32
EMLAB 1 Transmission line

Transmission line

Embed Size (px)

DESCRIPTION

Transmission line. Transmission line. An apparatus to convey energy or signal from one place to another place. Transmitter to an antenna connections between computers in a network hydroelectric generating plant and a substation several miles away - PowerPoint PPT Presentation

Citation preview

Page 1: Transmission line

EMLAB

1

Transmission line

Page 2: Transmission line

EMLAB

2

An apparatus to convey energy or signal from one place to another place.

• Transmitter to an antenna

• connections between computers in a network

• hydroelectric generating plant and a substation several miles away

• interconnect between components of a stereo system

• CATV service provider and your TV set

• Connections between devices on a circuit board

Transmission line

Page 3: Transmission line

EMLAB

3Example – Cable TV

Page 4: Transmission line

EMLAB

4Example – Computer network

Page 5: Transmission line

EMLAB

5Example – Electric power transmission line

Page 6: Transmission line

EMLAB

6Example – Printed circuit board

Page 7: Transmission line

EMLAB

7Example – Printed circuit board

Page 8: Transmission line

EMLAB

8Types of transmission lines

Microstrip line

Coaxial cable

Two-wire transmission line

Page 9: Transmission line

EMLAB

9Distribution of electric field strengths of typical TEM lines

E/H distributions vary as the structures of transmission lines change. For electromagnetic compatibility, E/H should be confined to small area.

MicrostripTwo-wireParallel plate

Page 10: Transmission line

EMLAB

10Field representation in waveguides

Page 11: Transmission line

EMLAB

11

Wave Solution

0 zz HE

ttztt

ttztt

Ej

Hj

HzH

EzE

ˆ

ztttzztztt

ztztzztt

Hjω

Hjω

zHEEE

)z(H )E(E)E(E

(

)Eqs.Maxwell(, JEHHE jj

ttttz

ttttz

jωzz

jωzz

E HE H

H EH E

)ˆ(

)ˆ(

0,0 22

22

2

2

tt

tt k

zk

zH

HE

E0

0,0

0

2

tt

ttt

ztt z

E

H

E

EE

)(zftt E

)(00jkzjkz

tjkzjkz

t eVeVee EEE

TEM mode (Transverse electromagnetic mode)

Page 12: Transmission line

EMLAB

12

z

y

xParallel plate waveguide

02

2

2

2

2

22

xyxt

With a wide enough line trace, varia-tion along y-axis can be ignored.

xd

VCxC s 21

)(ˆ)(ˆ jkzjkzjkzjkzsTEM eVeVeCeC

d

V xxE

d

)(1

ˆ)(ˆ1 jkzjkzjkzjkzx

TEM eVeVeVeVk

z

H

jj

yyE

H

Page 13: Transmission line

EMLAB

13

i (z, t)

v (z, t)+

-

z

L zC z

i (z+z, t)

v (z+ z,t)+

-

i (z, t)

z

v (z, t)+

-

Transmission line 등가 회로

tC

z

it

iL

z

),(

),(),( tzz

t

tzizLtz

),(),(

),( tzzit

tzzzCtzi

Page 14: Transmission line

EMLAB

14Transmission line eq. solution

tC

z

i

t

iL

z

, 0,02

2

2

2

2

2

2

2

t

iLC

z

i

tLC

z

)()(),(

)()(),(

tuzItuzItzi

tuzVtuzVtz

C

LZ0)()(),()( 00 tIZtVtIZtV

LCu

1

IC

LVI

C

LV ,

)(z

z

)( tuz

z

)( tuz

z

01

)(),(

,1

2

2

2

2

2

2

22

2

2

22

2

2

2

2

2

2

dX

Vd

dX

Vd

t

V

uz

V

dX

Vdu

t

X

t

V

Xt

Vu

dX

dV

t

X

dX

dV

t

V

dX

Vd

z

X

z

V

Xz

V

dX

dV

z

X

dX

dV

z

V

tuzX

Page 15: Transmission line

EMLAB

15Transmission line 의 특징

H

E

Direction of propagation

H

1. For a magnetic field and an electric field propagating in the same direction, the ratio of E and H (E+/H+) is kept constant.

2. For a voltage and a current current propagating in the same di-rection, V+/I+ ratio is equal to Z0 .

3. When the ratio is disturbed, reflected waves are generated.

0ZI

V

I

V

0ZI

V

I

V)(tV

SZLZ

Page 16: Transmission line

EMLAB

16

LZ+V-

SZI

V

I

V

VVVL

IIIL

LLL IZV

)tcoefficien reflection;(, VV

0Z

II

VV

L

L

)1(

)1(

0

0

01

1

1

1

ZZ

ZZ

ZZI

V

I

V

L

L

LL

L

Reflection coefficient

}Re{)1(2

1)1()1(Re

2

1}Re{

2

102

0

2

2

*0

*** Z

Z

V

Z

VVIVP LLL

Page 17: Transmission line

EMLAB

17

LZ+V-

SZ

20 40 60 800 100

0

1

-1

2

time, nsecV

in, V

Vou

t, V

20 40 60 800 100

0

1

-1

2

time, nsec

Vin

, VV

out,

V

LZ+V-

SZ

LZ+V-

SZ

LZ+V-

SZ

LZ+V-

SZ

Zs = 20

Z0= 50

ZL= 1k

0.5m

Influence of line length on load voltage

rc

LT

/delay

[ns]250 T

[ns]6d T

[ns]3d T

[ns]5.1

[ns]375.0

[ns]75.0

Impedance mismatched

Vin VoutRR2R=1k Ohm

MLINRR1R=20 Ohm

VtPulseSRC1

t

Z0= 50

20 40 60 800 100

0

1

-1

2

time, nsec

Vin

, VV

out,

V

20 40 60 800 100

0

1

-1

2

time, nsec

Vin

, VV

out,

V

20 40 60 800 100

0

1

-1

2

time, nsec

Vin

, VV

out,

V

Page 18: Transmission line

EMLAB

18

Page 19: Transmission line

EMLAB

19Ringing : Time domain

Page 20: Transmission line

EMLAB

20

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0

-1

0

1

2

-2

3

time, usec

Vin

, V

Vout, V

Vs Vin Vout

RR1R=10 Ohm

VtPulseSRC1

Period=50 nsecWidth=25 nsecFall=1 nsecRise=1 nsecEdge=cosineDelay=0 nsecVhigh=1 VVlow=0 V

t

RR2R=1000 Ohm

MLINTL1

L=5 meterW=0.242 mmSubst="MSub1"

Signal source

Load

~ 10SZ

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.91.0 2.0

-0.0

0.2

0.4

0.6

0.8

-0.2

1.0

time, usec

Vin

, V

Vout, V

kZL 1500Z

Mismatched load

Ringing

Page 21: Transmission line

EMLAB

21Impedance matching – Digital logic

~

10SZ

kZL 1500Z

R1

1k

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.00 1.00

0.0

0.5

-0.5

1.0

time, usec

Vin

, V

Vout, V

40

~ 10SZ

kZL 1

500Z 53

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.00 1.00

-0.0

0.2

0.4

0.6

0.8

-0.2

1.0

time, usec

Vin

, V

Vout, V

Source matching

Load matching

Page 22: Transmission line

EMLAB

22Impedance matching topologies

Page 23: Transmission line

EMLAB

23

0,02

2

2

2

2

2

2

2

t

iLC

z

i

tLC

z

Frequency domain solution

0,0 22

22

2

2

LCIz

ILCV

z

V

dezItzi

dezVtz

tj

tj

),(2

1),(

),(2

1),(

zjzj

zjzj

eIeIzI

eVeVzV

),(

),(

VCjz

IILj

z

V

,

)()(),()( IC

LVI

C

LV

LCLC p

p

1,

β : propagation constant, vp : speed of light

dezVLC

dz

zVd

tLC

ztj),(

),(

2

1 22

2

2

2

2

2

Page 24: Transmission line

EMLAB

24

]}[Re{

}Re{

)()(),(

zjzjtj

zjtjzjtj

eVeVe

eeVeeV

tzVtzVtz

Phasor representation

zjzj eVeVzV ),(

LZ+V-

SZI

V

I

V

0Z

tjSS eVtlz ),(

}),(Re{),( tjezVtz lz 0z

)cos(}Re{),( ztVeeVtzV zjtj

)cos(}Re{),( ztVeeVtzV zjtj

Page 25: Transmission line

EMLAB

25Transmission line terminated with short, open

Zs = Zo

VreflV inc

For reflection, a transmission line terminated in a short or open reflects all power back to source

In phase (0 ) for openo

Out of phase (180 ) for short

Vrefl

o

Page 26: Transmission line

EMLAB

26Transmission Line Terminated with 25 Ω

Zs = Zo

ZL = 25 W

VreflV inc

Standing wave pattern does not go to zero as with short or open

3

1

5025

5025

Page 27: Transmission line

EMLAB

27

)(][1

),(

)(),(

00

ljljljlj

ljljljlj

eeZ

VeVeV

ZlI

eeVeVeVlV

0

0

ZZ

ZZ

L

L

ljZZ

ljZZZ

ee

eeZ

lI

lVZ

L

Lljlj

ljlj

in

tan

tan

),(

),(

0

000

Equivalent input impedance

Page 28: Transmission line

EMLAB

28Input impedance of short

ljZZ in tan0

Page 29: Transmission line

EMLAB

29Input impedance of open

ljZZ in cot0

Page 30: Transmission line

EMLAB

30Some transmission line examples

300

][513.2105.2

101002 18

6

m

rad][6.1288180)/(28.0 l

300tan

tan

0

000 ljZZ

ljZZZ

ee

eeZZ

L

Lljlj

ljlj

in

]W[5.1}1.030Re{2

1}Re{

2

1 6.16.1* eeVIPL

300

V][)6.1102cos(30}30Re{ 86.1102 8

teeV tL

A][)6.1102cos(1.0}1.0Re{ 86.1102 8

teeI tL

case 1) matched load

Page 31: Transmission line

EMLAB

31

150

206466288tan150300

288tan3001500 j

j

jZZin

300

][150756.0206466300

60A

jI in

]W[333.1466)0756.0(2

1}Re{

2

1 22 inL ZIP

case 2) unmatched load

Page 32: Transmission line

EMLAB

32Ringing : Time/frequency domain