necesario.Esta poligonal deberá cerrarse en el punto de partida para que analíticamente se determine la superficie real. El plano se dibujará a una escala de 1:1000, señalando los linderos de propiedades existentes. 

3.3.4. Levantamiento de la boquilla

Page 30: TOPOGRAFIA

Localizado el eje probable de la cortina, se trazará en el terreno, utilizando tránsito y cinta,estacando cada 20 metros o menos, de acuerdo con la pendiente e inflexiones del terreno y se nivelará con nivel fijo.Por separado debe elaborarse un plano de secciones transversales que facilite la cubicación de los materiales de la cortina

3.4. Impactos ambientales

Tanto la tierra como el agua están ecológicamente ligados dentro de un sistema natural (”sistema de vertientes”) que sufre importantes cambios y modificaciones como consecuencia de la intromisión de las actuaciones humanas. Desde el curso de agua de características intermitentes hasta el río de más potencia y de mayor tamaño, trabajan de forma continua sobre las vertientes de la tierra, erosionando, arrastrando y abandonando sedimentos, disolviendo multitud de materiales que, en la mayoría de los casos, acaban por drenar cualquier curso de agua. Todo ello para acabar coincidiendo con los niveles de los mares y océanos en sus desembocaduras. De este modo, cuando todo este conjunto de interacciones entre la tierra y el agua se modifican a causa de la construcción de una presa de importante tamaño, las consecuencias aparecen sin mucha tardanza sobre dicho sistema natural anteriormente mencionado..

4. TOPOGRAFIA EN EL DISEÑO Y CONSTRUCCION DE CANAL DE RIEGO

La localización de un canal es importante, es algo parecida a la descrita para las

carreteras, excepto que las pendientes son relativamente pequeñas y las

diferencias de elevación pequeñas tienen relativamente mayor importancia. Debido

a la falta de flexibilidad en las pendientes permitidas, el número y variedad de

alternativas que se deben investigar durante el reconocimiento son generalmente

mucho menores que en la localización de una carretera.

Para el reconocimiento deberá usarse el nivel de anteojo generalmente, poniendo

trompos a distancias de más o menos cien metros a la elevación de la rasante

requerida y hace desde un punto de control a un extremo de la línea. La pendiente

Page 31: TOPOGRAFIA

se elige de manera que el agua corra con la velocidad deseada en la sección

transversal elegida para el canal. Como en el caso de las carreteras, la preliminar

puede hacerse exclusivamente en el campo o con una combinación de

procedimientos de campo y aéreos.

Cuando se utilizan procedimientos topográficos, generalmente la brigada de nivel

va adelante, poniendo estacas a la rasante como una guía para la localización

correcta de la línea. Se traza luego una poligonal con el tránsito o la plancheta, con

cinta con estadía a lo largo de la línea estacada obteniendo

suficientes datos topográficos y planimetricos, con los que se pueda trazar la línea

definitiva en su posición correcta.

En general, los trabajos topográficos para la localización y construcción de un canal

son los mismos que para una carretera o ferrocarril. Existen, sin embargo, algunas

diferencias en el proyecto que se hace en el gabinete de la línea central debido

principalmente a la forma de la sección transversal. En los cortes de poca

profundidad, la sección transversal del canal tiene la forma de un canal excavado

con un terraplén a cada lado, construidos con el material excavado. En ladera el

material excavado se usa para formar un terraplén en el lado de ladera abajo del

canal. En vez de construir un terraplén en los tramos bajos, como se haría al

construir un ferrocarril o una carretera, se usan comúnmente un acueducto o un

sifón invertido.

4.1. ELEMENTOS BASICOS EN DISEÑOS DE CANAL

Se consideran algunos elementos topográficos, secciones, velocidades

permisibles, entre otros:

4.1.1. Trazo de canales 

Cuando se trata de trazar un canal o un sistema de canales es necesario

recolectar la siguiente información básica:

Fotografías aéreas, para localizar los poblados, caseríos, áreas de cultivo,

vías de comunicación, etc.

Page 32: TOPOGRAFIA

Planos topográficos y catastrales.

Estudios geológicos, salinidad, suelos y demás información que pueda

conjugarse en el trazo de canales. Una vez obtenido los datos precisos, se

procede a trabajar en gabinete dando un trazo preliminar, el cual se

replantea en campo, donde se hacen los ajustes necesarios, obteniéndose

finalmente el trazo definitivo.

En el caso de no existir información topográfica básica se procede a levantar

el relieve del canal, procediendo con los siguientes pasos:

4.1.2. Reconocimiento del terreno

Se recorre la zona, anotándose todos los detalles que influyen en la

determinación de un eje probable de trazo, determinándose el punto inicial

y el punto final.

4.1.3. Trazo preliminar

Se procede a levantar la zona con una brigada topográfica, clavando en el

terreno las estacas de la poligonal preliminar y luego el levantamiento con

teodolito, posteriormente a este levantamiento se nivelará la poligonal y se

hará el levantamiento de secciones transversales, estas secciones se

harán de acuerdo a criterio, si es un terreno con una alta distorsión de

relieve, la sección se hace a cada 5 m, si el terreno no muestra muchas

variaciones y es uniforme la sección es máximo a cada 20 m.

4.1.4. Trazo definitivo

Con los datos de (b) se procede al trazo definitivo, teniendo en cuenta

la escala del plano, la cual depende básicamente de la topografía de la

zona y de la precisión que se desea:

Terrenos con pendiente transversal mayor a 25%, se recomienda escala

de 1:500.

Terrenos con pendiente transversal menor a 25%, se recomienda escalas

de 1:1000 a 1:2000.

4.2. CANALES DE RIEGO POR SU FUNCION

Page 33: TOPOGRAFIA

Los canales de riego por sus diferentes funciones adoptan las siguientes

denominaciones:

4.2.1. Canal de primer orden

Llamado también canal madre o de derivación y se le traza siempre con

pendiente mínima, normalmente es usado por un solo lado ya que por el

otro lado da con terrenos altos.

4.2.2. Canal de segundo orden

 Llamados también laterales, son aquellos que salen del canal madre y el

caudal que ingresa a ellos, es repartido hacia los sub – laterales, el área

de riego que sirve un lateral se conoce como unidad de riego.

4.2.3. Canal de tercer orden

Llamados también sub – laterales y nacen de los canales laterales, el

caudal que ingresa a ellos es repartido hacia las propiedades individuales

a través de las tomas del solar, el área de riego que sirve un sub – lateral

se conoce como unidad de rotación.

De lo anterior de deduce que varias unidades de rotación constituyen una

unidad de riego, y varias unidades de riego constituyen un sistema de

riego, este sistema adopta el nombre o codificación del canal madre o de

primer orden

4.3. RADIO MINIMO DE UN CANAL

En el diseño de canales, el cambio brusco de dirección se sustituye por una

curva cuyo radio no debe ser muy grande, y debe escogerse un radio

mínimo, dado que al trazar curvas con radios mayores al mínimo no significa

ningún ahorro de energía, es decir la curva no será hidráulicamente más

eficiente, en cambio sí será más costoso al darle una mayor longitud o

mayor desarrollo.

Las siguientes tablas indican radios mínimos según el autor o la fuente

Page 34: TOPOGRAFIA

Tabla 01. Radio mínimo en canales abiertos para Q > 10 m3/s

CAPACIDAD DEL CANAL RADIO MÍNIMO

Hasta 10 m3/s 3 * ancho de la base

De 10 a 14 m3/s 4 * ancho de la base

De 14 a 17 m3/s 5 * ancho de la base

De 17 a 20 m3/s 6 * ancho de la base

De 20 m3/s a mayor 7 * ancho de la base

Tabla 02. Radio mínimo en canales abiertos en función del espejo de agua

Tabla 03. Radio mínimo en canales abiertos para Q < 20 m3/s

capacidad del canal radio mínimo

20 m3/s 100 m

15 m3/s 80 m

Page 35: TOPOGRAFIA

10 m3/s 60 m

5 m3/s 20 m

1 m3/s 10 m

0,5 m3/s 5 m

4.4. ELEMENTOS DE UNA CURVA DE UN CANAL

4.5. RASANTE DE UN CANAL

Page 36: TOPOGRAFIA

 Una vez definido el trazo del canal, se proceden a dibujar el perfil longitudinal

de dicho trazo, las escalas más usuales son de 1:1000 o 1:2000 para el

sentido horizontal y 1:100 o 1:200 para el sentido vertical, normalmente la

relación entre la escala horizontal y vertical es de 1 a 10.

Para el diseño de la rasante se debe tener en cuenta:

La rasante se debe efectuar sobre la base de una copia ozalid del perfil

longitudinal del trazo, no se debe trabajar sobre un borrador de él hecho a

lápiz y nunca sobre el original.

Tener en cuenta los puntos de captación cuando se trate de un canal de

riego y los puntos de confluencia si es un dren.

La pendiente de la rasante de fondo, debe ser en lo posible igual a la

pendiente natural promedio del terreno, cuando esta no es posible debido

a fuertes pendientes, se proyectan caídas o saltos de agua.

Para definir la rasante del fondo se prueba con diferentes cajas

hidráulicas, chequeando siempre si la velocidad obtenida es soportada

por el tipo de material donde se construirá el canal.

El plano final del perfil longitudinal de un canal, debe presentar como

mínimo la siguiente información.

Kilometraje

Cota de terreno

Cota de rasante

Pendiente

Indicación de las deflexiones del trazo con los elementos de curva

Ubicación de las obras de arte

Sección o secciones hidráulicas del canal, indicando su kilometraje

Tipo de suelo

Sección típica de un canal

Page 37: TOPOGRAFIA

Donde

T = Ancho superior del canal

b = Plantilla

z = Valor horizontal de la inclinación del talud

C = Berma del camino, puede ser: 0,5; 0,75; 1,00 m., según el canal sea de tercer,

segundo o primer orden respectivamente.

V = Ancho del camino de vigilancia, puede ser: 3; 4 y 6 m., según el canal sea de

tercer, segundo o primer orden respectivamente.

H = Altura de caja o profundidad de rasante del canal.

En algunos casos el camino de vigilancia puede ir en ambos márgenes, según las

necesidades del canal, igualmente la capa de rodadura de 0,10 m. a veces no será

necessary, dependiendo de la intensidad del tráfico.

4.6. ELEMENTOS GEOMÉTRICOS DE LOS CANALES

Los elementos geométricos son propiedades de una sección de canal que

pueden ser definidos por completo por la geometría de la sección y la

profundidad del flujo. Estos elementos son muy  importantes y se utilizan con

amplitud en el cálculo de flujo. Para secciones de canal regulares y simples,

los elementos geométricos pueden expresarse matemáticamente en

términos de la profundidad de flujo y de otras dimensiones de la sección. La

Page 38: TOPOGRAFIA

forma más conocida de la sección transversal de un canal es la trapecial,

como se muestra en la figura

a) tirante de agua o profundidad de flujo d

 Es la distancia vertical desde el punto más bajo de una sección del canal

hasta la superficie libre, es decir la profundidad máxima del agua en el

canal.

b) Ancho superficial o espejo de agua T Es el ancho de la superficie libre del agua, en m.

c) Talud

 Es la relación de la proyección horizontal a la vertical de la pared lateral

(se llama también talud de las paredes laterales del canal). Es decir “m”

es el valor de la proyección horizontal cuando la vertical es 1, aplicando

relaciones trigonométricas. Es la cotangente del ángulo de reposo del

material (Θ), es decir   m=x/d y depende del tipo de material en que se

construya  el canal, a fin de evitar derrumbes (ver Tabla 1). Por ejemplo,

cuando se dice que un canal tiene talud 1.5:1, quiere decir que la

proyección horizontal de la pared lateral es 1.5 veces mayor que la

proyección vertical que es 1, por lo tanto el talud m = 1.5, esto resulta de

dividir la proyección horizontal que vale 1.5 entre la vertical que vale 1.

d) Coeficiente de rugosidad 

Depende del tipo de material en que se aloje el canal (ver Tabla 2).

e) Área hidráulica 

Page 39: TOPOGRAFIA

Es la superficie ocupada por el agua en una sección transversal normal

cualquiera (Fig. 6), se expresada en m2.

f) Perímetro mojado (P) 

Es la longitud de la línea de contorno del área mojada entre el agua y las

paredes del canal, (línea resaltada Fig. 6), expresado en m.

g) Radio hidráulico (R) 

Es el cociente del área hidráulica y el perímetro mojado. R=A/P, en m.

Ancho de la superficial o espejo del agua (T): es el ancho de la superficie

libre del agua, expresado en m.

Tirante medio (dm) 

Es el área hidráulica dividida por el ancho de la superficie libre del agua

dm=A/T,  se expresa m.

Libre bordo (Lb) : es la distancia que hay desde la superficie libre del

agua hasta la corona del bordo, se expresa en m.

Gasto (Q) : es el volumen de agua que pasa en la sección transversal del

canal en la unidad de tiempo, y se expresa en m3/s.

Velocidad media (V)  es con la que el agua fluye en el canal, expresado

en m/s.

en las zonas muy Ilanas, la pendiente del fondo puede ser nula (canal

horizontal) o al máximo presentar un valor mínimo de 0,05 por ciento, es

decir de 5 cm por 100 m;

en las zonas más inclinadas, la pendiente del fondo no debería pasar del

0,1-0,2 por ciento (entre 10 y 20 cm por 100 m) para evitar que el agua

corra demasiado deprisa por el canal y lo desgaste.

El nivel del fondo se puede bajar siempre que sea necesario medíante la

construcción de obras de caída en el canal .

Page 40: TOPOGRAFIA

Como se indicó ya al

hablar de los diques, la

pendiente de las paredes

de un canal trapezoidal

se expresa normalmente

a través de un

coeficiente, por ejemplo

1,5:1. Este coeficiente

representa el cambio de

la distancia horizontal

(en este caso 1,5 m) por

metro de distancia

vertical. La pendiente

lateral se puede

expresar también

haciende referencia al

ángulo formado con la

línea

 

La pendiente de los lados más indicada para un canal trapezoidal de tierra

depende del tipo de suelo en que están excavadas las paredes Cuanto

más estable sea el material del suelo, más pronunciada podrá ser la

pendiente lateral. Si el canal está revestido, la pendiente varía también

según el tipo de revestimiento utilizado.

La velocidad media máxima admisible en un canal para evitar la erosión

depende del tipo de suelo o del material de revestimiento. En el cuadro

Page 41: TOPOGRAFIA

35 se indican las velocidades máximas admisibles en canales y

conducciones elevadas* con diversos suelos y revestimientos.

4.7. DETERMINACIÓN DE LA VELOCIDAD MÁXIMA DEL CAUDAL EN LOS

CANALES

En los canales abiertos, la velocidad del agua varía de acuerdo con la

profundidad y con la distancia de las paredes del canal. En las

proximidades del fondo y de los márgenes, el agua corre con llenor

rapidez. Al diseñar los canales, lo que interesa normalmente es la

velocidad medía del agua en toda la sección trasversal del canal.

Velocidades medias máximas admisibles del agua en canales y conducciones elevadas

Tipo de suelo o de revestimiento Velocidad media máxima

admisible (m/s)

CANALES SIN REVESTIR  

Arcilla blanda o muy menuda 0.2

Arena pura muy fina o muy ligera 0.3

Arena suelta muy ligera o fango 0.4

Arena gruesa o suelo arenoso ligero 0.5

Suelo arenoso medio y légamo de buena calidad 0.7

Légamo arenoso, grava pequeña 0.8

Légamo medio o suelo aluvial 0.9

Légamo firme, légamo arcilloso 1.0

Grava firme o arcilla 1.1

Suelo arcilloso duro, suelo de grava común, o

ardila y grava1.4

Piedra machacada y ardila 1.5

Page 42: TOPOGRAFIA

Grava gruesa, guijarros, esquisto 1.8

Conglomerados, grava cementada, pizarra blanda 2.0

Roca blanda, capas de piedras, capa dura 2.4

Roca dura 4.0

CANALES REVESTIDOS  

Hormigón de cemento moldeado a pie de obra 2.5

Hormigón de cemento prefabricado 2.0

Piedras 1.6-1.8

Bloques de cemento 1.6

Ladrillos 1.4-1.6

Membrana de plástico sumergida 0.6-0.9

CONDUCCIONES ELEVADAS  

Hormigón o metal liso 1.5-2.0

Metal ondulado 1.2-1.8

Madera 0.9-1.5

4.8. IMPORTANCIA DE LA PENDIENTE O GRADIENTE

En los casos sencillos, se puede suponer que el fondo del canal está

inclinado en dirección aguas abajo. De hecho, el agua fluye en los canales

siempre que el nivel del agua es más alto en la parte de aguas arriba que en

la de aguas abajo. Si un canal tiene fondo horizontal, se puede tornar como

gradiente la diferencia de altura entre la parte de aguas arriba y la de aguas

abajo. La pendiente S del fondo del canal se expresa en forma de metros de

Page 43: TOPOGRAFIA

altura por metro de longitud del canal, por ejemplo, S = 0,01, es decir, el 1 por

ciento. Cuanto mayor es el valor de S, mayor es el caudal.

Téngase en cuenta que, para obtener una corriente constante y uniforme y

reducir el riesgo de sedimentación, el canal deberá construirse de tal

manera que la pendiente del fondo siga el gradiente general, es decir, que la

altura del agua permanezca constante. Sin embargo, por su mayor facilidad

de construcción, la base del canal se hace casi siempre horizontal

4.9. DETERMINACIÓN DE LA SOBREELEVACIÓN DEL CANAL

Hasta ahora hemos aprendido muchas cosas sobre la sección trasversal

mojada de los canales. Pero, como se ha indicado ya brevemente al

comienzo, para evitar desbordamientos los lados del canal deberán ser algo

más altos de lo necesario para un determinado caudal. Esta altura adicional

de las paredes, por encima del nivel normal del agua, se llama

sobreelevación.

La sobreelevación varía según el tipo de canal:

en los canales de tierra, escila entre 20 y 50 cm;

en los canales revestidos, se sitúa entre 10 y 20 cm.

En las próximas secciones encontrará explicaciones más detalladas

relativas a la sobreelevación.

Sobreelevación en los canales de

tierra 

 Sobreelevación en canales

revestidos 

Page 44: TOPOGRAFIA

4.10. ETAPAS EN LA CONSTRUCCIÓN

4.10.1. Reconocimiento de sitio

4.10.1.1. estudios

Levantamiento Topográficos

1. Cuenca.

2. Vaso de almacenamiento

3. Zona de riego.

4. Boquilla.

5. Localización y trazo de canales

6. Sitios de derivación

Geológicos

Hidrológicos

Mecánica de suelos

Page 45: TOPOGRAFIA

4. CONCLUSIONES

El replanteo inicial es de gran importancia porque al realizarlo antes de

ejecutar los trabajos permite identificar cambios que pueden haberse

producido en la zona de la obra, realizados con posterioridad a la

elaboración del proyecto. Detectarse errores u omisiones del proyecto o

proponerse mejoras al mismo.

El trazado de las redes se realiza simultáneamente con el replanteo

consiste en marcar con yeso o pintura la ubicación de las redes y/o

estructuras en la zona de los trabajos, dejándose estas para ubicar los

buzones, accesorios y estructuras que servirán de base para las

excavaciones.

Los canales de riego tienen la función de conducir el agua desde la

captación hasta el campo o huerta donde será aplicado a los cultivos. Son

obras de ingeniería importantes, que deben ser cuidadosamente

pensadas para no provocar daños al ambiente y para que se gaste la

menor cantidad de agua posible. Están estrechamente vinculados a las

características del terreno, generalmente siguen aproximadamente las

Page 46: TOPOGRAFIA

curvas de nivel de este, descendiendo suavemente hacia cotas más bajas

(dándole una pendiente descendente, para que el agua fluya más

rápidamente y se gaste menos líquido).

La construcción del conjunto de los canales de riego es una de las partes

más significativas en el costo de la inversión inicial del sistema de riego,

por lo tanto su adecuado mantenimiento es una necesidad imperiosa.

Las dimensiones de los canales de riego son muy variadas, y van desde

grandes canales para transportar varias decenas de m3/s, los llamados

canales principales, hasta pequeños canales con capacidad para unos

pocos l/s, son los llamados canales de campo.

5. LISTA DE REFERENCIAS

http://es.slideshare.net/freddyramirofloresvega/manual-de-instalacin-redes-

de-agua-potable-y-desage

Documento: tesis: ampliación de redes de agua potable y alcantarillado del iv

sector del pueblo joven nuevo San Lorenzo en el distrito de José Leonardo

Ortiz.

Manual de instalaciones de redes de agua potable y desagüe.

http://www.fagro.edu.uy/~topografia/docs/Canales%20para%20Riego%20y

%20Drenaje.pdf

https://www.uam.es/personal_pdi/ciencias/alarchil/MASTER%20ECO/LAGOS

%20PRESAS%20HUMEDALES.pdf

https://es.wikipedia.org/wiki/Levantamiento_hidrogr%C3%A1fico

http://www.shoa.cl/servicios/descargas/pdf/S-44-spa.pdf

http://navegacion.tripod.com/Apuntes2008/Cap09Hidrografia.pdf

Page 47: TOPOGRAFIA