UNU-Merit Pres04 2016

Embed Size (px)

Citation preview

  • 8/18/2019 UNU-Merit Pres04 2016

    1/48

    Innovation forRemaking the PlanetSome Economics ofGeoengineering R&D

    Timo Goeschl

    Dept. of Economics

    Heidelberg University

  • 8/18/2019 UNU-Merit Pres04 2016

    2/48

    2

    Carbon cycle

  • 8/18/2019 UNU-Merit Pres04 2016

    3/48

    3

    Projected global mean temperatures

  • 8/18/2019 UNU-Merit Pres04 2016

    4/48

    4

    Cost-Benefit Comparison

  • 8/18/2019 UNU-Merit Pres04 2016

    5/48

    5

    CLIMATE ENGINEERING

  • 8/18/2019 UNU-Merit Pres04 2016

    6/48

    6

    A definition

    “Geoengineering is the intentional large-scalemanipulation of the global environment. The term hasusually been applied to proposals to manipulate theclimate with the primary intention of reducing undesired

    climatic change caused by human influences.” D. Keith (1998)

  • 8/18/2019 UNU-Merit Pres04 2016

    7/48

  • 8/18/2019 UNU-Merit Pres04 2016

    8/488

    P. Crutzen

    Climatic Change, 2006

    Old ideas – new interest and legitimacy

  • 8/18/2019 UNU-Merit Pres04 2016

    9/489

    Is there a quick fix?

    March 24, 2008

  • 8/18/2019 UNU-Merit Pres04 2016

    10/4810

  • 8/18/2019 UNU-Merit Pres04 2016

    11/4811

    Two types of Climate Engineering

    Carbon dioxide removal (CDR)

    • Biomass + CCS 

    • Direct capture of CO2 from air  

    • Adding Fe to oceans 

    • Adding macro-nutrients to oceans

    • Adding alkalinity (Mg) to oceans 

    • Bio-char

    • Adding alkalinity to soils 

    Slow and expensive,

    but gets the carbon out

    Solar radiation management (SRM)

    • Sulfates in the stratosphere 

    • Sea salt aerosols in low clouds 

    • Altering plant albedo 

    • Engineered particles in mesosphere 

    Fast, cheap, imperfect and uncertain;

    and it does very little to manage the

    carbon in the air

    Solar radiation management  Carbon cycle engineering

  • 8/18/2019 UNU-Merit Pres04 2016

    12/4812

    Science Policy: Weighing the options

       R  o  y  a   l    S  o  c   i  e   t  y   2   0   0   8

  • 8/18/2019 UNU-Merit Pres04 2016

    13/4813

    THE ECONOMICS OF CLIMATEENGINEERING

  • 8/18/2019 UNU-Merit Pres04 2016

    14/4814

    Definitional stuff

    What are the “economics of geoengineering”? The economics of geoengineering is

    1. the welfare-oriented study of normative and positive aspects of the development and use of geoengineeringtechnologies

     – Goes, Tuana and Keller 2011, Bickel and Agrawal 2013; Moreno-Cruz and Keith 2012; Emmerling and Tavoni 2013;…

     – Barrett 2008; Moreno-Cruz, Ricke, and Keith 2012; Nemet andBrandt 2012; Goeschl, Heyen, and Moreno-Cruz 2013; Barrett2014;

    2. the policy-oriented study of instruments and institutions drawing on economics in order to help govern thesetechnologies so as to further society’s welfare.

     – Weitzman 2013

  • 8/18/2019 UNU-Merit Pres04 2016

    15/48

    15

    GE Economics vs Economics of ClimateChange

    What are the key differences?

    1. Technology: ‘Single large affordable project’ 

     – Direct costs appear trivial compared to GHG mitigation

     – Indirect costs of large scale application are barelyunderstood => high returns to research?

     – Deployment will not require financial cooperation, butR&D probably will

     – Deployment likely requires coordination due to

    heterogeneity of impacts2. Nature of intergenerational transfer

     – Not just money or in-kind benefits

     – Transfer of a technological capability

  • 8/18/2019 UNU-Merit Pres04 2016

    16/48

    16

    Synopsis

    • Current literature reviewKlepper, G. and W. Rickels (2012): The real economics of climate

    engineering. Economics Research International  2012.doi:10.1155/2012/316564

    • First paper: William Nordhaus (1991): ‘The Cost ofSlowing Climage Change’ Energy Journal 12(1)

     – “promising new approach” 

     – “much more cost effective than [mitigation]” 

     – “may be a panacea for global warming”

     – “cost of $0.10 to 10 per ton of CO2e” 

    • Most cited paper:

    Scott Barrett (2008): The Incredible Economics of Geoengineering.Environmental and Resource Economics 39(1), 45-54. 

  • 8/18/2019 UNU-Merit Pres04 2016

    17/48

    17

    Normative vs. positive perspectives ongeoengineering R&D

    Normative:

    What ought to be done?

    • “Optimal” R&D levels 

     – When?

     – Where?

     – How?

     – Why?

    • Cost-benefit analysis

    adjusted for – Risk

     – Uncertainty

    Positive:

    What will be done?

    • Understanding R&Dincentives that CE providesto different agents – Within a generation, across

    countries and agents

     –  Across generations

    • At different stages of CE• Under different regulatory

    systems governing – GHG mitigation (Paris Accord) – Deployment (liability) – R&D (public vs. private)

  • 8/18/2019 UNU-Merit Pres04 2016

    18/48

    18

    Milestone stages and agents

    Stage/Agent Global Nation Firm

    Research

    Development

    Deployment

  • 8/18/2019 UNU-Merit Pres04 2016

    19/48

    19

    Current patenting activity

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    2009 2010 2011 2012 2013 2014 2015

    SRM

    CDR

    Chart: Number of patent applications filed in the

    areas of Carbon Dioxide Reduction (CDR) and

    Solar Radiation Management (SRM) with the U.S.

    PTO, 2009-2015

  • 8/18/2019 UNU-Merit Pres04 2016

    20/48

    20

    Illustrations

    • Intergenerationaltechnology transfer(Goeschl et al. 2013)

    • Legal regimes andinnovation (Goeschland Pfrommer 2015)

    • Positive economics ofCE R&D (Nemet and

    Brandt 2012)• Strategic incentives(Heyen 2015)

  • 8/18/2019 UNU-Merit Pres04 2016

    21/48

    21

    INTERGENERATIONAL CETECH TRANSFER

  • 8/18/2019 UNU-Merit Pres04 2016

    22/48

    22

    Research question

    How should an altruistic current generation behave towardsthe future generation?

    • Premise: Current generation is concerned about well-being of generations in 2060

    • Concern about

     – Damages from current generation’s GHG emissions 

     – Impacts of geoengineering, if (i) available and (ii) used

    •  Avoided temperature damages

    • Damages from geoengineering

    • => Two dimensions of behavior towards future generation

     –  Abatement

     – Remediation technology transfer  

  • 8/18/2019 UNU-Merit Pres04 2016

    23/48

    23

    Concerns

    Concern 1: Myopic deployment decision

    “Geoengineering technologies, once developed, may enable short-sighted and unwise deployment decisions, with

     potentially serious unforeseen consequences.” 

     American Meteorological Society Statement on Geoenginering 2010

    Concern 2: Political economy of R&D

    “Vested interests [...] might make significant amounts of money

    through a choice to modify climate”

    Jane Long, Lawrence Livermore National Laboratory

    Implication: Current and future generations disagree

    about damages in predictable ways.

  • 8/18/2019 UNU-Merit Pres04 2016

    24/48

    24

    Timing of the intergenerational game

    Source: Goeschl, Heyen and Moreno-Cruz 2013

  • 8/18/2019 UNU-Merit Pres04 2016

    25/48

    25

    Strategic equilibria in -K  -space

    Source: Goeschl, Heyen and Moreno-Cruz 2013

  • 8/18/2019 UNU-Merit Pres04 2016

    26/48

    26

    Institutional answers

    • Most of the strategic solutions are only second-best.

     – “No testament” constraint

    • What could be the nature and shape of institutions couldresolve the intergenerational conflict?

     – Bovenberg (1995): Intergenerational bonds

     – Gerlagh and Liski (2012): Exploit irreversibilities ascommitment devices in climate policies

     – … 

  • 8/18/2019 UNU-Merit Pres04 2016

    27/48

    27

    LIABILITY REGIMES ANDGEOENGINEERING R&D

    Goeschl and Pfrommer 2015

  • 8/18/2019 UNU-Merit Pres04 2016

    28/48

    28

  • 8/18/2019 UNU-Merit Pres04 2016

    29/48

    29

    Motivation

    • Some international regime is a prerequisite for large-scaleexperiments or deployment of CE measures

    • Key issue: Risk sharing between countries

    • Classic solution: Regime of international liability

    • Prerequisites

     – Experiential risk assessment

     – Causal attributability.

    • Instead: Model predictions… 

    RELIABILITY LIABILITY

  • 8/18/2019 UNU-Merit Pres04 2016

    30/48

    30

    1. Are predictions

    convergent across

    models?

    2. Are all models wrong in

    the same way?

    Two reliability issues

    (Schmidt et al.

    ESD, 2013)

    (Shindell et al.,

    JGR, 2004)

  • 8/18/2019 UNU-Merit Pres04 2016

    31/48

    31

    Research questions

    • What are the implications for R&D of basing a liabilitysystem on non-experiential risk assessments?

     – Incentives

     – Solutions (L’Aquila Earthquake case) 

    • How well can a liability system perform in terms of riskallocation

     –  Across extant parties?

     –  Across time?

  • 8/18/2019 UNU-Merit Pres04 2016

    32/48

    32

    Interdisciplinary Interaction

    Model Reliability

    Model intercomparison

    Real analogues and

    models (volcanos)

    Reliability and

    Responsibility

    Epistemology of model

    based liability

    Ethical implications

    (Re-)Liability and

    Incentives

    Efficient risk-sharing

    Optimal vs. research

    Regime Design

    and Reliability

    ReDesign of int’l liability 

    Incentive compatibility

  • 8/18/2019 UNU-Merit Pres04 2016

    33/48

    33

    POSITIVE ECONOMICS OFGEOENGINEERING R&D

    Nemet and Bandt (2012)

  • 8/18/2019 UNU-Merit Pres04 2016

    34/48

    34

    Positive economics of geoengineering R&D

    • Nemet and Brandt (2012): Whom would you expect to bedeveloping a backstop such as direct CO2 air capture?

     – Unilateral R&D of DAC technologies

    • Answer: Maybe someone like liquid fuel producers

     – Intuition: Preventing regulation maintains resourcerents

    • Compare: Rents under no carbon price, carbon price,and carbon price plus DAS

    • Extensive margin: Demand for fuel

    • Intensive margin: Composition of fuel mix (oil; tar sands,bio-grain,…) 

     – Hint: Johannson et al (2009): OPEC gains fromcarbon taxes

  • 8/18/2019 UNU-Merit Pres04 2016

    35/48

    35

    Schematic model

  • 8/18/2019 UNU-Merit Pres04 2016

    36/48

    36

    CO2 permit price and DAC cost

  • 8/18/2019 UNU-Merit Pres04 2016

    37/48

    37

    Carbon price effect

  • 8/18/2019 UNU-Merit Pres04 2016

    38/48

    38

    DAC effect

    Insufficient to support R&Dprogram

  • 8/18/2019 UNU-Merit Pres04 2016

    39/48

    39

    R&D CONFLICTS

    (Heyen 2015)

  • 8/18/2019 UNU-Merit Pres04 2016

    40/48

    40

    What is a “Climate Game”? 

    • The climate system connects people and countries.

     – For everybody, climate is a function of whateverybody does.

     – If one agent draws more on the resource, theneverybody is affected.

    • Different actions:

     – Mitigation: How much GHG to emit?

     – CDR: How much GHG to remove from theatmosphere?

     – SRM: Whether to inject particles to inject into thestratosphere and – if so – how many?

  • 8/18/2019 UNU-Merit Pres04 2016

    41/48

    41

    What is a ‘Climate Game’? 

    • Lack of international jurisdiction => Countries’ activitiescannot be mandated.

    • Possibly, institutions could be developed to enablemanagement of the climate system for the global good

    • What are the strategic incentives for players that theseinstitutions would have to overcome?

     – Idiosyncratic components: Heterogeneities

     – Common components: Strategic behavior

    • These incentives depend on the ‘game’. 

    => Let’s look at Mickey Mouse versions of these. 

    Mitigation – A Common Property

  • 8/18/2019 UNU-Merit Pres04 2016

    42/48

    42

    Mitigation   A Common PropertyResource Game with 8 identicalcountries entering to gain by emitting

    Country No. Global net

    benefit

    Average benefit

    for emitting

    country

    1 100 100

    2 150 75

    3 175 59

    4 180 45

    5 175 356 125 21

    7 70 10

    8 8 1

    Strategic incentive for every

    country: Emit rather than not

    If benefits at n=4 were shared equally, then every country gets 22.5.

  • 8/18/2019 UNU-Merit Pres04 2016

    43/48

    43

    CDR – A Prisoners’ Dilemma 

    Rest of the World

    Remove Don’t 

    NeverneverlandRemove 1,10 -11, -90

    Don’t  2, 8 --10, -100

    • For every country individually, notremoving is the dominant strategy.

    • This is despite the fact that globally,everyone should remove carbon.

    Strategic incentive for every country:

    No removal rather than removal

  • 8/18/2019 UNU-Merit Pres04 2016

    44/48

    44

    SRM – A Coordination Game

    • Three equilibria

    • But: How do coordinate on which one will be played?

    Country B

    Deploy Don’t 

    Country ADeploy -15, -15 0, -10

    Don’t  -5, 0 -50, -30

    Strategic incentive for every country:

    Deploy unless the other does.(the ‘freerider ’ always will) 

  • 8/18/2019 UNU-Merit Pres04 2016

    45/48

    45

    R&D in a free-driving world

    • At CE deployment stage, country with the highestpreference for technology deployment, the free-driver,‘oversupplies’ CE (Weitzman 2012).

    • Heyen (2015) develops a simple deterministic two-stage

    model for analyzing how free-driving shapes R&Dincentives of two asymmetric countries.

    • Finding: Future deployment conflicts spill backwards intothe R&D stage in complex ways.

     – Prospect of free-riding unambiguously weakensinnovation incentives

     – Prospect of free-driving more complex, including thepossibility of excessive R&D and incentives for

    counter-R&D.

  • 8/18/2019 UNU-Merit Pres04 2016

    46/48

    46

    R&D in a free-driving world

    • Country 1’s WTP for R&D is lower for lowdeployment costs!

  • 8/18/2019 UNU-Merit Pres04 2016

    47/48

    47

    CONCLUSION

  • 8/18/2019 UNU-Merit Pres04 2016

    48/48

    Conclusion

    • Geoengineering is already part of thehypothetical technology portfolio

     – Even though technologies do not yetexist

    • Geoengineering R&D, esp, for SRM,conceptually very different from energyefficiency or emissions reduction R&D

    • Raises numerous normative and positive

    issues of technology policy – International dimensions

     – Intergenerational dimensions