24
Tài liệu này được dch sang tiếng vit bi: Tbn gc: https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=shari ng Liên hđể mua: [email protected] hoc [email protected] hoc s0168 8557 403 (gp Lâm) Giá tin: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngDch tài liu ca bn: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Từ ả ố ệ để thanhlam1910 [email protected] ho c frbwrthes ... · PDF filedụng các nhũ tương ổn định rắn làm hệ mô hình thí nghiệm mới để khảo sát

  • Upload
    vudat

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • Ti liu ny c dch sang ting vit bi:

    T bn gc:

    https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=shari

    ng

    Lin h mua:

    [email protected] hoc [email protected] hoc s 0168 8557 403 (gp Lm)

    Gi tin: 1 nghn /trang n (trang khng chia ct); 500 VND/trang song ng

    Dch ti liu ca bn: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

    https://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=sharinghttps://drive.google.com/folderview?id=0B4rAPqlxIMRDcGpnN2JzSG1CZDQ&usp=sharingmailto:[email protected]:[email protected]://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

  • Molecular dynamics simulations of

    surfactant and nanoparticle self-

    assembly at liquid-liquid interfaces

    3 h 41 19/7

    Abstract

    We have performed molecular

    dynamics (MD) simulations to

    investigate self-assembly at water-

    trichloroethylene (TCE) interfaces

    with the emphasis on systems

    containing modified (ci tin, iu

    chnh) hydrocarbon nanoparticles

    (1.2 nm in diameter) and sodium

    dodecyl sulfate (sDs) surfactants.

    The nanoparticles and surfactants

    were first distributed randomly in the

    water phase. The MD simulations

    have clearly shown the progress of

    migration and final equilibrium of

    the sDs molecules at the water-TCE

    interfaces with the nanoparticles

    either at or in the vicinity of the

    interfaces. One unique feature is the

    attachment of surfactant molecules

    to the nanoparticle clusters in the

    water phase followed by the

    detachment at the water-TCE

    interfaces. At low concentrations of

    surfactants, the surfactants and

    nanoparticles co-equilibrate at the

    interfaces. However, the surfactants,

    at high concentrations, competitively

    dominate the interfaces and deplete

    nanoparticles away from the

    interfaces. The interfacial properties,

    such as interfacial thickness and

    interfacial tension, are significantly

    influenced by the presence of the

    surfactants, but not the nanoparticles.

    The order of the surfactants at the

    interfaces increases with increasing

    surfactant concentration, but is

    independent of nanoparticle

    M phng ng hc phn t qu

    trnh t sp xp ca cc phn t hot

    ng b mt v ht nano cc b

    mt phn cch gia hai lp cht lng

    Tm tt

    Chng ti tin hnh cc m phng

    ng hc phn t (MD) khm ph

    hin tng t sp xp ti cc b mt

    phn cch nc-trichloroethylene

    (TCE), y chng ta s tp trung

    vo cc h cha cc ht nano

    hydrocarbon ci tin (ng knh 1.2

    nm) v cc cht hot ng b mt

    natri dodecyl sulfate (SDS). Trong

    m phng, u tin, chng ta s cho

    cc ht nano v cc cht hot ng

    b mt phn tn ngu nhin trong

    pha nc. Cc m phng MD gip

    chng ta hiu r hn qu trnh di

    chuyn v cn bng cui cng ca

    cc phn t sDs ti cc b mt phn

    cch nc-TCE khi c cc ht nano

    nm ngay ti hoc ln cn cc b mt

    phn cch. Mt tnh cht c o l

    "hin tng gn" cc phn t hot

    ng b mt vo cc m ht nano

    trong pha nc, tip theo sau l 'tch

    ra' cc b mt phn cch nc-

    TCE. Khi nng cht hot ng b

    mt thp, cc cht hot ng b mt

    v ht nano cng cn bng cc b

    mt phn cch. Tuy nhin, khi nng

    ca cc cht hot ng b mt

    cao, chng s chim u th cc b

    mt phn cch v y cc ht nano ra

    khi b mt phn cch. Cc cht hot

    ng b mt c nh hng ng k

    n cc thuc tnh b mt phn cch,

    chng hn nh dy b mt phn

    cch v sc cng mt phn cch,

    nhng cc ht nano khng nh

    hng n nhng tnh cht ny. Trt

    t ca cc cht hot ng b mt

  • concentration. Finally, the simulation

    has shown that surfactants can

    aggregate along the water-TCE

    interfaces, with and without the

    presence of nanoparticles.

    (some figures in this article are in

    colour only in the electronic version)

    Self-assembly of nanosized objects

    at liquid-liquid interfaces is of

    tremendous interest for various

    natural and industrial applications.

    For example, self-assembly of

    surfactant molecules or polymers at

    liquid-liquid interfaces is essential in

    the preparation and stabilization of

    conventional emulsions. The

    importance of conventional

    emulsions is reflected through their

    wide applications in the food,

    cosmetic, pharmaceutical, petroleum,

    fine chemical, and coating industries.

    Surfactant interfacial self-assembly

    is also critical in numerous processes

    such as lubrication, detergency,

    biological transferring, and polymer

    processing. Recently, there has been

    a growing interest in the self-

    assembly of nanoparticles due to

    their important applications. For

    example, self-assembled

    nanoparticles at a liquid-liquid

    interface serve as building blocks for

    bottom-up assembly of new

    functional materials with unique

    physical properties [1, 2].

    Furthermore, there is growing

    interest in solid-stabilized emulsions

    that use solid nanoparticles or

    microparticles as emulsion

    tng theo nng ca n, nhng

    khng ph thuc nng ht nano.

    Cui cng, m phng cho thy cc

    cht hot ng b mt c th tch t

    dc theo cc b mt phn cch nc-

    TCE, khi c v khi khng c cc ht

    nano.

    (mt s nh trong bi bo ny l nh

    mu v ch c th xem c trong

    phin bn in t)

    Hin tng t sp xp ca cc i

    tng kch thc nano ti cc b mt

    phn cch gia hai lp cht lng rt

    ng quan tm trong t nhin cng

    nh trong cc ng dng cng nghip.

    V d, s t sp xp cc phn t hot

    ng b mt v cc polyme b mt

    phn cch gia hai lp cht lng

    ng vai tr quan trng trong qu

    trnh iu ch v n nh cc nh

    tng thng thng. Tm quan trng

    ca nh tng thng c th hin

    qua cc ng dng a dng ca chng

    trong thc phm, m phm, dc

    phm, du kh, ha cht tinh khit,

    v cc ngnh sn ph. T sp xp b

    mt phn cch ca cht hot ng b

    mt cng rt quan trng trong nhiu

    qu trnh nh bi trn, ty ra,

    chuyn i sinh hc, ch bin

    polymer. Gn y, cc nh nghin

    cu ngy cng quan tm n hin

    tng t sp xp ca cc ht nano do

    nhng ng dng quan trng ca

    chng. V d, cc ht nano t sp xp

    ti b mt phn cch gia hai lp

    cht lng ng vai tr l nhng thnh

    phn c bn trong qu trnh tng hp

    t di ln cc vt liu chc nng

    mi vi nhng tnh cht vt l c

    o [1, 2]. Bn cnh , cc nh

    nghin cu cng ngy cng quan tm

    hn n cc nh tng n nh rn

  • stabilizers. For these systems, the

    self-assembly of solid particles at

    liquid-liquid interfaces is essential

    [3-12]. Although the fundamentals of

    surfactant adsorption at liquid-liquid

    interfaces are well understood, the

    self-assembly of nanoparticles at

    liquid-liquid interfaces has not been

    fully explored.

    One of the remaining challenges is to

    understand multiphase interactions,

    self-assembly processes, and self-

    assembled structures of

    nanoparticles, especially when the

    size of the nanoparticles is

    comparable with the molecular

    dimension of the surrounding liquids.

    Dai et al [12] have reported the

    success of using solid- stabilized

    emulsions as a new experimental

    model system to investigate the

    detailed self-assembled structure of

    nanoparticles (1-5 nm) at a water-

    trichloroethylene (TCE) interface.

    This assembly was determined by

    use of an environmental transmission

    electron microscope (E-TEM). In

    sharp contrast to microparticles or

    large-size nanoparticles forming a

    monolayer at liquid-liquid interfaces,

    ultra small dodecanethiol-capped

    nanoparticles of 1-5 nm form

    randomly distributed multilayers at

    the water-TCE interfaces, with an

    interparticle distance varying from

    close contact to approximately 25 nm

    [12]. This interesting result offers the

    first direct observation of

    nanoparticles in a liquid medium

    using E-TEM and opens new

    opportunities for high-resolution

    dng cc ht nano v cc ht micro

    rn lm cht n nh ha nh tng.

    i vi cc h ny, hin tng t sp

    xp cc ht rn ti b mt phn cch

    gia hai lp cht lng rt quan trng

    [3-12]. Mc d, chng ta hiu

    c cc nguyn tc c bn ca hin

    tng hp th cht hot ng b mt

    ti cc b mt phn cch gia hai lp

    cht lng, hin tng t sp xp ca

    cc ht nano ti b mt phn cch

    gia hai lp cht lng vn cha c

    nghin cu thu o. Mt trong

    nhng thch thc vn cn tn ti l

    cc tng tc nhiu pha, cc qu

    trnh t sp xp, v cc cu trc t

    lp rp ca cc ht nano, c bit khi

    kch thc ca cc ht nano vo c

    kch thc ca phn t cht lng

    xung quanh. Dai v cc cng s [12]

    tuyn b thnh cng trong vic s

    dng cc nh tng n nh rn lm

    h m hnh th nghim mi kho

    st chi tit cu trc t sp xp ca

    cc ht nano (1-5 nm) ti b mt

    phn cch nc-trichloroethylene

    (TCE). Qu trnh lp ghp ny c

    xc nh bng knh hin vi in t

    truyn qua thn thin mi trng (E-

    TEM). Khc vi cc ht micro hoc

    ht nano kch thc ln hnh thnh

    mt n lp b mt phn cch gia

    hai lp cht lng, cc ht nano ph

    dodecanethiol siu nh kch thc t

    1-5 nm hnh thnh nhiu lp phn b

    ngu nhin ti cc b mt phn cch

    nc-TCE, trong khong cch

    gia cc ht thay i t khng (chm

    vo nhau) n khong 25 nm [12].

    Kt qu l th ny gip chng