40
UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL M. en Ing. PEREZ LOAYZA, HECTOR DOCENTE : CURSO : TECNOLOGÍA DEL CONCRETO Visita a una construcción

Visita Tecnica a Una Constrccion

Embed Size (px)

DESCRIPTION

el procedimiento a una visita a obra

Citation preview

Page 1: Visita Tecnica a Una Constrccion

UNIVERSIDAD NACIONAL DE CAJAMARCAFACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL

M. en Ing. PEREZ LOAYZA, HECTORDOCENTE :

CURSO :

TECNOLOGÍA DEL CONCRETO

Visita a una construcción

Page 2: Visita Tecnica a Una Constrccion

SEGUIMIENTO DE UNA CONSTRUCCIÓN EN LA CIUDAD DE CAJAMARCA

INTRODUCCION:

El presente trabajo ha sido elaborado teniendo en consideración que el alumno debe conocer ya el proceso constructivo de cualquier obra. Así mismo debemos determinar el tipo de concreto que se elabora en nuestra ciudad.

Construir un determinado ambiente requiere un plan sistemático y cuidadoso de las inversiones. Los materiales a usarse deben ser de buena calidad para poder obtener elementos estructurales resistentes a las especificaciones técnicas para dicho proyecto. Unos buenos materiales y construcción sana reducen el gasto en mantenimiento y prolongan la vida del edificio.

Una casa está formada por una gran cantidad de elementos ensamblados en un gran número de operaciones efectuadas por los distintos gremios que intervienen en la obra. Toda disminución en el número de partes y operaciones representará una manera efectiva de lograr economías, pero dentro de ciertos límites sin descuidar los elementos básicos para obtener una construcción resistente.

Page 3: Visita Tecnica a Una Constrccion

• OBJETIVO:

GENERAL:

Realizar una vista técnica a una construcción en la ciudad de Cajamarca.

ESPESIFICOS:

Tener alcances acerca del proceso constructivos de una vivienda de cinco pisos.

Conocer los materiales a usar y su procedencia.

Identificar el tipo de agregado usado tanto fino como grueso, su origen e uso.

Identificar el tipo de cimentación y sus características.

Identificar los elementos portantes así como el tipo de construcción.

Page 4: Visita Tecnica a Una Constrccion

MARCO TEÓRICO:

• Construcción:

Conjunto de procedimientos llevados a

cabo para levantar diversos tipos de

estructuras.

Cargas de una construcción:Las cargas que soporta un edificio se clasifican en muertas y vivas.

•Las cargas muertas incluyen el peso del mismo edificio y de los

elementos mayores del equipamiento fijo. Siempre ejercen una fuerza

descendente de manera constante y acumulativa desde la parte más

alta del edificio hasta su base.

•Las cargas vivas comprenden la fuerza del viento, las originadas por

movimientos sísmicos, las vibraciones producidas por la maquinaria,

mobiliario, materiales y mercancías almacenadas y por máquinas y

ocupantes, así como las fuerzas motivadas por cambios de

temperatura.

Page 5: Visita Tecnica a Una Constrccion

Estas cargas son temporales y pueden provocar vibraciones, sobrecarga y fatiga de los materiales. En general, los edificios deben estar diseñados para soportar toda posible carga viva o muerta y evitar su hundimiento o derrumbe, además de prevenir cualquier distorsión permanente, exceso de movilidad o roturas.

Los principales elementos de un edificio son los siguientes:

Los cimientos, que soportan y dan estabilidad al edificio.

La estructura, que resiste las cargas y las trasmite a los cimientos.

Los muros exteriores que pueden o no ser parte de la estructura principal de soporte.

Las separaciones interiores, que también pueden o no pertenecer a la estructura básica.

Los sistemas de control ambiental, como iluminación, sistemas de reducción acústica, calefacción, ventilación y aire acondicionado.

Los sistemas de transporte vertical, como ascensores o elevadores, escaleras mecánicas y escaleras convencionales.

Los sistemas de comunicación como pueden ser intercomunicadores, megafonía y televisión por circuito cerrado, o los más usados sistemas de televisión por cable.

Los sistemas de suministro de electricidad, agua y eliminación de residuos.

Page 6: Visita Tecnica a Una Constrccion

METODOLOGIA:

• La metodología usada en el presente trabajo se ha dado mediante la recolección de información de la zona en construcción.

CONTEXTO:

DATOS DE LA CONSTRUCCIÓN VISITADA:

PROPIETARIO: Fernando Cieza PonceOBRA: Vivienda Unifamiliar

Dimensiones

Largo: 15m Ancho: 10 m Área: 150m2

Área construida: 120 m2

UsosObra destinada el primer piso para tienda comercial. Segundo ytercer piso para vivienda. La cual será de 3 pisos

Page 7: Visita Tecnica a Una Constrccion

Ubicación La construcción se encuentra ubicada en el Jr. Los libertadores en la tercera cuadra

Page 8: Visita Tecnica a Una Constrccion

MATERIAL UTILIZADO PARA LA CONSTRUCCIÓN:

Gravilla de media:

Grava de diámetro reducido, generalmente entre 6,4 y 9,5 mm (1/4 y 1/3 de pulgada) que ha sido cribada en condiciones determinadas.

Hormigón:

Es el material resultante de la mezcla de cemento (u otro conglomerante) con áridos (grava, gravilla y arena) y agua. La mezcla de cemento con arena y agua se denomina mortero.

Arena: Fina y fina limpia de cerro.

Page 9: Visita Tecnica a Una Constrccion

Cemento:

Portland Tipo I: Es el cemento Portland destinado a obras de concreto en general.

Fierro: Se utilizó de ½”, 3/8” y ¾” y alambre de amarra .Alambre: alambre negro Nº 8 y Nº 16.

Columnas:

La construcción y el preparado:

Para la construcción de las columnas se prepara concreto de 6 hormigón x 1 cemento, y el agua asta que tenga una consistencia trabajable.

Zapatas: Zapatas hechas de 1.20m. x 1.m. a una profundidad de 1.20m.

Muros: El Muro se compone de ladrillo con mortero: en este caso el ladrillo fue de arcilla con asentado de cabeza, el tipo de asentado será con mortero P2. Considerando las juntas de 2cm.

Page 10: Visita Tecnica a Una Constrccion

TIPO DE CIMENTACIÓN:Las zapatas eran corridas y aisladas:

Zapatas: Zapatas hechas de 1.20m. x 1m. a una

profundidad de 1.20 m.

.

Page 11: Visita Tecnica a Una Constrccion

Zapatas aisladas: Empleadas para pilares aislados en terrenos de buena calidad, cuando la excentricidad de la carga del pilar es pequeña o moderada. Esta última condición se cumple mucho mejor en los pilares no perimetrales de un edificio.

Zapatas corridas: Se emplea normalmente este tipo de cimentación para sustentar muros de carga, o pilares alineados relativamente próximos, en terrenos de resistencia baja, media o alta.

Page 12: Visita Tecnica a Una Constrccion

CONSTRUCCIÓN Y FIJACIÓN DE LAS COLUMNAS:

Una vez terminado la excavación de las zanjas se procede al llenado de los cimientos conjuntamente con la fijación de las respectivas columnas; como se puede observar en las dos siguientes imágenes.

DIMENSIONES DE LAS COLUMNAS.

Las dimensiones de las columnas era de 40 por 25 y 6 varillas de fierro de 5/8´´, con estribos de 3/4´´

Page 13: Visita Tecnica a Una Constrccion

PROPORCIONES PARA LAS COLUMNAS

La resistencia que querían a lograr era de

210 kg/cm2

Se a utilizado hormigón de cerro con una proporción de 7 latas por bolsa de cemento. El mezclado se izo a palana dándole tres vueltas a la mezcla antes de colocar el agua de mezcla. Con un tiempo aproximado de 15 a 20 minutos

El agua de mezcla se añadió asta ver que la pasta tenga una consistencia adecuada.

Una porción de mezcla era de 28 latas de hormigón y 4 bolsas de cemento. El agua era 10 a 11 baldes de 18 litros de capacidad. Se logra una buena trabajabilidad

Page 14: Visita Tecnica a Una Constrccion

LLENADO DE COLUMNAS

• El llenado de las columnas se realizo con peones y baldes de volumen de 18 litros.

• La compactación de las columnas con una varilla de fierro de construcción de diámetro ¾” y también con un madera redondeada de un diámetro de 6 cm.

Page 15: Visita Tecnica a Una Constrccion

La mezcla para el llenado

de las columnas tenia una

consistencia plástica.

La proporción era de 6

latas de hormigón por una

bolsa de cemento

El tamaño máximo

nominal del

agregado era de

1. 5”

Page 16: Visita Tecnica a Una Constrccion

ELABORACIÓN DE LA PROBETA EN OBRA

La elaboración de la probeta cilíndrica de diámetro 15 cm y altura 30 cm se hizo con la finalidad de comprobar la resistencia de los elementos estructurales (columnas) cuyo F'c = 210 kg/cm2.

También se midió el slump de la mezcla, resultando que tenia un asentamiento de 15. 6cm es decir era fluídica.

Page 17: Visita Tecnica a Una Constrccion

ENSAYO MECÁNICO DE LA PROBETA

ALTURA 30 cm

DIAMETRO 15 cm

AREA 176.715 cm2

FALLA POR

APLASTAMIENTO

0 0 0.0000 0.000

1000 0.3 1.0000 5.659

2000 0.9 3.0000 11.318

3000 1.3 4.3333 16.977

4000 1.6 5.3333 22.635

5000 1.75 5.8333 28.294

6000 1.9 6.3333 33.953

7000 2 6.6667 39.612

8000 2.22 7.4000 45.271

9000 2.43 8.1000 50.930

10000 2.55 8.5000 56.588

11000 2.72 9.0667 62.247

12000 2.88 9.6000 67.906

13000 3.05 10.1556 73.565

13200 3.21 10.7056 74.697

CARGA

Tn T (mm)

DEFORMACION

UNITARIA

ESFUERZO

(Kg/cm2)

Page 18: Visita Tecnica a Una Constrccion

DIAGRAMA

Page 19: Visita Tecnica a Una Constrccion

Del gráfico obtenemos:

𝛔𝐌𝐀𝐗 = 𝛔𝐑𝐎𝐓 = 𝟕𝟒. 𝟔𝟗𝟕 (𝐊𝐠/𝐜𝐦𝟐)

Calculo estimado de la resistencia

a la compresión a los 28 días

74.697 kg/cm2 --------------------70%

X -------------------- 100%

σ28 días = 106.71 kg/cm2

• Fórmula en función de f´c.

• E = 15000 ∗ f´c

• E = 15000 ∗ 106.71

• 𝐄 = 𝟏𝟓𝟒𝟗𝟓𝟎. 𝟕𝟗𝟖 𝐊𝐠/𝐜𝐦𝟐

Page 20: Visita Tecnica a Una Constrccion

RESUMEN

• No se llega la resistencia especificada de 210 kg/cm2.

• Se aumenta el agua con la finalidad de tener una buena trabajabilidad.

Page 21: Visita Tecnica a Una Constrccion

DISEÑO CON LAS PROPORCIONES OBTENIDAS EN OBRA

Cantidad de cemento.

Una bolsa = 42.5 kg

cantidad de agregados (hormigón) 7 latas por bolsa

Peso de cada lata 25 kg

El agua se vertía hasta que la mezcla sea trabajable tenga una consistencia plástica

Page 22: Visita Tecnica a Una Constrccion

DISEÑO DE MEZCLA METODO WALKER

Page 23: Visita Tecnica a Una Constrccion

• Cemento:

• Portland tipo I (ASTM C 1157)

• Peso Específico 3.12 gr/cm3.

• Agua:

• Agua Potable, cumple con la Norma NTP 339.088 o E 0-60

• Paso 1:

• Determinar / conocer el valor de fc′ a los 28 días de edad

• fc′28 dias

= 210 kg/cm2

Page 24: Visita Tecnica a Una Constrccion
Page 25: Visita Tecnica a Una Constrccion

PASO 4: CONTENIDO DE AIRE ATRAPADO TENIENDO EN CUENTA:TMNAG = 1.5 PULG

Page 26: Visita Tecnica a Una Constrccion

PASO 5: CALCULÓ DEL VOLUMEN DEL AGUA DE MEZCLA MEDIANTE LA TABLA DEL ACI Y TENIENDO EN CUENTA:CONSISTENCIA PLÁSTICA

TMNAG = 1.5 PULGPARA UN CONCRETO SIN AIRE INCORPORADO.

Page 27: Visita Tecnica a Una Constrccion

PASO 6: CALCULÓ DE LA RELACIÓN AGUA/CEMENTO MEDIANTE TABLA Y TENIENDO EN CUENTA:

FCR′ = 252 KG/CM2

CONCRETOSINAIRE INCORPORADO

Page 28: Visita Tecnica a Una Constrccion

PASO 7: DETERMINACIÓN DEL FACTOR CEMENTO.

Page 29: Visita Tecnica a Una Constrccion

PASO 8: CÁLCULO DEL VOLUMEN ABSOLUTO DE LA PASTA

Paso 9: volumen absoluto de los agregados

Vol. Abs.= 1- 0.285

Vol. Abs =0.715 m3

Page 30: Visita Tecnica a Una Constrccion

PASO 10. PORCENTAJE DEL AGREGADO FINO.

% de agregado fino = 39%

% de agregado grueso

=100% - 39% = 61%

Page 31: Visita Tecnica a Una Constrccion

PASO 11. VOLUMEN ABSOLUTO DE LOS AGREGADOS.

• AF = 0.715 * 0.39 = 0.278m3

• AG = 0.711* 0.61 = 0.436 m3

Peso seco de los agregados

Agregado Fino =0.278*2.5*1000=697.125 kg/m3

Agregado grueso =0.436*2.4*1000=1046.76 kg/m3

Page 32: Visita Tecnica a Una Constrccion

PASO12. VALORES DE DISEÑO DE LABORATORIO

• CEMENTO = 293.35 kg/m3

• AGUA = 181 kg/m3

• AIRE = 1%

• AG = 1046.76 kg/m3

• AF = 697.125 kg/m3

Page 33: Visita Tecnica a Una Constrccion

PASO 13 CORRECION POR HUMEDAD DE LOS AGREGADOS

• Peso húmedo de los agregados:

• AGREGADO FINO

• AF = peso seco ∗ (1 + ω%)

• AF = 697.125 ∗ (1 + 0.02)

• AF = 711.06 kg/m3

• AGREGADO GRUESO

• AG = peso seco ∗ (1 + ω%)

• AG = 1046.67 ∗ (1 + 0.01)

• AG = 1057.22 kg/m3

Page 34: Visita Tecnica a Una Constrccion

HUMEDAD SUPERFICIAL DE LOS AGREGADOS:

• HUM SUP = ω% − Abs %

• AGREGADO FINO

• AF = ω%− Abs %

• AF = 2% − 3%

• AF = −𝟏%

• AGREGADO GRUESO

• AG = ω% − Abs %

• AG = 1% − 1.5 %

• AG = −𝟎. 𝟓 %

Page 35: Visita Tecnica a Una Constrccion

APORTE DE AGUA DE MEZCLA POR LA HUMEDAD DE LOS AGREGADOS:

• APORTE AGUA = PESO SECO ∗ HUMEDAD SUPERFICIAL

• AGREGADO FINO

• AF = peso ∗ hum sup

• AF = 711.06 ∗ (−𝟏%)

• AF = −𝟕. 𝟏𝟏𝟎𝟔

• AGREGADO GRUESO

• AG = peso ∗ hum sup

• AG = 1046.67 ∗ (−𝟎. 𝟓 %)

• AG = −𝟓. 𝟐𝟑

• Aporte Total = −𝟏𝟐. 𝟑𝟒𝟑

Page 36: Visita Tecnica a Una Constrccion

CALCULO DEL AGUA EFECTIVA

• Agua Efectiva = Agua Mescla ± Agua por Humedad

• Para nuestro caso

• Agua Efectiva = Agua Mescla − Agua por Humedad

• Agua Efectiva = 181 − (−𝟏𝟐.𝟐𝟒𝟑)

• Agua Efectiva = 𝟏𝟗𝟑. 𝟑𝟒𝟑 lts/m3

Page 37: Visita Tecnica a Una Constrccion

VALORES DE DISEÑO AL PIE DE OBRA

• CEMENTO = 293.35 kg/m3

• AGUA = 193. 343 kg/m3

• AGhumedo = 1057.22 kg/m3

• AFhumedo = 711.06 kg/m3

Page 38: Visita Tecnica a Una Constrccion

PROPORCIONAMIENTO EN PESO

De acuerdo a las proporciones de obra que era 1 bolsa de cemento

por 7 de hormigón.

Para nuestro diseño si consideramos 1 de cemento 2.42 latas de

agregado fino y 3.604 latas de agregado grueso, aproximadamente

son iguales

Page 39: Visita Tecnica a Una Constrccion

Valores de obra para una tanda o porción

• EMENTO = 170 kg = 4 bolsas

• AGUA = 180 litros

• ℎ𝑜𝑟𝑚𝑖𝑔𝑜 (𝑎𝑔𝑟𝑒𝑔𝑎𝑑𝑜 𝑓𝑖𝑛𝑜 +𝑎𝑔𝑟𝑒𝑔𝑎𝑑𝑜 𝑔𝑟𝑢𝑒𝑠𝑜) = 28 latas =700 kg

• Valores de diseño

VALORES EN OBRA Y VALORES DE DISEÑO

La cantidad de agua= 27.6*4=110.4

litros

Hormigón =2.42+3.604 =6.024

Hormigón =6.024*4 =24.096

Page 40: Visita Tecnica a Una Constrccion

• La razón por la que no se llega a su resistencia especificada, es por que se aumenta el agua en cantidades considerables, para aumentar su trabajabilidad.

Cantidad de agua de

diseño

27.6*4= 110.4 litros

Cantidad de agua en

obra

180 litros

El agua aumenta 69.6

El agua aumenta 38.66%

Hormigón en diseño 6.024 latas/bolsa

Hormigón en obra 7 latas/bolsa

Hormigón en diseño por

tanda

602.4 kg

Hormigón en obra por

tanda

700 kg