12
Paweł Witczak Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 1 WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII 1.1. Zasada zachowania energii. Punktem wyjściowym dla analizy przetwarzania energii i mocy w pewnym przedziale czasu t jest zasada zachowania energii ak wy we W W W (1.1) gdzie W we - przyrost energii wejściowej (dopływającej z zewnątrz) do urządzenia, W wy - przyrost energii wyjściowej (wypływającej na zewnątrz) z urządzenia, W ak - przyrost energii akumulowanej w urządzeniu. Każda z wyżej wymienionych energii może być przesyłana bądź akumulowana na drodze elektrycznej, mechanicznej, cieplnej, hydraulicznej etc., w zależności od rodzaju obiektu. Jeśli w kolejnych przedziałach czasu t energia akumulowana nie zmienia się, czyli W ak =0, to mówimy o quasi-ustalonym stanie pracy urządzenia. W dalszym ciągu wykładu ograniczymy się do analizy tego właśnie stanu. Intensywność wydzielania się bądź przesyłu energii charakteryzuje pojęcie mocy średniej P zdefiniowane jako t P W (1.2) Przy czasie t dążącym do zera otrzymujemy definicję mocy chwilowej p(t) t d t W d t p (1.3) Wzajemne powiązanie mocy średniej i chwilowej jest określone definicyjnie jako t dt t p t P 0 ) ( 1 (1.4) W urządzeniach elektrycznych mamy do czynienia zasadniczo z trzema postaciami mocy: - elektryczną P el , - mechaniczną P me , - termiczną (cieplna) P te . Pomijając urządzenia grzewcze, moc cieplna jest związana z tą częścią mocy doprowadzonej, która nie została przetworzona na moc wyjściową i uległa rozproszeniu do otoczenia na ciepło.

WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

1

WYKŁAD 1

ZASADY ELEKTROMECHANICZNEGO

PRZETWARZANIA ENERGII

1.1. Zasada zachowania energii.

Punktem wyjściowym dla analizy przetwarzania energii i mocy w pewnym przedziale czasu t

jest zasada zachowania energii

akwywe WWW (1.1)

gdzie Wwe - przyrost energii wejściowej (dopływającej z zewnątrz) do urządzenia,

Wwy - przyrost energii wyjściowej (wypływającej na zewnątrz) z urządzenia,

Wak - przyrost energii akumulowanej w urządzeniu.

Każda z wyżej wymienionych energii może być przesyłana bądź akumulowana na drodze

elektrycznej, mechanicznej, cieplnej, hydraulicznej etc., w zależności od rodzaju obiektu.

Jeśli w kolejnych przedziałach czasu t energia akumulowana nie zmienia się, czyli Wak=0,

to mówimy o quasi-ustalonym stanie pracy urządzenia. W dalszym ciągu wykładu

ograniczymy się do analizy tego właśnie stanu. Intensywność wydzielania się bądź przesyłu

energii charakteryzuje pojęcie mocy średniej P zdefiniowane jako

tPW (1.2)

Przy czasie t dążącym do zera otrzymujemy definicję mocy chwilowej p(t)

td

tWdtp (1.3)

Wzajemne powiązanie mocy średniej i chwilowej jest określone definicyjnie jako

t

dttpt

P

0

)(1

(1.4)

W urządzeniach elektrycznych mamy do czynienia zasadniczo z trzema postaciami mocy:

- elektryczną Pel,

- mechaniczną Pme,

- termiczną (cieplna) Pte.

Pomijając urządzenia grzewcze, moc cieplna jest związana z tą częścią mocy doprowadzonej,

która nie została przetworzona na moc wyjściową i uległa rozproszeniu do otoczenia na ciepło.

Page 2: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

2

Zwyczajowo jest ona określana jako straty mocy i oznaczana P. Jest ona proporcjonalna do

przyrostu temperatury średniej urządzenia w stosunku do otoczenia. Straty mocy są związane

z wyraźnie wyodrębnionymi objętościami urządzenia (np. uzwojenia, rdzeń magnetyczny,

łożyska). Rozpływ mocy można schematycznie przedstawić za pomocą tzw. wykresu Sankey’a,

na którym wydzielono dwa składniki strat mocy

Rys.1.1 Schemat rozpływu mocy Sankey’a

Pwe, Pwy – straty mocy odpowiednio po stronie wejściowej i wyjściowej;

Pwewn – moc wewnętrzna.

Każda z mocy chwilowych jest definiowana jako iloczyn dwóch wielkości

nazywanych zmiennymi stanu

obrotowegoruchudlatt

liniowegoruchudlatttp

titutp

me

el

)()(

)()()(

)()()(

ΩM

vF

(1.5)

gdzie u – napięcie,

i – natężenie prądu,

F – siła,

M – moment siły,

v – prędkość liniowa,

– prędkość kątowa.

W zdecydowanej większości maszyn elektrycznych wektory prędkości Ω,v

mają jedną składową

(układ jednowymiarowy – 1D, np. =2n, gdzie n jest prędkością obrotową, [obr/s]), stąd

w równaniu (1.5) można pominąć notację wektorową

Dobrotowegoruchudla

Dliniowegoruchudla(t)p

i(t)u(t)(t)p

me

el

1M(t)Ω(t)

1F(t)v(t) (1.6)

Pwe

Pwe Pwy

Pwewn Pwy

Moc strat

zamieniana na ciepło

Moc

odbierana Moc

dostarczana

przetwornik

Page 3: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

3

W zależności od rodzaju przetwornika zarówno moc wejściowa jak i wyjściowa może być

elektryczna jak i mechaniczna. Zestawiono to w tablicy 1.1.

Tablica 1.1.

Zestawienie rodzajów przetworników

Typ

przetwornika

Moc

wejściowa

Moc

wyjściowa

transformator elektryczna elektryczna

silnik elektryczny elektryczna mechaniczna

prądnica mechaniczna elektryczna

reduktor mechaniczny mechaniczna mechaniczna

Moce wejściową i wyjściową wiąże pojęcie sprawności

wewe

wy

P

P

P

P 1 (1.7)

przy czym dla transformatora operuje się w praktyce nie sprawnością lecz stratami mocy, ze

względu na inną definicję mocy znamionowej niż w maszynach wirujących.

Page 4: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

4

1.2. Prawa elektromagnetyzmu.

Działanie wszystkich urządzeń elektrycznych, niezależnie od ich budowy i sposobu zasilania,

jest opisane za pomocą kilku podstawowych praw, które w zależności od postaci zapisu

matematycznego (różniczkowego bądź całkowego) i stopnia przyjętych uproszczeń są

określane nazwiskami ich odkrywców. Najogólniejszą postać sformułował James Maxwell w

postaci dwu praw nazywanych odpowiednio I i II równaniem Maxwella. Wykorzystują one

całkowe lub różniczkowe operatory wektorowe, których zapis wynika z przyjętego układu

współrzędnych, będącego jednocześnie definicją iloczynu wektorowego. Stosując tzw.

prawoskrętny układ współrzędnych kartezjańskich (rys.1.2) mamy

zxy

zyx

(1.8)

Wyrażenia te definiują również dodatni zwrot współrzędnej kątowej , np. w płaszczyźnie 0xy.

x

y

z

0

Rys.1.2. Prawoskrętny układ współrzędnych

I prawo Maxwella jest w postaci

t

DJHrot (1.9)

gdzie H – wektor natężenia pola magnetycznego, [A/m];

J – wektor gęstości prądu przewodzenia, [A/m2];

D – wektor indukcji dielektrycznej.

Gęstość tzw. prądu pojemnościowego wynikającego z pochodnej czasowej indukcji D jest

pomijalna dla technicznych częstotliwości rzędu setek Hz w stosunku do gęstości prądu

przewodzenia, tym niemniej przy zasilaniu z układów przekształtnikowych zawierających

składowe o częstotliwości kilkunastu kHz jej wpływ może być już zauważalny. W dalszym

ciągu wykładu składnik ten będzie pomijany, a I równanie Maxwella jest najczęściej

stosowane w postaci całkowej nazywanej prawem Ampere’a

k

kk

lSSl

iN)()(

dSJdlH (1.10)

Page 5: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

5

gdzie l(S) – kontur brzegowy otwartej powierzchni S

Nk – zwojność k-tej wiązki przewodów wiodących prąd o natężeniu ik

Rys.1.3. Ilustracja prawa Ampere’a.

II prawo Maxwella jest w postaci

td

d BErot (1.11)

które sprowadzone do postaci całkowej (prawo Faraday’a) zapisuje się jako

td

d

td

dte

lSSl

)()(

)( dSBdlE (1.12)

gdzie e – siła elektromotoryczna;

E – wektor natężenia pola elektrycznego, [V/m];

B – wektor indukcji magnetycznej;

– strumień magnetyczny.

e

dS

B

l

Rys.1.3. Ilustracja prawa Faraday’a.

Należy pamiętać, że równanie (1.10) dotyczy pojedynczego zwoju, a całkowanie indukcji B

jest wykonywane w układzie współrzędnych nieruchomym względem tego zwoju.

Wyznaczając siłę elektromotoryczną (SEM) indukowaną w cewce czy paśmie cewkowym

trzeba wykonać odpowiednie sumowanie po wszystkich zwojach, zależnie od struktury

geometrycznej uzwojenia.

Wektory gęstości prądu J oraz gęstości strumienia magnetycznego (indukcji

magnetycznej) B spełniają warunek bezźródłowości

0 JB divdiv (1.13)

Page 6: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

6

który w postaci całkowej nosi nazwę I prawa Kirchoffa

0

0

)(

)(

k

k

VS

k

k

VS

i

dSB

dSJ

(1.14)

3

1

2

S(V)

S(V)

i1 i2 i3

a. b.

Rys.1.4. Ilustracja całkowego sformułowania I prawa Kirchoffa.

a. sumowanie strumieni magnetycznych w węźle rdzenia transformatora;

b. sumowanie prądów w trójfazowym obwodzie.

Własności materiałów wiodących prąd elektryczny czy strumień magnetyczny są

wprowadzane zależnościami:

EJ (1.15)

gdzie – konduktywność elektryczna, [S/m].

HB Hr0 (1.16)

gdzie

– przenikalność magnetyczna próżni, [H/m].

r – względna przenikalność magnetyczna, dla ferromagnetyków Fe, Ni, Co

r=(103–10

4) i silnie zależy od wartości pola H w materiale; dla pozostałych

materiałów r=1.

Page 7: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

7

Rys.1.5. Charakterystyki magnesowania blach M6 i M19.

1.3. Reprezentacja sygnałów sinusoidalnych za pomocą liczb zespolonych

Liczbą zespoloną z nazywamy wyrażenie

𝑧 = 𝑎 + 𝑗𝑏 (1.17)

gdzie a, b są liczbami rzeczywistymi a j2=-1. Liczbę z można przedstawić w postaci

trygonometrycznej

𝑧 = √𝑎2 + 𝑏2(cos 𝜑 + 𝑗 sin 𝜑) = √𝑎2 + 𝑏2 𝑒𝑗𝜑 (1.18)

w której kąt (faza) spełnia

𝜑 = atan𝑏

𝑎 𝑑𝑙𝑎 𝑏 > 0

𝜑 = π + atan𝑏

𝑎 𝑑𝑙𝑎 𝑏 < 0

(1.19)

Liczby a, b noszą nazwę, odpowiednio, części rzeczywistej a=Re(z) i urojonej b=Im(z) liczby

z. Liczby zespolone przedstawia się na płaszczyźnie wytyczonej przez osie Re oraz Im co

pokazano na rys.1.6.

Rys.1.6. Płaszczyzna liczb zespolonych.

0 10000 20000 30000 40000

0

0.5

1

1.5

2

2.5

B [T ]

H [A/m ]

M6

M19

Re

Im +jb

a

b

-jb 0

z=a+jb ϕ

Page 8: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

8

Liczba zespolona sprzężona z* ma fazę przeciwnego znaku niż z

𝑧∗ = 𝑎 − 𝑗𝑏 (1.20)

Stąd kwadrat amplitudy z2 oblicza się jako

𝑧∗𝑧 = (𝑎 − 𝑗𝑏)(𝑎 + 𝑗𝑏) = 𝑎2 + 𝑏2 = 𝑧2 (1.21)

Zależność (1.18) pozwala na wzajemne powiązanie funkcji trygonometrycznych

i eksponencjalnych. Sumując liczby z i z* mamy

𝑧 + 𝑧∗ = 2𝑧 cos 𝜑 = 𝑧(𝑒+𝑗𝜑 + 𝑒−𝑗𝜑) (1.22)

co daje natychmiast

cos 𝜑 =𝑒+𝑗𝜑 + 𝑒−𝑗𝜑

2 (1.23)

Analogicznie, odejmując te liczby otrzymuje się

sin 𝜑 =𝑒+𝑗𝜑 − 𝑒−𝑗𝜑

2𝑗 (1.24)

Liczby zespolone są okresowe

𝑧(𝜑 ± 𝑘 2𝜋) = 𝑧(𝜑) 𝑘 = 1,2, … (1.25)

Powyższe własności umożliwiają reprezentację sygnałów sinusoidalnie zmiennych w czasie

za pomocą liczb zespolonych. Zastępując kąt w (1.23) przez iloczyn t, gdzie t jest czasem

a =2f nazywana jest pulsacją (częstością) i f jest częstotliwością, możemy przedstawić

wybraną wielkość, na przykład napięcie u(t), kosinusoidalnie zmienne w czasie jako sumę

dwóch tzw. wskazów wirujących na płaszczyźnie zespolonej w przeciwnych kierunkach

𝑢(𝑡) = 𝑈𝑚cos 𝜔𝑡 =𝑈𝑚

2𝑒+𝑗𝜔𝑡 +

𝑈𝑚

2𝑒−𝑗𝜔𝑡 = 𝑅𝑒(𝑈𝑚𝑒𝑗𝜔𝑡) (1.26)

Graficznie przedstawiono to na rys.1.7 dla t=.

Rys.1.7. Sygnał w dziedzinie czasu i jego równoważnik na płaszczyźnie zespolonej.

napięcie

- Um

0

t

2

Re(Umej)

Re

Im

0.5Umej 0.5Ume-j

+Um

Page 9: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

9

Dwa sygnały a(t) i b(t) mające tę samą częstotliwość mogą być przesunięte w fazie o

pewien kąt . Matematycznie otrzymuje się to poprzez wymnożenie przez ej

𝑎(𝑡) = 𝐴𝑚𝑒𝑗𝜔𝑡

𝑏(𝑡) = 𝐵𝑚𝑒𝑗𝜔𝑡𝑒𝑗∆𝜑 = 𝐵𝑚𝑒𝑗(𝜔𝑡+∆𝜑) (1.27)

Mówimy, że b(t) wyprzedza a(t) o kąt - maksimum sygnału b(t) występuje wcześniej niż

maksimum a(t). Przy porównywaniu sygnałów mających tę samą częstotliwość chwila t=0 nie

jest istotna, gdyż zawsze można wprowadzić nowy pomiar czasu przesunięty o dowolny kąt

fazowy. Natomiast przesunięcie fazowe jest niezależne od wyboru chwili początkowej.

1.4. Moce w urządzeniach prądu przemiennego, systemy oznaczeń.

Rozpatrzmy prosty obwód elektryczny składający się z szeregowego połączenia rezystancji R

i indukcyjności L zasilanych sinusoidalnym napięciem u(t)=2Usin(t). Zakładając, że parametry

obwodu są stałe (niezależne od prądu, to do opisu jego właściwości można zastosować algebrę

liczb zespolonych. Prąd pobierany z sieci wynosi

𝐼 𝐿 =𝑈

𝑅 + 𝑗𝑋𝐿=

𝑈

𝑅2 + 𝑋𝐿2

(𝑅 − 𝑗𝑋𝐿) (1.28)

Ponieważ składowa urojona Im(IL) jest ujemna to prąd ten spóźnia się względem napięcia o kąt

𝜑𝐿 = atan𝐼𝑚(𝐼𝐿)

𝑅𝑒(𝐼𝐿)= atan

−𝑋𝐿

𝑅< 0 (1.29)

Natężenie prądu w postaci eksponencjalnej zapisuje się jako

𝐼 𝐿 =𝑈

√𝑅2 + 𝑋𝐿2

𝑒𝑗𝜑𝐿 = 𝐼𝑒𝑗𝜑𝐿 (1.30)

Napięcie i prąd o wartościach skutecznych U, I w tym obwodzie są określone wzorami

Lj

L

j

eItIti

eUtUtu

2Re)cos(2)(

2Re)cos(2)( 0

(1.31)

gdzie

tj

tj

eII

eUU

(1.32)

Na płaszczyźnie zespolonej o dodatnim kącie w kierunku przeciwnym do ruchu wskazówek

zegara wielkości te zaznacza się następująco

Page 10: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

10

Re

Im 0

U

I=I ej

L L

Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej.

Iloczyn zespolonych wartości U oraz I* (asterisk oznacza tu liczbę sprzężoną) nazywany jest

zespoloną mocą pozorną

𝑆 = 𝑈𝐼 𝐿∗ = 𝑈𝐼𝑒−𝑗𝜑𝐿 = 𝑃 + 𝑗𝑄 = 𝑈𝐼[cos(−𝜑𝐿) + 𝑗 sin(−𝜑𝐿)] (1.33)

Składowa rzeczywista P jest mocą czynną a urojona Q określana jest mocą bierną. Należy

pamiętać, że każda z tych mocy ma inną jednostkę: [S]=VA, [P]=W, [Q]=VAr.

Aby lepiej zrozumieć rolę jaką odgrywają składowe P, Q mocy rozpatrzmy bardziej

szczegółowo przebieg czasowy p(t). Niech napięcie zasilające u(t) będzie w postaci

u(t)=√2Ucos(t). Wówczas wartość chwilowa natężenia prądu i(t) wyniesie

i(t)= √2Icos(t+L) – pamiętamy, że kąt L jest w odbiorniku RL ujemny (1.29). Moc

chwilowa jest więc równa

𝑝(𝑡) = 𝑢(𝑡)𝑖(𝑡) = 2𝑈𝐼 cos(𝜔𝑡) cos(𝜔𝑡 + 𝜑𝐿) (1.34)

a przebieg w czasie przedstawiono na rys.1.9.

Rys.1.9 Przebiegi czasowe napięcia, natężenia prądu i mocy w odbiorniku RL, L= -/6.

t 2

u(t)

i(t)

p(t)

UI cos(L)

L

Page 11: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

11

Widzimy, że moc pobierana z sieci w pewnych przedziałach czasu ma wartość ujemną, co

oznacza, że jest zwracana niej. Przekształcając zależność trygonometryczną (1.34)

otrzymujemy

𝑝(𝑡) = 𝑈𝐼[cos 𝜑𝐿 (cos 2𝜔𝑡 + 1) + sin(−𝜑𝐿) sin 2𝜔𝑡] (1.35)

Oznaczając

𝐼𝑅𝑒 = 𝐼 cos 𝜑𝐿 𝐼𝐼𝑚 = 𝐼 sin 𝜑𝐿

(1.36)

mamy

𝑝(𝑡) = 𝑈𝐼𝑅𝑒(cos 2𝜔𝑡 + 1) − 𝑈𝐼𝐼𝑚 sin 2𝜔𝑡 (1.37)

Pierwszy składnik jest zawsze dodatni i reprezentuje moc pobraną z sieci o wartości średniej

UIcos(L) i zamienioną na inny rodzaj – mechaniczny lub cieplny. Nazwany został mocą

czynną P. Drugi składnik ma wartość średnią równą zeru i przedstawia moc elektryczną

oscylacyjnie wymienianą pomiędzy siecią i odbiornikiem RL. Nazwaliśmy go mocą bierną Q,

która jest niezbędna do wytworzenia pola magnetycznego przez indukcyjność L.

Rys.1.10. Przebiegi czasowe składników mocy elektrycznej dla odbiornika RL, L=-/6.

Wykres wskazowy może być wykonany w odniesieniu do napięcia – jak pokazano w

zależnościach (1.35), bądź natężenia prądu. Wówczas kąt przesunięcia fazowego jest

mierzony w przeciwnym kierunku niż poprzednio i uzyskujemy

𝑈𝑅𝑒 = 𝑈 cos(−𝜑𝐿) = 𝐼𝑅

𝑈𝐼𝑚 = 𝑈 sin(−𝜑𝐿) = 𝐼𝑋𝐿 (1.38)

Wykresy wskazowe dla obydwu przypadków pokazano na rys.1.11.

u(t)i(t)

u(t)iRe (t)

u(t)iIm (t)

t 2

Page 12: WYKŁAD 1...Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory 10 Re Im 0 U I=I ej L L Rys.1.8. Wskazy prądu i napięcia na płaszczyźnie zespolonej. Iloczyn

Paweł Witczak

Materiały pomocnicze do wykładu Maszyny Elektryczne i Transformatory

12

Rys.1.11. Dwa rodzaje wykresów wskazowych odbiornika RL wykonane

a. względem napięcia zasilającego,

b. względem natężenia prądu.

Bilans składowych napięcia zapisany za pomocą liczb zespolonych jest w postaci

𝑈 = 𝑈𝑅𝑒 + 𝑗𝑈𝐼𝑚 = 𝐼𝐿𝑅 + 𝑗𝐼𝐿𝑋𝐿 = 𝐼𝐿𝑅 + 𝐸 (1.39)

Spadek napięcia na reaktancji nazywamy siłą elektromotoryczną indukowaną (SEM), tu SEM

indukcji własnej.

L

Re(IL)

U

IL

Re

Im

Im(IL)

a.

L

Re

U

IL

Re(U)

Im

Im(U)

b.