29
相关的中文文档请参考 www.decawave.com/china Product Overview The DWM1001 module is based on Decawave's DW1000 Ultra Wideband (UWB) transceiver IC, which is an IEEE 802.15.4- 2011 UWB implementation. It integrates UWB and Bluetooth® antenna, all RF circuitry, Nordic Semiconductor nRF52832 and a motion sensor. Key Features Ranging accuracy to within 10cm. UWB Channel 5 printed PCB antenna (6.5 GHz) 6.8 Mbps data rate IEEE 802.15.4-2011 UWB compliant Nordic Semiconductor nRF52832 Bluetooth® connectivity Bluetooth® chip antenna Motion sensor: 3-axis accelerometer Current consumption optimised for low power sleep mode: <15μA Supply voltage: 2.8 V to 3.6 V Size: 19.1 mm x 26.2 mm x 2.6 mm Modules marked DWM1001C are certified to ETSI, FCC and ISED regulations FCC ID: 2AQ33-DWM1001, IC: 23794-DWM1001 See the module marking section of this datasheet Key Benefits Enables anchors, tags & gateways to quickly get an entire RTLS system up-and-running Accelerates product designs for faster Time-to-Market & reduced development costs Low-power hardware design and software architecture for longer battery life SPI, UART, I2C and Bluetooth® to interface DWM1001 with an external device Ready-to-go embedded firmware for Two Way Ranging RTLS application: User API to DWM1001 firmware (available as a library) for user code customisation On-board Bluetooth® SMART for connectivity to phones/tablets/PCs SPI, UART and Bluetooth® APIs to access DWM1001 firmware from an external device See MDEK1001 and PAN on www.decawave.com for additional information UWB Transceiver Decawave DW1000 BLE Microprocessor Nordic nRF52832 64 MHz ARM Cortex M4 SPI M1* 3- Axis Motion Detector STM LIS2DH12TR BLE Antenna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Antenna VCC 2.8 V 3.6 V DC-DC Converter 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4 12 *SPI M1 is nRF52 SPI master 1, SPI S2 is SPI slave 2 Block Diagram

UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

相关的中文文档请参考 www.decawave.com/china

Product Overview

The DWM1001 module is based on Decawave's DW1000 Ultra Wideband (UWB) transceiver IC, which is an IEEE 802.15.4-2011 UWB implementation. It integrates UWB and Bluetooth® antenna, all RF circuitry, Nordic Semiconductor nRF52832 and a motion sensor.

Key Features

• Ranging accuracy to within 10cm.

• UWB Channel 5 printed PCB antenna (6.5 GHz)

• 6.8 Mbps data rate IEEE 802.15.4-2011 UWB compliant

• Nordic Semiconductor nRF52832

• Bluetooth® connectivity

• Bluetooth® chip antenna

• Motion sensor: 3-axis accelerometer

• Current consumption optimised for low power sleep mode: <15μA

• Supply voltage: 2.8 V to 3.6 V

• Size: 19.1 mm x 26.2 mm x 2.6 mm

• Modules marked DWM1001C are certified to ETSI, FCC and ISED regulations ▪ FCC ID: 2AQ33-DWM1001, IC: 23794-DWM1001 ▪ See the module marking section of this datasheet

Key Benefits Enables anchors, tags & gateways to quickly get an entire RTLS system up-and-running

• Accelerates product designs for faster Time-to-Market & reduced development costs

• Low-power hardware design and software architecture for longer battery life

• SPI, UART, I2C and Bluetooth® to interface DWM1001 with an external device

• Ready-to-go embedded firmware for Two Way Ranging RTLS application: ▪ User API to DWM1001 firmware (available as a library) for user code customisation ▪ On-board Bluetooth® SMART for connectivity to phones/tablets/PCs ▪ SPI, UART and Bluetooth® APIs to access DWM1001 firmware from an external device

See MDEK1001 and PAN on www.decawave.com for additional information

UWB Transceiver

Decawave DW1000

BLE Microprocessor

NordicnRF52832

64 MHz ARM Cortex M4

SPI M1*

3- Axis Motion Detector

STM LIS2DH12TR

BLE Antenna

UART [1:0]

SPI S2* [3:0]

I2C [1:0]

IRQ

UWB Antenna

VCC2.8 V – 3.6 V

DC-DCConverter

1V8

GPIORESET

SWD[1:0]

GPIO

BT_WAKE_UP

GND

READY

4

12

*SPI M1 is nRF52 SPI master 1, SPI S2 is SPI slave 2

Block Diagram

Page 2: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DW1000 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 2

Table of Contents

1 OVERVIEW ................................................... 5

1.1 UWB TRANSCEIVER DW1000 ....................... 5 1.2 BLUETOOTH® MICROPROCESSOR NORDIC

NRF52832 ........................................................... 5 1.3 POWER SUPPLY AND POWER MANAGEMENT ...... 5 1.4 THREE AXIS MOTION DETECTOR

STMICROELECTRONICS LIS2DH12TR ........................ 5 1.5 SOFTWARE ON BOARD ................................... 5

2 DWM1001 CALIBRATION ............................. 6

2.1.1 Crystal Oscillator Trim ...................... 6 2.1.2 Transmitter Calibration .................... 6 2.1.3 Antenna Delay Calibration ............... 6

3 DWM1001 PIN CONNECTIONS ..................... 7

3.1 PIN NUMBERING .......................................... 7 3.2 PIN DESCRIPTIONS ........................................ 7

4 ELECTRICAL SPECIFICATIONS ...................... 10

4.1 NOMINAL OPERATING CONDITIONS ............... 10 4.2 DC CHARACTERISTICS .................................. 10 4.3 RECEIVER AC CHARACTERISTICS .................... 10 4.4 RECEIVER SENSITIVITY CHARACTERISTICS ......... 11 4.5 TRANSMITTER AC CHARACTERISTICS .............. 11

4.5.1 Absolute Maximum Ratings ........... 12

5 TRANSMIT AND RECEIVE POWER CONSUMPTION ................................................. 13

6 ANTENNA PERFORMANCE ......................... 14

7 APPLICATION INFORMATION ..................... 17

7.1 APPLICATION BOARD LAYOUT GUIDELINES ...... 17

8 PACKAGE INFORMATION ........................... 18

8.1 MODULE DRAWINGS ................................... 18 8.2 MODULE LAND PATTERN ............................. 19 8.3 MODULE MARKING INFORMATION ................ 20 8.4 MODULE SOLDER PROFILE ............................ 21

9 ORDERING INFORMATION .......................... 22

9.1 TAPE AND REEL INFORMATION ...................... 22

10 REGULATORY INFORMATION .................. 23

10.1 AGENCY CERTIFICATIONS .......................... 23 10.1.1 United States (FCC) ..................... 23 10.1.2 Radio and Television Interference 23 10.1.3 European Union (ETSI) ................ 24 10.1.4 Industry Canada (IC) Compliance Statements .................................................... 24

10.2 REGULATORY MODULE INTEGRATION

INSTRUCTIONS ...................................................... 25 10.3 DEVICE CLASSIFICATIONS .......................... 25 10.4 FCC DEFINITIONS .................................... 25 10.5 SIMULTANEOUS TRANSMISSION EVALUATION26 10.6 OPERATING REQUIREMENTS AND CONDITIONS

26 10.7 MOBILE DEVICE RF EXPOSURE STATEMENT .. 26

11 GLOSSARY ............................................... 27

12 REFERENCES ............................................ 28

13 DOCUMENT HISTORY .............................. 28

14 MAJOR CHANGES .................................... 28

15 FURTHER INFORMATION ......................... 29

List of Figures

FIGURE 1: DWM1001 PIN DIAGRAM ........................... 7 FIGURE 2: POWER CONSUMPTION DURING TWO WAY

RANGING ......................................................... 13 FIGURE 3. ANTENNA RADIATION PATTERN PLANES ......... 14 FIGURE 4: DWM1001 APPLICATION BOARD KEEP-OUT

AREAS ............................................................. 17

FIGURE 5: MODULE PACKAGE SIZE (UNITS: MM) ............ 18 FIGURE 6: DWM1001 MODULE LAND PATTERN (UNITS:

MM)................................................................ 19 FIGURE 7: DWM1001 MODULE SOLDER PROFILE ......... 21 FIGURE 8: DWM1001 TAPE AND REEL DIMENSIONS ..... 22

Page 3: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 3

List of Tables

TABLE 1: DWM1001 PIN FUNCTIONS ........................... 7 TABLE 2: EXPLANATION OF ABBREVIATIONS ..................... 9 TABLE 3: INTERNAL NRF52832 PINS USED AND THEIR

FUNCTION .......................................................... 9 TABLE 4: I2C SLAVE DEVICES ADDRESS I2C ...................... 9 TABLE 5: DWM1001 OPERATING CONDITIONS ............ 10 TABLE 6: DWM1001 DC CHARACTERISTICS ................. 10 TABLE 7: DWM1001 RECEIVER AC CHARACTERISTICS ... 10 TABLE 8: DWM1001 TYPICAL RECEIVER SENSITIVITY

CHARACTERISTICS .............................................. 11 TABLE 9: DWM1001 TRANSMITTER AC CHARACTERISTICS

...................................................................... 11 TABLE 10: DWM1001 ABSOLUTE MAXIMUM RATINGS . 12 TABLE 11. ANTENNA RADIATION PATTERNS .................. 15 TABLE 12 : WB003 ANTENNA CHARACTERISTICS ............ 16 TABLE 13: GLOSSARY OF TERMS .................................. 27 TABLE 14: DOCUMENT HISTORY.................................. 28

Page 4: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 4

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to functionality and specifications will be issued in product specific errata sheets or in new versions of this document. Customers are advised to check with Decawave for the most recent updates on this product.

Modules labelled “DWM1001” are pre-loaded with PANS firmware, please refer to the "DWM1001 Firmware User Guide" for disclaimer and license terms.

Modules labelled “DWM1001C” are delivered without firmware - blank -.

Copyright © 2017 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a failure of the Decawave product would reasonably be expected to cause severe personal injury or death. Decawave customers using or selling Decawave products in such a manner do so entirely at their own risk and agree to fully indemnify Decawave and its representatives against any damages arising out of the use of Decawave products in such safety-critical applications.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

REGULATORY APPROVALS

See Regulatory Information ........................ Page 23

Page 5: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 5

1 OVERVIEW

The block diagram on page 1 of this data sheet shows the major sections of the DWM1001. An overview of these blocks is given below.

1.1 UWB Transceiver DW1000

The module has a DW1000 UWB transceiver mounted on the PCB. The DW1000 uses a 38.4 MHz reference crystal. The crystal has been trimmed in production to reduce the initial frequency error to approximately 3 ppm, using the DW1000 IC’s internal on-chip crystal trimming circuit. Always-On (AON) memory can be used to retain DW1000 configuration data during the lowest power operational states when the on-chip voltage regulators are disabled. This data is uploaded and downloaded automatically. Use of DW1000 AON memory is configurable. The on-chip voltage and temperature monitors allow the host to read the voltage on the VDDAON pin and the internal die temperature information from the DW1000. See the DW1000 Datasheet [2] for more detailed information on device functionality, electrical specifications and typical performance.

1.2 Bluetooth® Microprocessor Nordic nRF52832

The nRF52832 is an ultra-low power 2.4 GHz wireless system on chip (SoC) integrating the nRF52 Series 2.4 GHz transceiver and an ARM Cortex-M4 CPU with 512kB flash memory and 64kB RAM. See the nRF52832 Datasheet[1] for more detailed information on device functionality, electrical specifications and typical performance.

1.3 Power Supply and Power management

The power management circuit consists of a switch mode regulator. It is a buck convertor or step-down convertor. The input voltage to the DWM1001 can be in the range 2.8V to 3.6V. Outputs from the convertor provides 1.8V which is required by the DW1000[2]

1.4 Three Axis Motion Detector STMicroelectronics LIS2DH12TR

The LIS2DH12 is an ultra-low-power high performance three-axis linear accelerometer with digital I2C/SPI serial

interface standard output. The LIS2DH12 has user-selectable full scales of 2g/±4g/8g/16g and is capable of measuring accelerations with output data rates from 1 Hz to 5.3 kHz. The self-test capability allows the user to check the functionality of the sensor in the final application. The device may be configured to generate interrupt signals by detecting two independent inertial wake-up/free-fall events as well as by the position of the device itself. The LIS2DH12 is guaranteed to operate over an extended temperature range from -40 °C to +85 °C. See the LIS2DH12TR Datasheet[4] for more detailed information on device functionality, electrical specifications and typical performance.

1.5 Software on board

The DWM1001C modules are delivered without firmware - blank -. The DWM1001 modules come pre-loaded with embedded firmware which provides two-way ranging (TWR) and real time location system (RTLS) functionality. See the details in the DWM1001 Firmware User Guide [6]. The module can be configured and controlled via its API, which can be accessed through a number of different interfaces, allowing flexibility to the product designer. The details of the API are described in the DWM1001 Firmware API Guide [5]. Decawave also provides the module firmware in the form of binary libraries and some source code. A build environment is provided, so that the user can customise the operation and if required add their own functions[6].

Page 6: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 6

2 DWM1001 CALIBRATION

Depending on the end-use applications and the system design, DWM1001 settings may need to be tuned. To help with this tuning several built in functions such as continuous wave transmission and continuous packet transmission can be enabled. See the DW1000 User Manual [3] for further details.

2.1.1 Crystal Oscillator Trim

DWM1001 modules are calibrated at production to minimise initial frequency error to reduce carrier frequency offset between modules and thus improve receiver sensitivity. The calibration carried out at module production will trim the initial frequency offset to less than 3 ppm, typically.

2.1.2 Transmitter Calibration

The DWM1001C is calibrated in module production, the calibrated values are permanently stored in the DW1000 OTP. This module is calibrated to meet the regulatory power spectral density requirement of less than -41.3 dBm/MHz.

2.1.3 Antenna Delay Calibration

In order to measure range accurately, precise calculation of timestamps is required. To do this the antenna delay must be known. The DWM1001 allows this delay to be calibrated and provides the facility to compensate for delays introduced by PCB, external components, antenna and internal DWM1001 delays. The DWM1001’s antenna delay was pre-calibrated for the RF configuration used within PANS. The antenna delay is stored in OTP memory. To calibrate the antenna delay, range is measured at a known distance using two DWM1001 systems. Antenna delay is adjusted until the known distance and reported range agree. Antenna delay calibration must be carried out as a once off measurement for each DWM1001 design implementation. If required, for greater accuracy, antenna delay calibration should be carried out on a per DWM1001 module basis, see DW1000 User Manual [3] for full details. Further details can be found in the Antenna Delay Application Note [8].

Page 7: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 7

3 DWM1001 PIN CONNECTIONS

3.1 Pin Numbering

DWM1001 module pin assignments are as follows (viewed from top): -

GND

SWD_CLK

SWD_DIO

GPIO_10

GPIO_9

GPIO_12

GPIO_14

GPIO_22

GPIO_31

GPIO_30

GND

VCC

GPIO_27

I2C_SDA

I2C_SCL

GPIO_23

GPIO_13

34 GND

33 RESETn

32 BT_WAKE_UP

31 GPIO_2

30 GPIO_3

29 SPIS_CSn

28 SPIS_CLK

27 SPIS_MOSI

26 SPIS_MISO

25 GPIO_8

24 GND

23 GPIO_15

22 GPIO_0

21 GPIO_1

20 UART_TX

19 READY

18 UART_RX

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 1: DWM1001 Pin Diagram

3.2 Pin Descriptions

Pin details are given in

Table 1: DWM1001 Pin functions

SIGNAL NAME PIN

I/O

(Default)

DESCRIPTION

REFERENCE (Pin designation)

Digital Interface

SWD_CLK 2 DI Serial wire debug clock input for debug and programming of Nordic Processor

[N] SWDCLK

SWD_DIO 3 DIO Serial wire debug I/O for debug and programming of Nordic Processor

[N] SWDIO

GPIO_10 4 DIO General purpose I/O pin. [N] P0.10

GPIO_9 5 DIO General purpose I/O pin. [N] P0.9

GPIO_12 6 DIO General purpose I/O pin. [N] P0.12

GPIO_14 7 DIO General purpose I/O pin. [N] P0.14

GPIO_22 8 DIO General purpose I/O pin. [N] P0.22

GPIO_31 9 DIO General purpose I/O pin. ADC function of nRF52 [N] P0.31

GPIO_30 10 DIO General purpose I/O pin. ADC function of nRF52 [N] P0.30

GPIO_27 13 DIO General purpose I/O pin. [N] P0.27

I2C_SDA

(Master) 14 DIO Master I2C Data Line.

[N] P0.29

Page 8: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 8

SIGNAL NAME PIN

I/O

(Default)

DESCRIPTION

REFERENCE (Pin designation)

I2C_SCL

(Master) 15 DO Master I2C Clock Line

[N] P0.28

GPIO_23 16 DIO General purpose I/O pin. [N] P0.23

GPIO_13 17 DIO General purpose I/O pin. [N] P0.13

UART_RX 18 DI UART_RX [N] P0.11

READY 19 DO

Generated interrupt from the device.

Indicates events such as SPI data ready, or location data ready.

See the function dwm_int_cfg() in the DWM1001 Firmware API Guide for details[5].

[N] P0.26

UART_TX 20 DO UART_TX, This is also the ADC function of the nRF52

[N] P0.05

GPIO_1 21 DIO

General purpose I/O pin of the DW1000.

It may be configured for use as a SFDLED driving pin that can be used to light a LED when SFD (Start Frame Delimiter) is found by the receiver. Refer to the DW1000 User Manual [1] for details of LED use.

[DW] GPIO1

GPIO_0 22 DIO

General purpose I/O pin of the DW1000.

It may be configured for use as a RXOKLED driving pin that can be used to light a LED on reception of a good frame. Refer to the DW1000 User Manual [1] for details of LED use.

[DW] GPIO0

GPIO_15 23 DIO General purpose I/O pin. [N] P0.15

GPIO_8 25 DIO General purpose I/O pin. [N] P0.08

SPIS_MISO 26 DI Configured as a SPI slave this pin is the SPI data output. Refer to Datasheet for more details [1].

[N] P0.07

SPIS_MOSI 27 DO Configured as a SPI slave this pin is the SPI data input. Refer to Datasheet for more details [1].

[N] P0.06

SPIS_CLK 28 DI Configured as a SPI slave this pin is the SPI clock. This is also the ADC function of the nRF52

[N] P0.04

SPIS_CSn 29 DI

Configured as a SPI slave this pin is the SPI chip select. This is an active low enable input. The high-to-low transition on SPICSn signals the start of a new SPI transaction. This is also the ADC function of the nRF52

[N] P0.03

GPIO_3 30 DO

This pin is configured for use as a TXLED driving pin that can be used to light a LED during transmit mode. Refer to the DW1000 User Manual [2] for details of LED use.

[DW] GPIO3

GPIO_2 31 DO

This pin is configured for use as a RXLED driving pin that can be used to light a LED during receive mode. Refer to the DW1000 User Manual [2] for details of LED use.

[DW] GPIO2

BT_WAKE_UP 32 DI

When this pin is asserted to its active low state the Bluetooth device will advertise its availability for 20 seconds by broadcasting advertising packets. This is also the ADC function of the nRF52.

[N] P0.02

RESETn 33 DI Reset pin. Active Low Input. [N] P0.21

Power Supplies

VCC 12 P External supply for the module. 2.8V - 3.6V

Page 9: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 9

SIGNAL NAME PIN

I/O

(Default)

DESCRIPTION

REFERENCE (Pin designation)

Ground

GND

1, 11, 24, 34

G Common ground.

Table 2: Explanation of Abbreviations

ABBREVIATION EXPLANATION

DI Digital Input

DIO Digital Input / Output

DO Digital Output

G Ground

P Power Supply

N nRF52832

DW DW1000

Note: Any signal with the suffix ‘n’ indicates an active low signal.

Table 3: Internal nRF52832 pins used and their function

nRF52832 Pin Function

PO.19 DW_IRQ

PO.16 DW_SCK

PO.20 DW_MOSI

PO.18 DW_MISO

PO.17 DW_SPI_CS

PO.24 DW_RST

PO.25 ACC_IRQ

PO.29 I2C_SDA

PO.28 I2C_SCL

DW1000’s GPIOs 5,6 control the DW1000 SPI mode configuration. Within the DWM1001 module, those GPIOs are unconnected and will be internally pulled down. Consequently, SPI will be set to mode 0. For more details, please refer to DW1000 data sheet [2].

Table 4: I2C slave devices address I2C

I2C slave device Address

LIS2DH12 0X19

Page 10: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 10

4 ELECTRICAL SPECIFICATIONS

The following tables give detailed specifications for the DWM1001 module. Tamb = 25 ˚C for all specifications given.

4.1 Nominal Operating Conditions

Table 5: DWM1001 Operating Conditions

Parameter Min. Typ. Max. Units Condition/Note

Operating temperature -40 +85 ˚C

Supply voltage VCC 2.8 3.3 3.6 V Normal operation

Voltage on VDDIO for programming OTP 3.7 3.8 3.9 V

Note that for programming the OTP in the DWM1001 this supply is connected to the VDDIO test point which is underneath the PCB. (See Figure 6)

4.2 DC Characteristics

Table 6: DWM1001 DC Characteristics

Parameter Min. Typ. Max. Units Condition/Note

Supply current in DEEP SLEEP mode 4 µA

All peripherals in lowest power consumption mode

Achievable where RTC and accelerometer are disabled

with custom firmware.

Supply current in DEEP SLEEP mode 12 µA

RTC and accelerometer operational, all other

peripherals in lowest power consumption mode*

Supply current in IDLE mode 13 mA MCU and DW1000 awake

TX peak current

111 mA

TX mean current 82 mA

RX peak current

154 mA

RX mean current 134 mA

Current in Bluetooth® discovery mode 6 mA

Digital input voltage high 0.7 x VCC VCC V

Digital input voltage low GND 0.3 x VCC V

Digital output voltage high 0.7 x VCC VCC V

Digital output voltage low GND 0.3 x VCC V

* Using a ranging update rate of 1 Hz

4.3 Receiver AC Characteristics

Table 7: DWM1001 Receiver AC Characteristics

Parameter Min. Typ. Max. Units Condition/Note

Frequency range 6240 6739.2 MHz Centre Frequency 6489.6 MHz

Page 11: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 11

4.4 Receiver Sensitivity Characteristics

Tamb = 25 ˚C, 20 byte payload. These sensitivity figures assume an antenna gain of 0 dBi and should be modified by the antenna characteristics, depending on the orientation of the DWM1001.

Table 8: DWM1001 Typical Receiver Sensitivity Characteristics

Packet Error Rate

Data Rate Receiver

Sensitivity Units Condition/Note

1% 6.8 Mbps -98*(-92) dBm/500 MHz Preamble 128

Carrier frequency

offset ±10 ppm

All measurements performed on

Channel 5, PRF 64 MHz

10% 6.8 Mbps -99*(-93) dBm/500 MHz Preamble 128

*equivalent sensitivity with Smart TX Power enabled. This is enabled in the onboard firmware.

4.5 Transmitter AC Characteristics

Table 9: DWM1001 Transmitter AC Characteristics

Parameter Min. Typ. Max. Units Condition/Note

Frequency range 6240 6739.2 MHz

Output power spectral density -41.3* dBm/MHz See DW1000 Datasheet [1]

Output Channel Power -17 dBm/500MHz

Output power variation with temperature*

-1 +1 dB Using on board compensation.

* When using the Decawave supplied embedded firmware for the DWM1001 module

Page 12: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 12

4.5.1 Absolute Maximum Ratings

Table 10: DWM1001 Absolute Maximum Ratings

Parameter Min. Max. Units

Supply voltage

2.8 3.9 V

Receiver power 0 dBm

Temperature - Storage temperature -40 +85 ˚C

Temperature – Operating temperature -40 +85 ˚C

ESD (Human Body Model) 2000 V

DWM1001 pins other than VCC, VDDIO and GND 3.6

Note that 3.6 V is the max voltage

that may be applied to these

pins

Stresses beyond those listed in this table may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions beyond those indicated in the operating conditions of the specification is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Page 13: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 13

5 TRANSMIT AND RECEIVE POWER CONSUMPTION

The following Figures give power profiles for the DWM1001 on a DWM1001-DEV PCB when used for Two Way Ranging, see Figure 2. Peak values are given. Figure 2 shows an example of the power consumption of a DWM1001 tag running the factory loaded firmware. The tag is in low-power mode, and two-way ranging with 3 anchors. The deep-sleep current occurs while the tag is sleeping with only the RTC and accelerometer active. Once awake, the tag transmits at its allocated time in the TDMA-slotting and awaits the anchors responses. This can be observed as 1 transmission followed by 3 receives, repeated once. After this is completed, the tag spends some time computing its location, before returning to sleep. The total time awake is dependent on the number of anchors within range of the tag. For more details on the system operation, see the DWM1001 System Overview document[9].

Figure 2: power consumption during Two Way Ranging

Page 14: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 14

6 ANTENNA PERFORMANCE

This section details antenna radiation patterns for the DWM1001-Dev board. Figure 3 presents a view of the measurement planes considered in this document. Table 11 shows antenna radiation patterns for the DWM1001 module mounted on the DWM1001-Dev board. Three planes in the spherical space about the centre of the board are measured, with theta and phi plots representing perpendicular polarisations. The DWM1001 antenna is vertically polarised, meaning that the module is intended to be positioned vertically upright when used in an RTLS system. An omnidirectional radiation pattern is seen in the XZ plane when observed by another antenna which is also vertically polarised. This is shown in the XZ plane antenna patterns, where the vertically polarised plot, phi, has a circular, or omnidirectional shape. If the antennas are oriented perpendicular relative to each other, then the polarisation changes. In this case, the horizontally polarised pattern, theta, applies and there are nulls at certain angles which can limit range and introduce location inaccuracy. Table 12 presents the key characteristics of the DWM1001’s antenna.

Figure 3. Antenna Radiation Pattern Planes

x

z

y

Page 15: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 15

-30

-25

-20

-15

-10

-5

0

5

08 16

2432

40

48

56

64

72

80

88

96

104

112

120

128

136

144152

160168176184192

200208

216

224

232

240

248

256

264

272

280

288

296

304

312

320328

336344 352

Table 11. Antenna Radiation Patterns

Planes: Antenna Gain (dBi) vs. Angle (°)

-30

-25

-20

-15

-10

-5

0

5

08 16

2432

40

48

56

64

72

80

88

96

104

112

120

128

136

144152

160168176184192

200208

216

224

232

240

248

256

264

272

280

288

296

304

312

320328

336344 352

90°

270°

180°

Theta

Phi

XZ Plane:

XY Plane:

YZ Plane:

180°

90°

270°

Theta

Phi

270°

180°

90°

Theta

Phi-30

-25

-20

-15

-10

-5

0

5

08 16

2432

40

48

56

64

72

80

88

96

104

112

120

128

136

144152

160168176184192

200208

216

224

232

240

248

256

264

272

280

288

296

304

312

320328

336344 352

Page 16: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 16

Table 12 : WB003 antenna characteristics

Please note the “Peak gain” and overall antenna performance are dependent on the carrier PCB geometry. When integrating the DWM1001 module to custom PCB, a variation in antenna performance may be observed.

Antenna Model Decawave WB003 –

MiniHoe

Antenna Type PCB Trace Monopole

Antenna

Peak gain (Measured on DWM1001-DEV)

2.5 dBi

Frequency range 5500 ~ 7500 MHz

Page 17: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 17

7 APPLICATION INFORMATION

7.1 Application Board Layout Guidelines

When designing the PCB onto which the DWM1001 will be soldered, the proximity of the DWM1001 on-board antenna to metal and other non-RF transparent materials needs to considered carefully. Two suggested placement schemes are shown below. For best RF performance, ground copper should be flooded in all areas of the application board, except in the areas marked “Keep-Out Area”, where there should be no metal either side, above or below (e.g. do not place battery under antenna). The two placement schemes in Figure 4 show an application board with no metallic material in the keep-out area. The diagram on the right is an application board with the antenna projecting off of the board so that the keep out area is in free-space. The diagram on the left shows an application board which does not have the module in free space but has the PCB copper removed on either side (and behind) the module antenna. (Note: the rectangular area above the shield on the module is the antenna area) It is also important to note that the ground plane on the application board affects the DWM1001 antenna radiation pattern. There must be a minimum spacing of 10 mm (d) without metal either side of the module antenna.

Application Board

d d

Application Board

d d

Keep-Out

Area

Keep-Out

Area

Figure 4: DWM1001 Application Board Keep-Out Areas

Page 18: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 18

8 PACKAGE INFORMATION

8.1 Module Drawings

All measurements are given in millimetres.

Figure 5: Module Package Size (units: mm)

Page 19: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 19

8.2 Module Land Pattern

The diagram below shows the DWM1001 module land pattern.

Figure 6: DWM1001 Module Land Pattern (units: mm)

Page 20: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 20

8.3 Module Marking Information

Each module has a label on the shield with a serial number in the following format: YY WW 0 SSSSS Where: YY indicates the year WW indicates the week of the year

0 indicates the DWM1001 module SSSSS indicates the module manufacturing number

Modules marked with DWM1001C are the certified version of the DWM1001.

Modules marked as DWM1001 are a non-certified version of the DWM1001

Page 21: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 21

8.4 Module Solder Profile

Figure 7: DWM1001 Module Solder Profile

Page 22: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 22

9 ORDERING INFORMATION

9.1 Tape and Reel Information

Figure 8: DWM1001 Tape and Reel Dimensions

Page 23: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 23

10 REGULATORY INFORMATION

Model Number: DWM1001C FCC ID: 2AQ33-DWM1001 IC: 23794-DWM1001

The information below is valid for the DWM1001C module only.

10.1 Agency Certifications

10.1.1 United States (FCC)

This device complies with Part 15 of the FCC Rules: Operation is subject to the following conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation Changes and Modifications not expressly approved by Decawave Ltd. can void your authority to operate this equipment under Federal Communications Commission rules. Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. To fulfil FCC Certification requirements, an OEM manufacturer must comply with the following regulations: 1. The DWM1001C modular transmitter must be labelled with its own FCC ID number, and, if the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: IMPORTANT: Contains FCC ID: 2AQ33-DWM1001. This equipment complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation (FCC 15.19).

10.1.2 Radio and Television Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and the receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. You may also find helpful the following booklet, prepared by the FCC: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington D.C. 20402.

Page 24: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 24

10.1.3 European Union (ETSI)

The DWM1001C Module has been certified for use in European Union and EEA countries and complies with ETSI EN 302 065-2 (V2.1.1 - November 2016). If these modules are incorporated into a product, the manufacturer must assess the compliance of the final product with the Radio Equipment Directive (and potentially other applicable Directives depending on the product category). A Declaration of Conformity must be issued as prescribed in Article 18 and Annex VI of the Radio Equipment Directive. Furthermore, the manufacturer must maintain a copy of the modules’ documentation and ensure the final product does not exceed the specified power ratings, antenna specifications, and/or installation requirements as specified in the user manual. If any of these specifications are exceeded in the final product, the manufacturer must perform an own, complete conformity assessment. IMPORTANT: The CE marking shall also be affixed visibly and legibly to the packaging. If the nature of the radio equipment does not allow a marking of at least 5 mm, the manufacturer may affix a CE marking that is smaller than 5 mm to the product under the condition that it remains visible and legible. If it not possible or not warranted on account of the nature of the radio equipment to affix a CE marking on the product, the manufacturer may affix it visibly and legibly only to the packaging. The CE mark shall consist of the initials “CE” taking the following form:

10.1.4 Industry Canada (IC) Compliance Statements

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. CAUTION: Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. The OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). This Module is labelled with its own IC ID. If the IC ID Certification Number is not visible while installed inside another device, then the device should display the label on it referring the enclosed module. In that case, the final end product must be labelled in a visible area with the following: “Contains Transmitter Module IC: 23794-DWM1001” OR “Contains IC: 23794-DWM1001” Ce module est étiqueté avec son propre ID IC. Si le numéro de certification IC ID n'est pas visible lorsqu'il est installé à l'intérieur d'un autre appareil, l'appareil doit afficher l'étiquette sur le module de référence ci-joint. Dans ce cas, le produit final doit être étiqueté dans un endroit visible par le texte suivant: “Contains Transmitter Module IC: 23794-DWM1001” OR “Contains IC: 23794-DWM1001”

Page 25: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 25

10.2 Regulatory Module Integration Instructions

This module has been granted modular approval for mobile applications. OEM integrators for host products may use the module in their final products without additional FCC / ISED (Innovation, Science and Economic Development Canada) certification if they meet the following conditions. Otherwise, additional FCC / ISED approvals must be obtained.

• The host product with the module installed must be evaluated for simultaneous transmission requirements.

• The user’s manual for the host product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC / IC RF exposure guidelines.

• To comply with FCC / ISED regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed:

Peak UWB Antenna Gain: 2.5 dBi Peak BLE Antenna Gain: 0.5 dBi

• A label must be affixed to the outside of the host product with the following statements:

This device contains FCC ID: 2AQ33-DWM1001 This equipment contains equipment certified under IC: 23794-DWM1001

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. If the final host / module combination is intended for use as a portable device (see classifications below) the host manufacturer is responsible for separate approvals for the SAR requirements from FCC Part 2.1093 and RSS-102.

10.3 Device Classifications

Since host devices vary widely with design features and configurations module integrators shall follow the guidelines below regarding device classification and simultaneous transmission, and seek guidance from their preferred regulatory test lab to determine how regulatory guidelines will impact the device compliance. Proactive management of the regulatory process will minimize unexpected schedule delays and costs due to unplanned testing activities. The module integrator must determine the minimum distance required between their host device and the user’s body. The FCC provides device classification definitions to assist in making the correct determination. Note that these classifications are guidelines only; strict adherence to a device classification may not satisfy the regulatory requirement as near-body device design details may vary widely. Your preferred test lab will be able to assist in determining the appropriate device category for your host product and if a KDB or PBA must be submitted to the FCC. Note, the module you are using has been granted modular approval for mobile applications. Portable applications may require further RF exposure (SAR) evaluations. It is also likely that the host / module combination will need to undergo testing for FCC Part 15 regardless of the device classification. Your preferred test lab will be able to assist in determining the exact tests which are required on the host / module combination.

10.4 FCC Definitions

Portable: (§2.1093) — A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is / are within 20 centimeters of the body of the user. Mobile: (§2.1091) (b) — A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter’s radiating structure(s) and the body of the user or nearby persons. Per §2.1091d(d)(4) In some cases (for example, modular or desktop transmitters), the potential conditions of use of a device may not allow easy classification of that device as either Mobile or Portable. In these cases, applicants are responsible for determining minimum distances for compliance for the intended use and installation of the device based on evaluation of either specific absorption rate (SAR), field strength, or power density, whichever is most appropriate.

Page 26: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 26

10.5 Simultaneous Transmission Evaluation

This module has not been evaluated or approved for simultaneous transmission as it is impossible to determine the exact multi-transmission scenario that a host manufacturer may choose. Any simultaneous transmission condition established through module integration into a host product must be evaluated per the requirements in KDB447498D01(8) and KDB616217D01,D03 (for laptop, notebook, netbook, and tablet applications). These requirements include, but are not limited to:

• Transmitters and modules certified for mobile or portable exposure conditions can be incorporated in mobile host devices without further testing or certification when:

• The closest separation among all simultaneous transmitting antennas is >20 cm,

Or

• Antenna separation distance and MPE compliance requirements for ALL simultaneous transmitting antennas have been specified in the application filing of at least one of the certified transmitters within the host device. In addition, when transmitters certified for portable use are incorporated in a mobile host device, the antenna(s) must be >5 cm from all other simultaneous transmitting antennas.

• All antennas in the final product must be at least 20 cm from users and nearby persons.

10.6 Operating Requirements and Conditions

The design of DWM1001 complies with U.S. Federal Communications Commission (FCC) guidelines respecting safety levels of radio frequency (RF) exposure for Mobile or Portable devices. FCC ID: This product contains FCC ID: 2AQ33-DWM1001 Note: In the case where the Host / Module combination has been re-certified the FCC ID shall appear in the product manual as follows: FCC ID: 2AQ33-DWM1001

10.7 Mobile Device RF Exposure Statement

RF Exposure - This device is only authorized for use in a mobile application. At least 20 cm of separation distance between the DWM1001 device and the user's body must be maintained at all times.

Caution Statement for Modifications: CAUTION: Any changes or modifications not expressly approved by Decawave Ltd could void the user’s authority to operate the equipment.

Page 27: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 27

11 GLOSSARY Table 13: Glossary of Terms

Abbreviation Full Title Explanation

EIRP Equivalent Isotropically Radiated Power

The amount of power that a theoretical isotropic antenna (which evenly distributes power in all directions) would emit to produce the peak power density observed in the direction of maximum gain of the antenna being used

ETSI European Telecommunication Standards Institute

Regulatory body in the EU charged with the management of the radio spectrum and the setting of regulations for devices that use it

FCC Federal Communications Commission

Regulatory body in the USA charged with the management of the radio spectrum and the setting of regulations for devices that use it

GPIO General Purpose Input / Output

Pin of an IC that can be configured as an input or output under software control and has no specifically identified function

IEEE Institute of Electrical and Electronic Engineers

The world’s largest technical professional society. It is designed to serve professionals involved in all aspects of the electrical, electronic and computing fields and related areas of science and technology

LIFS Long Inter-Frame Spacing

Defined in the context of the IEEE 802.15.4-2011 [7] standard

LNA Low Noise Amplifier Circuit normally found at the front-end of a radio receiver designed to amplify very low level signals while keeping any added noise to as low a level as possible

LOS Line of Sight Physical radio channel configuration in which there is a direct line of sight between the transmitter and the receiver

NLOS Non Line of Sight Physical radio channel configuration in which there is no direct line of sight between the transmitter and the receiver

PGA Programmable Gain Amplifier

Amplifier whose gain can be set / changed via a control mechanism usually by changing register values

PLL Phase Locked Loop Circuit designed to generate a signal at a particular frequency whose phase is related to an incoming “reference” signal.

PPM Parts Per Million Used to quantify very small relative proportions. Just as 1% is one out of a hundred, 1 ppm is one part in a million

RF Radio Frequency Generally used to refer to signals in the range of 3 kHz to 300 GHz. In the context of a radio receiver, the term is generally used to refer to circuits in a receiver before down-conversion takes place and in a transmitter after up-conversion takes place

RTLS Real Time Location System

System intended to provide information on the location of various items in real-time.

SFD Start of Frame Delimiter

Defined in the context of the IEEE 802.15.4-2011 [7] standard.

SPI Serial Peripheral Interface

An industry standard method for interfacing between IC’s using a synchronous serial scheme first introduced by Motorola

TCXO Temperature Controlled Crystal Oscillator

A crystal oscillator whose output frequency is very accurately maintained at its specified value over its specified temperature range of operation.

TWR Two Way Ranging Method of measuring the physical distance between two radio units by exchanging messages between the units and noting the times of transmission and reception. Refer to Decawave’s website for further information

TDOA Time Difference of Arrival

Method of deriving information on the location of a transmitter. The time of arrival of a transmission at two physically different locations whose clocks are synchronized is noted and the difference in the arrival times provides information on the location of the transmitter. A number of such TDOA measurements at different locations can be used to uniquely determine the position of the transmitter. Refer to Decawave’s website for further information.

UWB Ultra Wideband A radio scheme employing channel bandwidths of, or in excess of, 500MHz

WSN Wireless Sensor Network

A network of wireless nodes intended to enable the monitoring and control of the physical environment

BLE Bluetooth Low Energy.

A low power means of data communication.

Page 28: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 28

12 REFERENCES

[1] nRF52832 Product Specification v1.3 www.nordicsemi.com [2] Decawave DW1000 Datasheet www.decawave.com [3] Decawave DW1000 User Manual www.decawave.com [4] STMicroelectronics LIS2DH12TR www.st.com [5] DWM1001 Firmware API Guide [6] DWM1001 Firmware User Guide [7] IEEE802.15.4-2011 or “IEEE Std 802.15.4™‐2011” (Revision of IEEE Std 802.15.4-2006). IEEE Standard

for Local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society Sponsored by the LAN/MAN Standards Committee. Available from http://standards.ieee.org/

[8] APS014 Antenna Delay Calibration of DW1000-based products and systems [9] DWM1001 System Overview

13 DOCUMENT HISTORY

Table 14: Document History

Revision Date Description

1.4 19/12/2018 Update

1.3 22/10/2018 Update

1.2 07/08/2018 Update

1.1 27/02/18 Core update

14 MAJOR CHANGES

Revision 1.1

Page Change Description

All Update of version number to 1.10

9 New table detailing internal connections between nRF52 and DW1000

9 Adding I2C slave devices address

9 Specifying that nrF52 to DW1000 SPI interface mode is 0

14,15 New details on Antenna Radiation pattern

18 Adding accurate position of VDDIO test point on figure 6

Revision 1.2

Page Change Description

All Logo Change

Revision 1.3

Page Change Description

1 Key benefits update

Revision 1.4

Page Change Description

All DWM1001C and regulation information added

Page 29: UWB Ant enna - Decawave · BLE Ant enna UART [1:0] SPI S2* [3:0] I2C [1:0] IRQ UWB Ant enna VCC 2.8 Vt 3.6 V DC- DC Convert er 1V8 GPIO RESET SWD[1:0] GPIO BT_WAKE_UP GND READY 4

DWM1001 Datasheet

© Decawave Ltd 2017 Subject to change without notice Version 1.4 Page 29

15 FURTHER INFORMATION

Decawave develops semiconductors solutions, software, modules, reference designs - that enable real-time, ultra-accurate, ultra-reliable local area micro-location services. Decawave’s technology enables an entirely new class of easy to implement, highly secure, intelligent location functionality and services for IoT and smart consumer products and applications. For further information on this or any other Decawave product, please refer to our website www.decawave.com.