Author
topan-setiadipura
View
223
Download
0
Embed Size (px)
8/14/2019 Transport Neutron
1/69
last edited : august 6th 2007last edited : august 6th 2007
Komputasi dan SimulasiKomputasi dan Simulasi
Transport NeutronTransport Neutron
Coaching Neutronik 2008Coaching Neutronik 2008Computational DivisionComputational Division
PPIN BATANPPIN BATAN
8/14/2019 Transport Neutron
2/69
PendahuluanPendahuluan
Masalah utama dalam fisika reaktorMasalah utama dalam fisika reaktornuklir adalah penentuan distribusinuklir adalah penentuan distribusineutron dalam teras reaktor.neutron dalam teras reaktor.
Distribusi neutron menentukan lajuDistribusi neutron menentukan lajuterjadinya berbagai reaksi nuklirterjadinya berbagai reaksi nuklirdalam teras reaktor.dalam teras reaktor.
Dengan memahami keadaanDengan memahami keadaan
populasi neutron maka stabilitas daripopulasi neutron maka stabilitas darireaksi fisi berantai dapat diprediksireaksi fisi berantai dapat diprediksidengan baik.dengan baik.
8/14/2019 Transport Neutron
3/69
Proses transport neutron..Proses transport neutron..
Untuk menentukan distribusi neutronUntuk menentukan distribusi neutrondalam teras reaktor kita harusdalam teras reaktor kita harusmemahami dengan baik prosesmemahami dengan baik prosestransport neutron.transport neutron.
Yaitu proses yang terjadi selamaYaitu proses yang terjadi selamaneutron bergerak dalam terasneutron bergerak dalam terasreaktor, yang melibatkan berbagaireaktor, yang melibatkan berbagaiinteraksi neutron dengan intiinteraksi neutron dengan inti
penyusun teras reaktor berupapenyusun teras reaktor berupatumbukan hingga akhirnya neutrontumbukan hingga akhirnya neutronhilang karena diserap atau keluarhilang karena diserap atau keluardari teras reaktor.dari teras reaktor.
8/14/2019 Transport Neutron
4/69
Proses difusi..Proses difusi..
Kebanyakan studi neutronik terasKebanyakan studi neutronik terasreaktor memperlakukan gerakreaktor memperlakukan gerakneutron sebagai proses difusi.neutron sebagai proses difusi.
Dimana diasumsikan bahwa neutronDimana diasumsikan bahwa neutroncendrung untuk berdifusi dari daerahcendrung untuk berdifusi dari daerahdengan densitas neutron tinggi kedengan densitas neutron tinggi kedaerah dengan densitas neutrondaerah dengan densitas neutronlebih rendah, seperti difusi panaslebih rendah, seperti difusi panasdari daerah bertemperatur tinggi kedari daerah bertemperatur tinggi ketemperatur rendah.temperatur rendah.
8/14/2019 Transport Neutron
5/69
Keterbatasan difusi..Keterbatasan difusi..
Namun,berbeda denganNamun,berbeda denganpenanganan difusi padapenanganan difusi padakonduksi panas dan gas yangkonduksi panas dan gas yangyang memberikan simulasi yangyang memberikan simulasi yangakurat, pendekatan difusiakurat, pendekatan difusiterhadap transport neutronterhadap transport neutron
memiliki validitas yang terbatas.memiliki validitas yang terbatas.
8/14/2019 Transport Neutron
6/69
Diffusions limitation..(contd)Diffusions limitation..(contd)
The reason for this failure is easilyThe reason for this failure is easilyunderstood when it is noted that inunderstood when it is noted that inmost diffusion process the diffusingmost diffusion process the diffusingparticles areparticles are characterized by verycharacterized by very
frequent collisionsfrequent collisions that give rise tothat give rise tovery irregular, almost random, zigzagvery irregular, almost random, zigzagtrajectories.trajectories.
However, the cross-section forHowever, the cross-section for
neutron-nuclear collisions is quiteneutron-nuclear collisions is quitesmall (about 10small (about 10-24-24 cmcm22). Hence). Henceneutron tend to stream relativelyneutron tend to stream relativelylarge distances between interactions.large distances between interactions.
8/14/2019 Transport Neutron
7/69
Diffusions limitation..(contd)Diffusions limitation..(contd)
The mean free path (mfp)The mean free path (mfp)characterizing fast neutrons ischaracterizing fast neutrons istypically on the order of centimeters.typically on the order of centimeters.
And the dimensions characterizingAnd the dimensions characterizing
changes in reactor core compositionchanges in reactor core compositionare usually comparable to a neutronare usually comparable to a neutronmfp. (noted that a reactor fuel pin ismfp. (noted that a reactor fuel pin istypically about 1 cm in diameter).typically about 1 cm in diameter).
Hence, it is required a more accurateHence, it is required a more accuratedescription of neutron transport thatdescription of neutron transport thattakes into account the relatively longtakes into account the relatively longneutron mfp and neutron streaming.neutron mfp and neutron streaming.
8/14/2019 Transport Neutron
8/69
Diffusions limitation..(contd)Diffusions limitation..(contd)
In practical problem, neutronIn practical problem, neutrondiffusion theory is invalid neardiffusion theory is invalid nearthe boundary of a reactor, orthe boundary of a reactor, ornear a highly absorbing materialnear a highly absorbing materialsuch as a fuel rod or controlsuch as a fuel rod or controlelement.element.
8/14/2019 Transport Neutron
9/69
More accurate ???More accurate ???
Such a description has beenSuch a description has beenborrowed from the kinetic theory ofborrowed from the kinetic theory ofrarefied gases (which are alsorarefied gases (which are also
characterized by long mfp).characterized by long mfp). The fundamental equation describingThe fundamental equation describing
dilute gases was first proposed moredilute gases was first proposed morethan one century ago by Boltzmann,than one century ago by Boltzmann,
and even today the Boltzmannand even today the Boltzmannequation remain the principal tool ofequation remain the principal tool ofthe gas dynamicist.the gas dynamicist.
8/14/2019 Transport Neutron
10/69
Neutron transport equationNeutron transport equation
Its counter part for the neutron gas called Its counter part for the neutron gas called neutronneutrontransport equationtransport equation..
It is far simpler than Boltzmann equation. Where itIt is far simpler than Boltzmann equation. Where itis linear equation while the boltzmann equation isis linear equation while the boltzmann equation isnon linear equation.non linear equation.
Neutron transport equation is much simpler toNeutron transport equation is much simpler toderive, requiring only thederive, requiring only the concept of neutronconcept of neutronconservation plus a bit of vector calculusconservation plus a bit of vector calculus, and, andeasier to understand than the neutron diffusioneasier to understand than the neutron diffusionequation.equation.
It is far more fundamental and exact description ofIt is far more fundamental and exact description ofthe neutron population in reactor, indeed,the neutron population in reactor, indeed, it is theit is thefundamental cornerstone on which all of the variousfundamental cornerstone on which all of the variousapproximate methods used in nuclear reactorapproximate methods used in nuclear reactoranalysis are basedanalysis are based..
8/14/2019 Transport Neutron
11/69
Transport problem..Transport problem..
But, neutron transport theory hasBut, neutron transport theory hascome to be associated with acome to be associated with ahideous plethora of impenetrablehideous plethora of impenetrable
mathematics, unwieldy formulas, andmathematics, unwieldy formulas, andthe expenditure of enourmosthe expenditure of enourmosamounts of money on computeramounts of money on computernumber-crunching.number-crunching.
It is usually very dificult to solve theIt is usually very dificult to solve thetransport equation for any buttransport equation for any butsimplest modeled problemssimplest modeled problems
8/14/2019 Transport Neutron
12/69
But..But..
However that is quite all right, since it is notHowever that is quite all right, since it is notthe intent to attack the transport equationthe intent to attack the transport equationhead on (for a while).head on (for a while).
Rather the job of the reactor analyst is toRather the job of the reactor analyst is todevelop suitable (calculationally feasibledevelop suitable (calculationally feasibleand accurate) approximation to it.and accurate) approximation to it.
Usually, only by comparing these variousUsually, only by comparing these variousapproximation theories to the transportapproximation theories to the transportequation from which they originated canequation from which they originated canone really assess their range of validity.one really assess their range of validity.
The effort in understanding the neutronThe effort in understanding the neutrontransport equation will provide one with atransport equation will provide one with amuch deeper and more thoroughmuch deeper and more thoroughunderstanding of the approximate methodsunderstanding of the approximate methods
8/14/2019 Transport Neutron
13/69
Some Introductory ConceptSome Introductory Concept
8/14/2019 Transport Neutron
14/69
Neutron Density and FluxNeutron Density and Flux
Start by defining the neutron densityStart by defining the neutron densityN(r,t) at any point in reactor core byN(r,t) at any point in reactor core by
N(r,t) dN(r,t) d33rr expected number ofexpected number ofneutrons in dneutrons in d33r about r at a time tr about r at a time t..
It is a statistical theory in which onlyIt is a statistical theory in which onlymean or average values aremean or average values arecalculated.calculated.
The neutron density N(r,t) is ofThe neutron density N(r,t) is of
interest because it allows us tointerest because it allows us tocalculate the rate at which nuclearcalculate the rate at which nuclearreactions are occuring at any point inreactions are occuring at any point inthe reactor.the reactor.
8/14/2019 Transport Neutron
15/69
Neutron Density and Flux (contd)Neutron Density and Flux (contd)
Let us suppose that all the neutronsLet us suppose that all the neutronsin the reactor have the same speedin the reactor have the same speed..
The frequency with which a neutronThe frequency with which a neutronwill experience a given neutron-will experience a given neutron-nuclear reaction in terms of thenuclear reaction in terms of themacrocospic cross sectionmacrocospic cross sectioncharacteizing that reactioncharacteizing that reaction and theand theneutron speed v isneutron speed v is
vv = interaction frequency= interaction frequency
8/14/2019 Transport Neutron
16/69
Hence, the reaction-rate densityHence, the reaction-rate densityF(r,t) at any point in the system isF(r,t) at any point in the system isdefined by multiplying the neutrondefined by multiplying the neutrondensity N(r,t) by the interactiondensity N(r,t) by the interactionfrequencyfrequency vv ::F(r,t) dF(r,t) d33rr vv N(r,t) dN(r,t) d33rr
expected rate atexpected rate at
which interactions arewhich interactions areoccuring in doccuring in d33r about r atr about r ata time t.a time t.
Neutron Density and Flux (contd)Neutron Density and Flux (contd)
8/14/2019 Transport Neutron
17/69
Example :Example :
Neutron density of N=10Neutron density of N=1088 cmcm-3-3 in ain agraphite medium where its totalgraphite medium where its total
cross sectioncross section tt=0.385 cm=0.385 cm-1-1, neutron, neutronspeed 2.2x10speed 2.2x1055 cm/sec.cm/sec. We wouldWe wouldfind a reaction rate density offind a reaction rate density of8.47x108.47x101212 reactions/cmreactions/cm33/sec./sec. In thisIn thisparticular case, most of theseparticular case, most of thesereactions would consist of scatteringreactions would consist of scatteringcollisions.collisions.
Neutron Density and Flux (contd)Neutron Density and Flux (contd)
8/14/2019 Transport Neutron
18/69
These concept can easily beThese concept can easily beextended to the case in which theextended to the case in which theneutron density is different forneutron density is different for
various neutron energies E byvarious neutron energies E bydefining :defining :
N(r,E,t) dN(r,E,t) d33r dE expected number ofr dE expected number ofneutrons in dneutrons in d33r about r, energies inr about r, energies in
dE about E, at time t.dE about E, at time t. Also the reaction rate densityAlso the reaction rate density
F(r,t) dF(r,t) d33r dE vr dE v(E) N(r,E,t) d(E) N(r,E,t) d33r dEr dE
Neutron Density and Flux (contd)Neutron Density and Flux (contd)
8/14/2019 Transport Neutron
19/69
The product vN(r,t) occurs veryThe product vN(r,t) occurs veryfrequently in reactor theory, andfrequently in reactor theory, andtherefore it is given a special nametherefore it is given a special name
(r,t) vN(r,t)(r,t) vN(r,t) neutron flux neutron flux Its unit isIts unit is [cm[cm-2-2 secsec-1-1]] Noted thatNoted that neutron fux is scalarneutron fux is scalar
quantityquantity not as others definition ofnot as others definition offlux in electromagnetic or heatflux in electromagnetic or heatconduction.conduction.
Neutron Density and Flux (contd)Neutron Density and Flux (contd)
8/14/2019 Transport Neutron
20/69
Angular Densities and CurrentsAngular Densities and Currents
So far, we already use three variableSo far, we already use three variableto characterize the state of individualto characterize the state of individualneutron; the neutron positionneutron; the neutron position (r)(r), its, its
energyenergy (E),(E), and the timeand the time (t)(t) at whichat whichthe neutron is observed.the neutron is observed. Yet, notice that to specify the state ofYet, notice that to specify the state of
the neutron, we must also give itsthe neutron, we must also give its
direction of motion characterized bydirection of motion characterized bythe unit vectorthe unit vector=v/|v|.=v/|v|.
8/14/2019 Transport Neutron
21/69
By introducing this new variable letsBy introducing this new variable letsgeneralize the concept of density bygeneralize the concept of density bydefining thedefining the angular neutron densityangular neutron density ::
n(r,E,,t) dn(r,E,,t) d33r dE d =r dE d = expectedexpected
number of neutrons in dnumber of neutrons in d33
r about r,r about r,energy dE about E, moving inenergy dE about E, moving indirection in solid angle d at timedirection in solid angle d at time
tt.. This is the most general neutron densityThis is the most general neutron density
function we need to define since it happensfunction we need to define since it happensthatthat one can derive an essential exactone can derive an essential exactequationequation, the neutron transport equation,, the neutron transport equation,for the angular neutron density n(e,E,,t).for the angular neutron density n(e,E,,t).
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd)
8/14/2019 Transport Neutron
22/69
Angular neutron fluxAngular neutron flux(r,E,,t) v(r,E,,t) v n(e,E,,t)n(e,E,,t)
Angular current densityAngular current density
j(r,E,,t) vj(r,E,,t) vn(e,E,,t)n(e,E,,t) (r,E,,t)(r,E,,t)
Notice that sinceNotice that since is a unit vector, the is a unit vector, theangular flux is actually nothing moreangular flux is actually nothing morethan the magnitude of the angularthan the magnitude of the angularcurrent density.current density.
|j|=||j|=||| ==
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd)
8/14/2019 Transport Neutron
23/69
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd) The angular current density has aThe angular current density has a
useful physical interpretation.useful physical interpretation.j(r,E,,t) dA dE d j(r,E,,t) dA dE d expectedexpected
number of neutrons passing throughnumber of neutrons passing throughan area dA per unit time with eergy Ean area dA per unit time with eergy Ein dE, direction in d at time t.in dE, direction in d at time t.
We can also define an angularWe can also define an angular
interaction rateinteraction ratef(r,E,,t) = vf(r,E,,t) = v (r,E)(r,E) n(e,E,,t)n(e,E,,t)== (r,E)(r,E) (r,E,,t)(r,E,,t)
8/14/2019 Transport Neutron
24/69
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd) All of the angle-dependent quantitiesAll of the angle-dependent quantities
can be related to the earlier definitioncan be related to the earlier definitionby simply integrating over theby simply integrating over theangular variables.angular variables.
For neutron density :For neutron density :
N(r,E,t)N(r,E,t) == 44dd n(e,E,,t)n(e,E,,t)
furtherfurther
N(r,t)N(r,t) == 00 dE N(r,E,t)dE N(r,E,t)
= = 00 dEdE44dd n(e,E,,t)n(e,E,,t)
8/14/2019 Transport Neutron
25/69
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd)
For neutron fluxFor neutron flux
(r,E,t) =(r,E,t) = 44dd (e,E,,t)(e,E,,t)
andand(r,t)(r,t) == 00
dEdE (r,E,t)(r,E,t)
= = 00
dEdE44dd (e,E,,t)(e,E,,t)
8/14/2019 Transport Neutron
26/69
Angular Densities and CurrentsAngular Densities and Currents(contd)(contd)
For neutron currentFor neutron current
J(r,E,t) =J(r,E,t) = 44d jd j(e,E,,t)(e,E,,t)
J(r,E,t) is called neutron currentJ(r,E,t) is called neutron currentdensitydensity. Also,. Also,
J(r,t)J(r,t) == 00 dEdE J(r,E,t)J(r,E,t)
= = 00 dEdE44ddjj(e,E,,t)(e,E,,t)
8/14/2019 Transport Neutron
27/69
More about J(r,t) andMore about J(r,t) and (r,t)(r,t)
Notice that J(r,t) is actually what would beNotice that J(r,t) is actually what would bereffered to as the flux in other fields ofreffered to as the flux in other fields ofphysics, since if we have a small area dAphysics, since if we have a small area dAat a position r, thenat a position r, thenJ(r,t)J(r,t)..dAdA = net rate at which neutrons pass= net rate at which neutrons pass
through a surface area dA.through a surface area dA. The unit of both J(r,t) andThe unit of both J(r,t) and (r,t)(r,t) areare
identicalidentical [cm[cm-2-2..secsec-1-1].]. However, J is aHowever, J is a vector quantityvectorquantity thatthat
characterize the net rate at which neutronscharacterize the net rate at which neutronspass through a surfacepass through a surface oriented in a givenoriented in a givendirectiondirection, whereas, whereas simply characterizesimply characterizethe totalrate at which neutron pass throughthe totalrate at which neutron pass througha unit area,a unit area, regardless of orientationregardless of orientation..
8/14/2019 Transport Neutron
28/69
8/14/2019 Transport Neutron
29/69
Persamaan Transport NeutronPersamaan Transport Neutron
8/14/2019 Transport Neutron
30/69
PendahuluanPendahuluan
Persamaan yangPersamaan yangmenggambarkan kerapatanmenggambarkan kerapatanneutron angular pada sistemneutron angular pada sistem
nuklir akan diturunkan dengannuklir akan diturunkan denganmelakukanmelakukan akuntansiakuntansi terhadapterhadapproses-prosesproses-proses yang dapatyang dapatmemunculkanmemunculkan neutron danneutron dan
menghilangkanmenghilangkan neutron darineutron darisembarangsembarang volume vvolume v dalamdalamsistem.sistem.
8/14/2019 Transport Neutron
31/69
8/14/2019 Transport Neutron
32/69
Mekanisme pada volume VMekanisme pada volume V
Mekanisme neutron muncul :Mekanisme neutron muncul :
1. sumber neutron dalam volume V1. sumber neutron dalam volume V2. neutron yang terhambur dengan variabel2. neutron yang terhambur dengan variabel
akhirakhir E,E, dari sembarang E,dari sembarang E, ..
((ruang energi dan arahruang energi dan arah
))
3. neutron3. neutron masuk volume Vmasuk volume V melaluimelaluipermukaan S.(permukaan S.(ruang spasialruang spasial))
Mekanisme neutron hilang :
4. neutron bocormelalui permukaan S.5. neutron dalam V (dengan variabel E, )
mengalami tumbukan sehinggavariabelnya menjadi E, .
8/14/2019 Transport Neutron
33/69
Mekanisme Neutron MunculMekanisme Neutron Muncul
1.1.Sumber neutron pada V,Sumber neutron pada V,dengan definisi sumber berikutdengan definisi sumber berikut
)
,
,,3
ddErdtErs
Maka suku sumber dinyatakan sbb:
,,,3 ddErdtErs
V
8/14/2019 Transport Neutron
34/69
Mekanisme Neutron MunculMekanisme Neutron Muncul
2.2. Neutron muncul karena tumbukanNeutron muncul karena tumbukandan terhambur ke ruang V.dan terhambur ke ruang V.Laju neutron terhambur dari suatu ruang (E,)ke (E, ) adalah
( ) ( ) ,,,','' 3 ddErdtErnEEV sKarena harus diperhitungkan neutron darisemua ruang lain maka
( ) ( )( )
,,,',''''
04
3 ddEtErnEEdEdrdV
s
8/14/2019 Transport Neutron
35/69
Mekanisme Neutron hilangMekanisme Neutron hilang
5.5. Neutron yang terhambur ke ruangNeutron yang terhambur ke ruanglain dari V. Laju neutron mengalamilain dari V. Laju neutron mengalamiinteraksi adalahinteraksi adalah
( ( ) ( tErnErtErf tt ,,,,,,, = Maka neutron yang terhambur ke ruang Vdinyatakan sebagai berikut
( ) ) ,,,,3 ddErdtErnEr
Vt
8/14/2019 Transport Neutron
36/69
Mekanisme hilang+munculMekanisme hilang+muncul
(3+4)(3+4) Bocor kedalam dan keluar volume VBocor kedalam dan keluar volume Vdigabung.digabung.Dengan konsep rapat arus angularj, maka lajupada E, akan bocor dari permukaan dS adalah
( ) ( ) dStErndStErj = ,,,,,, Untuk seluruh permukaan, total bocor keluar danmasuk, ( )tErndS
S,,,
Dari pers. Gauss berikut ( ) = VS rArdrAdS )()(3
Didapat,
= ,,,,,,3
ddEtErnrdddEtErndSVS
,,,3
ddEtErnrdV Atau
8/14/2019 Transport Neutron
37/69
Total semua mekanismeTotal semua mekanisme
Dengan mensubstitusi semuanya keDengan mensubstitusi semuanya kepers.pers. AwalAwal diperoleh :diperoleh :
( ) 0)','('''0 4
3 =
++
ddEsnEEvddEnn
t
nrd
V
st
Karena volume V sembarang maka integran diatas harus nol
Maka didapat hubungan kesetimbanganberikut :
( ) ),,,(),,,()','('''),,,(0
4tErstErnEEvddEtErnn
t
nst +=++
8/14/2019 Transport Neutron
38/69
FormulasiFormulasiPersamaan TransporPersamaan Transpor Dengan menggunakan notasi fluks angularDengan menggunakan notasi fluks angular
maka persamaan transport biasa ditulismaka persamaan transport biasa ditulissbb:sbb:
( ) ),
,,(),
,,()'
,'('
'),
,,(),(
1
04 tErstErEEddEtErErt st
+=++
Dimana :
-Syarat awal :
- Syarat batas :
),,,()0,,,( 0 tErEr =
0),,,( = tErs
Bila 0
8/14/2019 Transport Neutron
39/69
Persamaan DiffusiPersamaan DiffusiSatu EnergiSatu Energi
Dengan akuntansi yang sama, untukDengan akuntansi yang sama, untukasumsi satu energi diperolehasumsi satu energi diperolehpersamaan berikutpersamaan berikut
=
++
V
a JS
t
rd 013
SehinggaSJ
ta +=
1
Dari pers. Diatas, untuk dapat diselesaikan lebih
lanjut diperlukan hubungan antara J dan . Inidiberikan oleh Hukum Ficks berikut
( ) ),()(, trrDtrJ Konstanta
diffusi
8/14/2019 Transport Neutron
40/69
Persamaan DiffusiPersamaan DiffusiSatu EnergiSatu Energi
Setelah disubstitusikan kembaliSetelah disubstitusikan kembalimaka diperolehmaka diperoleh
),(),()(),()(
1
trStrrtrrDt a=+
Untuk D yang homogen :),(),()(),(
1 2 trStrrtrD
t
a =+
Lebih jauh, untuk masalah statis :
)()()()(2 rSrrrD a =+
Persamaan Helmholtz
Pers.Difusi
Satu Grup
8/14/2019 Transport Neutron
41/69
Pers.Difusi : Kasus 1-DPers.Difusi : Kasus 1-D
Untuk satu dimensi (mis.X)Untuk satu dimensi (mis.X)makamaka
)()(2
2
rSx
dx
dD a =+
0)()0( == a
Diskritisasi ruang, operator diff.menjadi :( ) ...
2
22
11 +++= ++ii
iiidx
d
dx
dx
( ) ...2
22
11 += ii
iiidx
d
dx
dx
2
11
2
2 2
+
+ iii
idx
d
8/14/2019 Transport Neutron
42/69
Pers.Difusi : Kasus 1-DPers.Difusi : Kasus 1-D
Setelah substitusi diperoleh,Setelah substitusi diperoleh,
iiaiii SD =+
+ +
2
11 2
iiiaiS
DDD=
+
+
+ 122122
Dengan pengaturan variabel :
iiiiiiiiii Saaa =++ ++ 11,,11, Atau (untuk i=1,2,,N-1)
SA = A matriks (n-1)x(N-1),Svektor kolom (N-1)
8/14/2019 Transport Neutron
43/69
Bentuk lebih umum u/ 1-DBentuk lebih umum u/ 1-D
Pers.diff umum 1-D pada geometriPers.diff umum 1-D pada geometribidang datar :bidang datar :
)()()()( xSxx
dx
dxD
dx
da =+
Cara memecahkan persamaan initerbagi kedalam dua langkah :1. menurunkan persamaaan beda
(diskritisasi).2. menyelesaikan persamaan bedadengan algoritma tertentu.
8/14/2019 Transport Neutron
44/69
DiskritisasiDiskritisasi
Metoda umum untuk memperolehMetoda umum untuk memperolehpers.bedapers.beda (difference eq.)(difference eq.) adalah denganadalah denganmelakukanmelakukan integrasiintegrasi terhadap pers.diffterhadap pers.diffpada sembarangpada sembarang meshmesh interval.interval.
Integrasi dari tiap suku pers.diff dilakukanterhadap mesh interval berikut :
2
1+
+
i
ix2
i
ix
ix
1ix 1+ix
8/14/2019 Transport Neutron
45/69
Integrasi tiap sukuIntegrasi tiap sukusuku sumber dan penyerapansuku sumber dan penyerapan
Suku sumberSuku sumber
+
+
+
+
22)( 1
2
2
1
ii
i
x
x
SxSdx
i
i
i
i
Suku penyerapan
+
+
+
+
22
)()( 12
2
1
ii
iaa
x
x
i
i
i
i
i
xxdx
8/14/2019 Transport Neutron
46/69
Integrasi tiap sukuIntegrasi tiap sukusuku bocorsuku bocor
Suku bocor :Suku bocor :
2
2
2
2
11
)()(
++
+
+
i
i
ii
ii
ii
x
x
x
x
dx
dxD
dx
dxD
dx
ddx
Suku ini memerlukan beberapa langkah detail berikut :
1
1
2
1
+
+
+
+
i
ii
x
i
i
dx
d
i
ii
x iidx
d
1
2
21++ i
ix
ix 1+ix
2
i
ix
1ix
ix
8/14/2019 Transport Neutron
47/69
Integrasi tiap sukuIntegrasi tiap sukusuku bocorsuku bocor
Untuk nilai D,Untuk nilai D,
[ ] 1,112
1
2++
+ +=
+
iiii
i
iDDDxD
[ ] 1,1212 += iiiii
i DDDxD
Sehingga total suku bocor,
1
1
1,1,
1
1,
1
1,2
2
)(
1
++
+
+
+
+
+
+
+
i
i
ii
i
i
ii
i
ii
i
i
ii
x
x
DDDD
dx
dxD
dx
ddx
ii
ii
8/14/2019 Transport Neutron
48/69
Hasil integrasiHasil integrasi
Substitusi hasil integrasi terhadapSubstitusi hasil integrasi terhadappers.diffusi awal sbb:pers.diffusi awal sbb:
iiiiiiiiiiSaaa =++ ++ 11,,11,
Dimana koefisiennya adalah
1
1
1,
1
+
+
+
=iii
ii
ii
DDa
1
1
1
1,
1
+
+
+
+
+
++
+=iii
ii
i
iiaii
DDDDa
1
11,
1
+
++ +
+
=iii
ii
ii
DDa
Diperoleh N -1 pers.beda tiga titik (three-pointdifference equations) untuk N+1 variabel tak
diketahui yaitu 0,1,, N.
8/14/2019 Transport Neutron
49/69
Syarat batasSyarat batas
Syarat batas umum dapat diberikanSyarat batas umum dapat diberikansbb:sbb:
011,000,0 Saa =+
NNNNNNN Saa =+ ,11,
8/14/2019 Transport Neutron
50/69
Solusi pers.differensial 3-titikSolusi pers.differensial 3-titik
Persamaan terakhir yang kitaPersamaan terakhir yang kitadapatkan adalahdapatkan adalah
SA =
Lebih eksplisitnya
=
1
3
2
1
1
3
2
1
1111
111111
1111
000
00
0
00
NN S
S
S
S
aa
aaa
aa
8/14/2019 Transport Neutron
51/69
Matrik tridiagonal dapat langsungMatrik tridiagonal dapat langsungdipecahkan dengan eliminasi Gaussian.dipecahkan dengan eliminasi Gaussian.Sehingga diperoleh matriks berikut :Sehingga diperoleh matriks berikut :
=
1
3
2
1
1
3
2
1
3
2
1
1000
0
100
010
001
NN
A
A
A
dimana
11,,
1,
+
+=
nnnnn
nn
nAaa
aA1,1
2,1
1a
aA =
11,,
11,
=
nnnnn
nnnn
nAaa
aS
1,1
11
a
s=
8/14/2019 Transport Neutron
52/69
Maka, nilai fluks diperoleh denganMaka, nilai fluks diperoleh dengansubstitusi kembali, dan diperoleh :substitusi kembali, dan diperoleh :
11 = nN 2122122 +=+= NNNNNNN AA
dst,
8/14/2019 Transport Neutron
53/69
Dekomposisi LUDekomposisi LU
Secara formal yang telah dilakukan adalahSecara formal yang telah dilakukan adalahdekomposisi LU berikutdekomposisi LU berikut
=
1000
0100
010
001
000)(0
00)(
000
3
2
1
2323332
1212221
11
A
A
A
Aaaa
Aaaa
a
A
Sehingga penyelesaiannya sebagai berikut
SULA ==
== SLU 1
== 111 USLUA
Forwardelimination
Back
substitution
8/14/2019 Transport Neutron
54/69
Perhitungan KritikalitasPerhitungan Kritikalitas
Sekarang kita beralih kepadaSekarang kita beralih kepadaperhitungan yang sangatperhitungan yang sangatpenting, yaitu tingkat kritikalitaspenting, yaitu tingkat kritikalitas
suatu sistem nuklir dengansuatu sistem nuklir denganmengetahuimengetahui komposisi bahankomposisi bahandandan geometrigeometrinya.nya.
8/14/2019 Transport Neutron
55/69
8/14/2019 Transport Neutron
56/69
Mencari KesetimbanganMencari Kesetimbangan
Untuk menentukan komposisi agarUntuk menentukan komposisi agardiperoleh kesetimbangan makadiperoleh kesetimbangan makadiberikanlah koefisien k berikutdiberikanlah koefisien k berikut
( )rkrrrD fa =+
1
)()()(
2
Cara lain dengan menganggap vvariabel, dimana keadaan kritis dicapaipada nilai v tertentu yaitu vC
( )rrrrD fCa =+ )()()(2 Hubungannya
C
k
=
8/14/2019 Transport Neutron
57/69
Perhitungan KritikalitasPerhitungan Kritikalitas
Secara sederhana persamaan yangSecara sederhana persamaan yangakan dipecahkan berbentukakan dipecahkan berbentuk
= Fk
M1
+ )(2 rDM a
= )(rF f
dengan
Operator destruksi
Operator sumber
8/14/2019 Transport Neutron
58/69
Metoda iterasiMetoda iterasi
Solusi dilakukan dengan metoda iterasiSolusi dilakukan dengan metoda iterasiberikut, diawali dengan memberi sumberberikut, diawali dengan memberi sumberawal dan k tebakan.awal dan k tebakan.
)()( )0( rSFrS
Lalu tentukan flux (1) sbb :
)0(kk
)0(
)1(
)1()1(2)1( 1)( Sk
rDM a =+
Dengan hasil diatas dapat kita hitung sumberdan k baru sbb
)1()1()1( fFS ==
8/14/2019 Transport Neutron
59/69
Bagan AlgoritmaBagan AlgoritmaInput geometri dan
komposisi bahan
Tebak sumberawal (S(0)) dan k(0)
)1()(
)1( 1 ++ =n
nn F
kM
)1()1( ++ = nn FS
++
)(1
)(
)(3
)(
)1(3
)1(
rrSdk
rrSdk
n
n
n
n
1)(
)1()(
8/14/2019 Transport Neutron
60/69
Tim Java [Arya dan SintaTim Java [Arya dan SintaAW,Aniq)AW,Aniq)
Tim Visual Basic [Elfrida,Utaja]Tim Visual Basic [Elfrida,Utaja] Tim Fortran [Marsodi, Sangadji]Tim Fortran [Marsodi, Sangadji] Tim MATLABTim MATLAB
[Mike,Entin,Wahyu,Dinan][Mike,Entin,Wahyu,Dinan]
8/14/2019 Transport Neutron
61/69
8/14/2019 Transport Neutron
62/69
InputInput
K[i]Array Bil.riilK-awal
Fl[n,i]Array 2-D bil.riilFluks awalPerhitungan
D[n]Array 1-D bil.riilNeutron per fisi
pla[n], plf[n],
D[n]
Array 1-D Bil.riilPen.lintang
absorpsi,fisi,
konstanta difusi
Material
HBil.riilLebar partisi
LBil.riilPanjang bahanGeometri
INPUT
8/14/2019 Transport Neutron
63/69
SolverSolver
Iterasi dalamIterasi dalaminloop(inloop(
Iterasi luarIterasi luar
8/14/2019 Transport Neutron
64/69
Untuk memantapkanUntuk memantapkanpemahaman kita, mari kitapemahaman kita, mari kitasimak penjelasan untuk halsimak penjelasan untuk halyang sama dari pengembangyang sama dari pengembangMCNP F.Brown dari Los AlamosMCNP F.Brown dari Los Alamos
National Laboratory.National Laboratory.
8/14/2019 Transport Neutron
65/69
8/14/2019 Transport Neutron
66/69
8/14/2019 Transport Neutron
67/69
8/14/2019 Transport Neutron
68/69
8/14/2019 Transport Neutron
69/69