18
INDICE Introducción....................2 SCR.............................3 Como comprobar un Tiristor......3 Practica con Tiristor...........4 SCR en Alterna..................5 Control de continua con SCR.....5 Transistor Uni Unión UJT........6 Comportamiento de un condensador en C.A.............................6 Oscilador de relajación con UJT.8 Control de C. Alterna...........8 Circuito puente semicontrolado.11 TRIAC..........................11 DIAC...........................12 Disparar un TRIAC con un DIAC..14

TRIAC

Embed Size (px)

Citation preview

Page 1: TRIAC

INDICE

Introducción........................................2SCR.....................................................3Como comprobar un Tiristor................3Practica con Tiristor.............................4SCR en Alterna....................................5Control de continua con SCR...............5Transistor Uni Unión UJT......................6Comportamiento de un condensador en C.A.......................................................6Oscilador de relajación con UJT...........8Control de C. Alterna...........................8Circuito puente semicontrolado........11TRIAC................................................11DIAC..................................................12Disparar un TRIAC con un DIAC.........14

Page 2: TRIAC

Introducción

Circuitos necesarios para controlar tensión e intensidad elevadas bien sea en continua o alterna

Para controlar Alterna:

Rectificadores controlados½ OndaOnda completa

Rectificadores Semicontrolados

Control de C. AlternaMediante TRIACMediante SCR en antiparalelo

Componentes:

Elementos de Potencia:S.C.R.(rectificador controlado de Silicio)(tiristor)

TRIAC(tríodo de C. Alterna)

Elementos de disparo:

UJT(transistor uni unión)PUT(transistor uni union programable)DIAC (diodo de C.alterna)C. integradosTransformador de impulsos(elemento aislador galvanicamente)

Tipos de Control:Control de fase

Page 3: TRIAC

SCR

SCR

G

KA

R1

470

RL R2

2k2

1 2

Este seria un circuito básico disparador con un Tiristor, mediante R2 y accionando el interruptor le llegaría un impulso a la puerta lo que produciría el cebado y consecuentemente la conducción entre ánodo y cátodo. También se podría alimentar el circuito disparador con un Vcc distinta en el caso que tuviéramos una Vcc muy grande en el circuito de potencia bastaría con separar las alimentaciones.Para que pueda conducir en el momento de aplicar disparo IA>IL

Como comprobar un Tiristor

Aplicar la borna positiva del polímetro al ánodo y la negativa al cátodo, y sin dejar de hacer contacto tocar con la borna positiva la puerta y soltar y ver si ha disparado, conducirá.

Page 4: TRIAC

Practica con un Tiristor

SCR

G

KA

R1

470

R2

2k2

1 2

RL

SCR

G

KA

R1

470

R2

2k2

1 2

RL

12

R2

2k2

1n

Cebado BloqueoAntes Cebando Después Después

Bloqueo

Disparo

En estas formas de onda podemos ver el momento cuando disparamos el Tiristor y a partir de ese momento pasa a conducir, en la señal de arriba vemos como se “queda” toda la señal en la RL, de esta manera controlamos la potencia a entregar a la carga

Aquí podemos ver la curva de características del Tiristor y aunque no se pueda observar con claridad en el momento de disparo cuanto mayor sea la tensión entre ánodo y cátodo menor Intensidad será necesaria en la puerta para dispararlo, incluso se pueden llegar a dar cebados indeseados por tensiones muy altas entre ánodo y cátodo.

Page 5: TRIAC

VAK 0 10’9 10,9 0VGK 12 11 10’9 12VRL 0 11 10,5 0VC 0 10’9 10,9 0

SCR en Alterna

SCR

G

KA

RL

12

D1

1N1183A

12

R3

1k

C2

1n

Control de continua con SCR

Q1

SCR

D1

12

100K

100K

D1

12

Cuando en R2 se tiene el nivel necesario de VG para que el SCR conduzca, se aplica la Ve a la carga. VR2 la podemos variar haciendo R1 variable. D1 se conecta para evitar tensiones en la puerta inversas.

Page 6: TRIAC
Page 7: TRIAC

En el semiperiodo negativo la Ve pasa por D1 al oponer menos resistencia que el potenciómetro y se carga el condensador con Ve, R queda anulada y así se asegura que el desfase sea el mismo.

Si lo que deseásemos durara controlar una corriente alterna el circuito seria de la siguiente manera:

Q1

SCR

D1

12

100K

100K

D1

12

Comportamiento de un Condensador en Alterna

12

El condensador en Alterna retrasa la corriente 90º respecto de la Ve.

Transistor Uni Unión

Constitución interna

i

VC

90º

N

N

PE

B1

B2

Page 8: TRIAC

D1

1 2

Patillaje del UJT Circuito Equivalente del UJT = RB1 / RB1+RB2 => 0,65 0,55

12

RB2

RB1

D11 2

VK= VBB / (RB2+RB1)* RB1

El diodo conducirá cuando VK sea 60%(+0,7V de VBB

Por lo de

B2

B1

E

IE

VE

VBB

VE

VK

VK

Zona Resistencia negativa

V valle

VK=VBB*

Page 9: TRIAC

Circuito de aplicaciónOscilador de relajación

C1

RV

R

470

100

Q1B2

B1

E

T=(RV*R)*C (VBB-Vv) / Iv < RV+R< (VBB-Vp)/Ip

Cuando el UJT llega a la tensión de Vp se hace negativa su resistencia interna en la barra de Silicio, se cortocircuita E y B1 y entonces al quedar en paralelo con el condensador este puede descargarse. Al descargarse el condensador y superar por abajo la tensión de Valle el UJT deja de conducir y vuelve a cargarse el condensador y así sucesivamente. Podemos variar el tiempo de carga del condensador con el circuito RC haciendo la R variable.

Control de corriente continua

- +

D2

BRIDGE

1

4

3

2RL

1k

R limi

10k 10WR3

1k

Q23

2

1

R4

C2

1n

2

13

R3

1k

r (Ve min –Vz) / (IRL+Izmin)

Vp

Iz min

Iz max

Vz

I

Iz max= Vmax/Vz

Page 10: TRIAC

- +

D21

4

3

2RL R limi

10k 10WR3

470

Q23

2

1

RVAR

C2

2

13

R3

R5

100

Rlimi=(Ve-Vz) / (IRL+Iz)(Ve^-Vz) / (I+Iz)(311-12) / (20mA+10mA)10K

WRLimi= (VR2lim) / (Rlim)= 3002 / 10K9W

A la a salida del tiristor cuando la lámpara esta al máximo de luminosidad:

Ve

VA

Vz

Vp VRL

VRB1

La primera forma de onda es la señal de entrada, una senoidal alterna, después es rectificada por el puente de diodos de onda completa y se obtiene una continua pulsatoria, la tercera forma de onda es la señal del zener como la retiene en su valor al llegar a la zona de conducción, y la ultima son los pulsos generados por el UJT que corresponden con la penúltima haciendo disparar al tiristor en ese momento y que conduzca

Page 11: TRIAC

Al mínimo de luminosidad:

Con el potenciómetro cortocircuitado el condensador se va a cargar más rápido haciendo que el disparo se produzca prácticamente al inicio del ciclo; con el potenciómetro al máximo se carga mas lentamente el condensador y se dispara mas tarde. Hemos de calcular el potenciómetro para asegurar que el disparo que lo podemos retrasar un tiempo igual o superior a la duración de un semiciclo.Calculo de R para asegurar que el circuito oscile.

Datos proporcionados por el fabricante: Vv=0,5VIv=4mAIp=50AVp=VBB*+0,7V8V

La del zener

VBB-Vv <R< VBB-Vp Iv Ip2K2 < R < 100K

Calculo del potenciómetro para asegurar que el tiempo de carga del condensador sea igual o superior a 10ms:T=R*C T=(P+R)*C10ms=(P+R)*100*10-9 => 100K

Circuito puente semicontrolado

No hay nada de tensión en el tiristor, se la queda toda la lámpara

Se lo queda con toda la tensión el tiristor y no hay nada en la lámpara

Page 12: TRIAC

R limi

10k 10WR3

470

Q23

2

1

RVAR

C2

R3

- +

1

4

3

2

D11 2

D11 2

Q4

2

13

Q42

13

RL

TRIAC

Solo el primer impulso activa el TIAC.

VC

En extremos de la lámpara al máximo

Page 13: TRIAC

El triac es fundamentalmente un diac con una terminal de compuerta para controlar las condiciones de disparo del dispositivo bilateral en cualquier dirección, en el triac en cualquier dirección la corriente de compuerta puede controlar la acción del dispositivo. Para cada dirección posible de conducción hay una combinación de capas semiconductoras cuyo estado se controla mediante la señal aplicada a la terminal de compuerta. Un triac puede conducir en ambas direcciones, y normalmente se utiliza en el control de fase de corriente alterna. Se puede considerar como si fueran dos SCR conectados en antiparalelo, con una conexión de compuerta común. Si la terminal MT2 es positiva con respecto a la terminal MT1, el TRIAC se puede activar aplicando una señal de compuerta positiva entre la compuerta G y la terminal MT1. Si la Terminal MT2 es negativa con respecto a la terminal MT1, se aplicará una señal negativa de compuerta entre G y la terminal MT1. En si el TRIAC se puede activar tanto con una señal positiva como con una negativa de compuerta.

DIAC

Dispositivo semiconductor de dos terminales de estructura similar a la del transistor que presenta cierto tipo de conductividad biestable en ambos sentidos. Cuando las tensiones presentes en sus terminales son suficientemente altas se utiliza principalmente junto a los triacs que para el control en fase de los circuitos.

Es un tipo de tiristor que puede conducir en los dos sentidos. Es un dispositivo de dos terminales que funciona básicamente como dos diodos Shockley que conducen en sentidos opuestos.

Page 14: TRIAC

 

Construcción básica y símbolo del diac. La curva de funcionamiento refleja claramente el comportamiento del diac, que funciona como un diodo Shockley tanto en polarización directa como en inversa.

Cualquiera que sea la polarización del dispositivo, para que cese la conducción hay que hacer disminuir la corriente por debajo de la corriente de mantenimiento IH. Las partes izquierda y derecha de la curva, a pesar de tener una forma análoga, no tienen por qué ser simétricas.

 

Page 15: TRIAC

Circuito disparando un TRIAC con un DIAC

RVAR

C2

R3

Q5

12

1 2

RL

10k 10W

Aquí podemos observar como el DIAC permite disparar tanto en el semiperíodo positivo como el negativo.

VRL

Ve