46
ZAKONI U ELEKTROTEHNICI Osnove elektrotehnike Rijeka 13.09.2015

Zakoni u Elektrotehnici

Embed Size (px)

DESCRIPTION

jouleov ,wattov, ohmov zakon

Citation preview

Page 1: Zakoni u Elektrotehnici

ZAKONI U ELEKTROTEHNICI

Osnove elektrotehnike

Rijeka 13.09.2015

Page 2: Zakoni u Elektrotehnici

21

2

Page 3: Zakoni u Elektrotehnici

21

SADRŽAJ

1 Uvod..................................................................................................................................4

2 Ohmov zakon...................................................................................................................52.1 Pad napona................................................................................................................6

3 Gaussov zakon.................................................................................................................93.1 Prikaz površine vektorom.......................................................................................103.2 Tok vektora električnog polja.................................................................................113.3 Gaussov zakon za elektrostatiku.............................................................................14

4 Kirchhoffov zakon.........................................................................................................174.1 Kirchhoffovi zakoni općenito.................................................................................184.2 Prvi Kirchhoffov zakon...........................................................................................184.3 Drugi Kirchhoffov zakon........................................................................................21

5 Coulombov zakon..........................................................................................................235.1 Elektrostatička sila..................................................................................................245.2 Elektrostatička sila kao vektor................................................................................26

6 Jouleov zakon................................................................................................................276.1 Jouleova toplina......................................................................................................28

7 Zaključak.......................................................................................................................31

8 Literatura.......................................................................................................................32

9 Ilustracije.........................................................................................................................33

3

Page 4: Zakoni u Elektrotehnici

21

1 UVOD

U ovom radu ćemo opisati osnovne zakone u elektrotehnici. Elektrotehnika je grana

znanosti i tehnike koja se bavi proučavanjem i korištenjem električnih i magnetskih pojava.

Danas znamo da sve te pojave proizlaze iz električne osnove građe tvari. Spoznaja tih pojava

postupno se razvijala s vremenom, a njihova primjena razvija se još i danas. S vremenom su

definirane osnovne električne veličine: napon, struja i otpor, te pojam strujnog kruga kao i

osnovni zakoni elektrotehnike kojima se bavi ovaj rad. Od važnijih zakona biti će opisani:

Ohmov zakon

Gaussov zakon

Kirchhoffov zakon

Jouelov zakon

Coulombov zakon

Za svaki zakon ćemo opisati njegove značajke i napisati nekoliko riječi o njegovom autoru.

4

Page 5: Zakoni u Elektrotehnici

21

2 OHMOV ZAKON

Georg Simon Ohm (Erlangen, 16. ožujka 1787. - München, 7. srpnja 1854.) bio je

njemački fizičar. Istaknuo se radovima s područja elektriciteta i magnetizma. Formulirao je

zakon prema kojem je jakost struje koja prolazi vodičem proporcionalna naponu i obrnuto

proporcionalan otporu (Ohmov zakon). Proučavao je nastajanje topline u vodiču kojim

protječe struja, a bavio se različitim problemima s područja akustike.Slika 1. Georg Simon Ohm

Izvor: https://hr.wikipedia.org/wiki/Georg_Simon_Ohm#/media/File:Ohm3.gif

Mjerna jedinica Ohm (Ω) kojom se iskazuje vrijednost električnog otpora nazvana je po

njemu. Istraživao je i u području akustike, optike, metala i matematike.

Ohmov zakon je temeljni zakon elektrike (elektrotehnike). Govori o odnosu jakosti

električne struje, napona i otpora u strujnom krugu.

Eksperimentalno je utvrđeno da će jakost struje kroz vodič biti to veća što je veći napon

među njegovim krajevima i što je manji otpor strujnog kruga u koji je vodič uključen, tj. da je

jakost struje u strujnom krugu proporcionalna naponu, a obrnuto proporcionalna otporu.

Matematički se ovo može izraziti formulom

gdje su:

I = jakost struje kroz strujni krug u amperima (A)

U = napon izvora u voltima (V)

5

Page 6: Zakoni u Elektrotehnici

21

R = ukupan otpor strujnog kruga (otpor trošila + otpor električnih vodova + unutarnji

otpor izvora struje) u omima (Ω). Om se može napisati i kao volt/amper (V/A).

Ohmov zakon vrijedi za metale i vodljive otopine. Takvi se vodiči zovu omski vodiči. Za

neke materijale Ohmov zakon ne vrijedi a takvi se vodiči zovu neomski.

Zakonitosti u odnosima otpora, napona i struje otkrio je 1826. godine njemački fizičar

Georg Simon Ohm istražujući metalne vodiče.

Na sljedećoj slici je prikazan krug sa svim formulama Ohmovog zakona za istosmjernu i

izmjeničnu struju.Slika 2. Krug sa formulama Ohmovog zakona

Izvor: Obrada autora

2.1 PAD NAPONA

Napon izvora U (V) tjera strujni tok jakosti I (A) kroz otpornik R. Na krajevima otpornika

napon je jednak naponu izvora, što znači da duž otpornika napon nije svagdje jednak, nego se

smanjuje od pozitivnog kraja prema negativnom, kako pokazuju voltmetri na gornjoj slici.

Veći napon na stezaljkama izvora (dakle i na krajevima otpornika) protjerat će jaču struju

kroz otpornik, a među pojedinim točkama otpornika i razlike u naponu bit će veće. Prekinemo

li strujni tok, otpornik će u svim točkama imati isti napon jednak naponu stezaljke na koju je

priključen, kao što prikazuje donja slika. Slijedi, da razlike u naponu pojedinih točaka

otpornika postoje samo u zatvorenom strujnom krugu, ako kroz njega protječe struja.

6

Page 7: Zakoni u Elektrotehnici

21

Slika 3. Pad napona

Izvor: https://hr.wikipedia.org/wiki/Ohmov_zakon#/media/File:Pad_napona.jpg

Pokusima se može pokazati, da je pad napona na bilo kom odsječku - dijelu otporne žice

to veći, što je veći otpor između mjernih točaka i što je jača struja koja teče kroz otpornik.

Matematički se pad napona može odrediti po izrazu:

U = I x R1 gdje R1 predstavlja (rezultirajući) otpor među mjernim točkama. Izraz ustvari

predstavlja primjenu Ohmovog zakona na promatrani odsječak otpornika ili promatrani dio

strujnog kruga, pa i onda ako taj dio sadrži složeniji sustav od više različito vezanih trošila ili

otpornika.

7

Page 8: Zakoni u Elektrotehnici

21

Zaključimo da prolaskom struje kroz bilo koji otpornik ili vodič, na tom otporniku ili

vodiču nastaje pad napona jednak umnošku jakosti struje i otpora među mjernim točkama

Sukladno tome, pad napona je neizbježan i u vodovima gradske električne mreže. Da bi

trošila dobila propisanih 220 V i u vrijeme jačeg opterećenja mreže, vodovi moraju biti

dovoljno debeli, da se smanji njihov otpor, a time i pad napona, kako bi se razlike napona u

neopterećenoj i opterećenoj mreži zadržale u granicama dopuštenih odstupanja. To je također

razlog, što električne instalacije trebaju projektirati stručnjaci, kako bi ispravno odredili

potrebne debljine vodiča za svaku instalaciju. Nadalje, pad napona nastaje i na zaštitnom

vodiču, ako bi kroz njega prolazila struja. Na dijelu dugog i tankog ili slabo spojenog

zaštitnog vodiča, mogao bi zato nastati i opasan napon u slučaju da fazni napon probije na

metalne dijelove opreme ili instalacije (tzv. masu). Zbog toga zaštitni vodič treba biti dovoljne

debljine, ne smije se voditi preko prekidača, a ako ima spojeva, oni moraju biti dobro

izvedeni.

8

Page 9: Zakoni u Elektrotehnici

21

3 GAUSSOV ZAKON

Karl Fridrih Gaus (njem. Johann Carl Friedrich Gauß, 30. 04. 1777. – 23.02. 1855.) bio je

njemački matematičar i naučnik. Dao je značajan doprinos u mnogim poljima, uključujući

teoriju brojeva, analizu, diferencijalnu geometriju, geodeziju, elektrostatiku, astronomiju i

optiku. Poznat kao "princ matematičara" i "najveći matematičar od davnina", Gaus je ostavio

trag na mnogim poljima matematike i nauke i smatra se jednim od najuticajnijih matematičara

u istoriji. Slika 4. Johann Carl Friedrich Gauß

Izvor: https://hr.wikipedia.org/wiki/Carl_Friedrich_Gauss#/media/File:Carl_Friedrich_Gauss.jpg

Sa njemačkim fizičarom Wilhelm Eduard Weberom, Gauss je proveo opširno istraživanje

o magnetizmu, a njegovo primjenjivanje matematike na magnetizam i elektricitet je jedno od

njegovih važnijih doprinosa (u čast njemu jedinica intenziteta magnetskog polja dobila je

naziv gauss). O toj je temi napisao mnoga djela kao: Intensitas vis magneticae terrestris ad

mensuram absolutam revocata (1832.), Allgemeine Theorie des Erdmagnetismus (1839.) i

Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der

Entfernung wirkenden Anziehungs - und Abstossungskräfte (1840.). Gauss i Weber su otkrili

Kirchhoffove zakone, konstruirali primitivni telegraf te stvorili vlastite novine Magnetischer

Verein.

Među njegovim zadnjim djelima je rasprava s Gerlingom o Foucaultovom njihalu (1854.).

Doživio je otvorenje hanoverske željezničke mreže, te je preminuo 23. veljače 1855. u

9

Page 10: Zakoni u Elektrotehnici

21

0

Göttingenu, a da rijetko koje polje matematike, astronomije i matematičke fizike nije ostalo

taknuto od Gaussa.

Za razumijevanje Gaussova zakona potrebno je predznanje o matematičkoj

interpretaciji određenih fizikalnih veličina i pojava. U tom smislu potrebno je razjasniti

prikazivanje površine vektorom i definirati tok vektora električnog polja.

3.1 PRIKAZ POVRŠINE VEKTOROM

Neka ploha u prostoru može imati bilo koji položaj, orijentaciju i veličinu. Radi

prikladnije matematičke interpretacije ploha se definira pripadnim vektorom. Iznos

vektora jednak je iznosu površine odabranoga elementa plohe, a smjer vektora okomit je

na element plohe. Samo u posebnim slučajevima jednostavnih tijela (kugla, cilindar,

kocka, kvadar,.....) površine pojedinih ploha mogu se izravno izraziti jednim vektorom.

Kako kod složenijih tijela to nije slučaj, potrebno je razmatranu plohu podijeliti na

diferencijalne površine dS. Pri tomu je svaki element površine dS odabran dovoljno

malenim, tako da ga se može smatrati ravnim. Smjer se definira jediničnim vektorom

površine , pa je vektor elementa površine dan sa:

.

Na slici 5 prikazano je proizvoljno tijelo na kojemu su naznačeni primjeri elemenata

površine na različitim plohama tijela:

10

Page 11: Zakoni u Elektrotehnici

21

Slika 5. Primjer prikazivanja površine plohe vektorom

Izvor: Obrada autora

3.2 TOK VEKTORA ELEKTRIČNOG POLJA

Pojam toka ili protjecanja dolazi iz područja hidromehanike i ima zornu

interpretaciju u protjecanju tekućine kroz cijev promjenljiva presjeka.

Za proučavanje toka električnog polja radi jednostavnosti razmatrat ćemo homogeno

električno polje. Takvo polje generira jednoliko nabijena ravnina, a opisano je paralelnim

silnicama i konstantnog je iznosa. Pretpostavimo da polje upada pod pravim kutom u cijev

presjeka S, kao na slici 5. Sličnu vrstu polja generira Sunce, jer se sunčeva svjetlost

dade prikazati paralelnim zrakama svjetlosti, pa se radi zornosti prikaza može zamisliti

da se umjesto električnog razmatra svjetlosno polje. Unutar cijevi postavljen je zaslon

(zastor) čija površina S odgovara poprečnom presjeku cijevi. Zaslon može rotirati oko

jedne točke (A).

11

Page 12: Zakoni u Elektrotehnici

21

Slika 6. Shematski prikaz toka vektora

Izvor: Obrada autora

Tok vektora polja ψ je skalarna veličina, a dobije se kao umnožak polja E i efektivne

površine u koju "ulazi" vektor polja. Efektivna površina je promjenljiva, jer ovisi o

položaju zastora. Definira se kao površina koja se dobije projekcijom površine S na površinu

kroz koju tok ima maksimalni iznos. Matematički prikaz toka kojim su obuhvaćeni svi

mogući položaji zastora dan je skalarnim produktom vektora polja i vektora plohe :

Razmotrimo tri karakteristična slučaja kao na gornjoj slici:

12

Page 13: Zakoni u Elektrotehnici

21

U prvom slučaju zastor je postavljen okomito na upadne zrake polja i cijela površina S

osvijetljena je maksimalnim intenzitetom. Vektori polja i plohe S su kolinearni (paralelni), pa

je kut α= . Slijedi da je:

U drugom primjeru zastor je zakrenut u odnosu na početni položaj za neki kut α. Efektivna

površina koju osvjetljava maksimalni tok je: =Scosα (presjek AC), pa je tok:

U trećem slučaju polje je tangencijalno u odnosu na zastor, pa je isti neosvijetljen. Ploha

polje nalaze se pod pravim kutom α=900, pa je tok:

Očigledno je da se svi slučajevi mogu obuhvatiti i jedinstveno matematički tretirati

uporabom skalarnog produkta.

Kako je u općem slučaju ploha S promjenljivog oblika i položaja u prostoru, potrebno ju je

razdijeliti na elemente površine: . Te su površine ravne i tako malene da

možemo pretpostaviti kako je električno polje konstantno u svakoj točki te površine. Doprinos

toku od svake takve površine je element toka dΨ, tj.:

Ukupni tok dobije se sumiranjem djelomičnih tokova od svakog elementa plohe S. Suma

se, dakle, proteže po cijeloj plohi, a matematički se takva "fina" suma izražava integralom po

plohi S:

Poseban slučaj je izračunavanje toka električnog polja kroz zatvorenu plohu proizvoljnog

oblika. Ako unutar plohe postoji električno polje, postojat će i električni tok kroz zatvorenu

plohu. Zatvorena ploha podijeli se, kako je već opisano, na vrlo male plohe površine dS.

13

Page 14: Zakoni u Elektrotehnici

21

Smjer im je određen smjerom vanjske normale (okomice) na taj dio površine plohe. U općem

slučaju vektor električnog polja i vektor elementa zatvorene plohe nalaze se pod nekim

kutom, kako je to prikazano na slici 3.Slika 7. Određivanje toka kroz zatvorenu plohu

Izvor: Obrada autora

Ukupni tok vektora električnog polja kroz zatvorenu površinu dobije se zbrajanjem

umnožaka . d za sve elemente površine dS:

Tok električnog polja može se povezati s brojem silnica koje prolaze kroz zatvorenu

površinu. Silnice koje ulaze mogu se smatrati negativnima, a one koje izlaze iz zatvorene

površine, pozitivnima. Kada je broj silnica koje u površinu ulaze jednak broju silnica koje iz

nje izlaze, ukupni tok je nula.

3.3 GAUSSOV ZAKON ZA ELEKTROSTATIKU

Gaussov zakon, jedan od temeljnih zakona elektromagnetizma, glasi u integralnoj formi:

14

Page 15: Zakoni u Elektrotehnici

21

Ukupni tok Ψ električnog polja kroz bilo koju zatvorenu plohu S, odnosno integral

skalarnog umnoška po toj plohi, jednak je ukupnom električnom naboju obuhvaćenom

tom plohom, podijeljenom s dielektričnom konstantom vakuuma.

Iz jednadžbe Gaussova zakona slijedi važni zaključci:

• Tok električnog polja ovisi samo o iznosu naboja obuhvaćenog zatvorenom plohom.

• Položaj naboja unutar plohe, kao ni veličina i oblik zatvorene plohe nemaju upliva na

električni tok.

• Ako zatvorenom plohom nije obuhvaćen nikakav naboj, tok električnog polja jednak je

nuli

• Naboji izvan zatvorene plohe ne utječu na tok (broj ulaznih jednak je broju izlaznih

silnica).

Kako primijeniti Gaussov zakon za određivanje električnog polja nekog naboja? Temeljnu

ideju proučit ćemo na najjednostavnijem primjeru točkastog naboja prema slici .

Slika 8. Primjer određivanja polja primjenom Gaussova zakona

15

Page 16: Zakoni u Elektrotehnici

21

Izvor: Obrada autora

Postupak je slijedeći:

Oko naboja čije električno polje želimo odrediti postavi se u općem slučaju bilo

koja zatvorena ploha (kada je poznata raspodjela naboja u rješavanju je potrebno

slijediti simetriju zadane raspodjele - u slučaju točkastog naboja to bi bila

koncentrična kugla).

Zatvorena ploha podijeli se na vrlo male elemente plohe dS prikazane

odgovarajućim vektorom usmjerenim izvan obujma obuhvaćenog plohom.

Odredi se pripadni vektor Er za odabrani element plohe Sdr.

Postavi se izraz za pripadni element toka, tj. skalarni umnožak SdErr

Zbrajanjem elemenata toka (integriranjem) po cijeloj zatvorenoj plohi odredi se

ukupni tok

Primjeni se Gaussov zakon (izjednači dobiveni tok s ukupno obuhvaćenim

nabojem i podijeli s ε0).

Iz dobivene jednadžbe izrazi se električno polje.

Gaussov zakon primjenljiv je za izračunavanje polja simetričnih raspodjela naboja. Zakon

vrijedi i za nesimetrične raspodjele naboja, ali se za proračun polja ne može primijeniti. Za

takve se slučajeve rabi Coulombov zakon. Valjanost Gaussova zakona i za nesimetrične

raspodjele naboja, kao i valjanost zaključaka koji slijede iz Gaussova zakona, može se

pokazati primjerom kao na slici.

Slika 9. Prikaz primjene Gaussova zakona

16

Page 17: Zakoni u Elektrotehnici

21

Izvor: Obrada autora

Na slici su S1 i S2 zatvorene plohe. Ukupni tok koji izlazi iz plohe S1 je:

jer ovisi samo o nabojima obuhvaćenim tom plohom i neovisan je o položaju naboja Q1 i

-Q2. Tokovi od naboja Q3, Q4 i -Q5 "prodiru" kroz plohu S1, ali pojednostavljeno rečeno -

sav tok koji u tu plohu ulazi iz nje i izlazi, pa je doprinos naboja Q3, Q4 i -Q5 na ukupni tok

kroz S1 jednak nuli. Na sličan način zaključuje se da je ukupni tok kroz plohu S2 jednak nuli,

dakle:

jer tom plohom nije obuhvaćen nikakav naboj, pa nema ni izvora polja unutar plohe. Naboji

unutar bilo koje zatvorene plohe mogu biti raspoređeni kao sustav od n točkastih naboja, ili u

obliku pravčasto, plošno ili prostorno raspodijeljenih naboja.

17

Page 18: Zakoni u Elektrotehnici

21

4 KIRCHHOFFOV ZAKON

Gustav Robert Kirchhoff (Königsberg, 12. ožujka 1824. – Berlin, 17. listopada 1887.),

njemački fizičar i kemičar.

Svojim je radnom jako doprinio osnovnom razumijevanju strujnog kruga, spekrotskopije i

emisiju radijacije crnih tijela sa zagrijavanim objektima. Pojam radijacija „crnog tijela“

skovao je 1862., a dva seta nezavisnih koncepata o zakonima strujnog kruga i termalne

emisije nazvani su „Kirchhoffovi zakoni“ u njegovu čast.

Kirchhoff je rođen u Königsbergu, Istočna Pruska (danas Kalinjingrad), kao sin Friedrich

Kirchhoffa, odvjetnika i Johanne Henriette Wittke. Kirchhof je 1847. diplomirao na

Königsbergškom sveučilištu i oženio se Clarom Richelot, kćerkom njegovog profesora

matematike Friedricha Richelota. Iste godine preselili su se u Berlin, gdje su bili dok Gustav

Kirchhoff nije dobio mjesto profesora u Breslau (danas Wrocław).Slika 10. Gustav Robert

Kirchhoff

Izvor: https://hr.wikipedia.org/wiki/Gustav_Robert_Kirchhoff#/media/File:Gustav_Robert_Kirchhoff.jpg

Kirchhoff je svoje zakone o strujnom krugu, koji su danas svudašnji u električnom

inženjeringu, formulirao 1845. dok je još bio student. Svoje zakone o termalnoj radijaciji

izložio je 1859, a dokazao ih je 1861. U Breslau je na spektroskopiji radio sa Robertom

Bunsenom, a bio je i su-otkrivač elemenata cezija i rubidija 1861. dok je proučavao kemijsku

kompoziciju Sunca preko njegovog spektralnog potpisa.

18

Page 19: Zakoni u Elektrotehnici

21

Rumfordovu medalju dobio je 1862. i to zbog istraživanja fiksiranih linija sunčevog

spektra i inverzija svijetlih linija u spektru umjetne svjetlosti.

Jako je doprinio području spektroskopije tako što je formalizirao tri zakona koja upisuju

spektralnu kompoziciju svjetla koje emitiraju užareni objekti, nadograđujući se na otkrićima

Altera i Angstroma

4.1 KIRCHHOFFOVI ZAKONI OPĆENITO

Kirchhoffovi zakoni, uz Ohmov zakon, su temeljni zakoni za analizu strujnih krugova.

Prvi Kirchhoffov zakon, ili Kirchhoffov zakon za struje (KCL – eng. Kirchhoff Current

Law) govori da ukupna struja koja izlazi iz čvora mora biti jednaka ukupnoj struji koja ulazi u

čvor. Opisuje struje čvora.

Drugi Kirchhoffov zakon, ili Kirchhoffov zakon za napone (KVL – eng. Kirchhoff

Voltage Law) govori da ukupna razlika potencijala koju stvaraju svi naponski izvori u nekoj

zatvorenoj petlji jednaka ukupnom padu napona na svim trošilima u istoj petlji. Opisuje

napone zatvorene petlje.

4.2 PRVI KIRCHHOFFOV ZAKON

Algebarska suma svih struja koje ulaze u čvor je nula ili suma svih struja koja izlazi iz

čvora mora biti jednaka sumi svih struja koje ulaze u čvor. Osnovna ideja: ulazni " protok "

naboja mora biti isti kao izlazni. Jednostavna analogija: protok vode u spoju nekoliko cijevi.Slika 11. Primjeri (protok vode u

spoju nekoliko cijevi)

Izvor: Kirchhovi zakoni

19

Page 20: Zakoni u Elektrotehnici

21

Algebarska suma svih struja koje ulaze u čvor je nula. " Algebarska " suma znači da se pri

zbrajanju svih struja vodi računa i o predznacima, definiranim smjerom struje. Ako struja

ulazi u čvor ima " + " predznak, a ako izlazi iz čvora " - " predznak, npr.Slika 12. Algebarska suma struja

Izvor: Obrada autora

Alternativna definicija (govori isto što i prethodna): "Suma svih struja koja izlazi iz čvora

mora biti jednaka sumi svih struja koje ulaze u čvor". Ovo je na drugi način (manje "

matematički ") opisano isto pravilo – rezultira istom jednadžbom za promatrani čvor.

20

Page 21: Zakoni u Elektrotehnici

21

Slika 13. Primjer za 2 čvora iz

prošlog primjera

Izvor: Obrada autora

21

Page 22: Zakoni u Elektrotehnici

21

4.3 DRUGI KIRCHHOFFOV ZAKON

Algebarska suma svih napona u zatvorenoj petlji je nula ili u zatvorenoj petlji, ukupan napon

koji stvaraju svi izvori jednak je ukupnom padu napona svih trošila.

Osnovna ideja: ako se promatra bilo koja zatvorena petlja u el.krugu onda ukupno povećanje

potencijala od strane izvora mora biti točno jednako ukupnom smanjenju potencijala uslijed

pada napona na svim trošilima. "U zatvorenoj petlji, ukupan napon koji stvaraju svi izvori

jednak je ukupnom padu napona svih trošila"

Pogledajmo potencijale i padove napona na jednostavnom primjeru (čitav krug ispod je jedna

zatvorena petlja):Slika 14. Primjer zatvorene petlje

Izvor: Obrada autora

22

Page 23: Zakoni u Elektrotehnici

21

Slika 15. Padovi napona (i konvencija označavanja)

Izvor: Obrada autora

Algebarska suma svih napona u zatvorenoj petlji je nula. Algebarska suma za petlju 3 je

suma svih napona u ovoj petlji, vodeći računa o smijeru obilaska i polaritetima naznačenim na

shemi. Ako smijer obilaska (plava strelica) IZLAZI iz "+" polariteta napona sa slike, onda se

napon zbraja sa "+" predznakom, u suprotnom se zbraja sa "-" predznakom. Dakle, U1 i UR3

će se zbrajati sa "+" predznakom, a U2 i UR1 sa "-" predznakom. Vodeći računa o ovome,

konačno slijedi 2. Kirchhoffov zakon za petlju 3:Slika 16. Petlja 3

Izvor: Obrada autora

23

Page 24: Zakoni u Elektrotehnici

21

5 COULOMBOV ZAKON

Charles-Augustin de Coulomb (Angoulême, 14. lipnja 1736. – Pariz, 23. kolovoza 1806.)

je francuski fizičar.

Coulomb je rođen u francuskom gradu Angoulême. Izabrao je posao vojnog inženjera, i

taj je posao radio tri godine, do ozlijede koja mu je uvelike ugrozila zdravlje, na Martiniku.

Na povratku zaposlio se u La Rochelleu. Tu je otkrio inverznu vezu između sile naboja i

kvadratu njihove udaljenosti, taj je zakon kasnije po njemu nazvan coulombov zakon.

Slika 17. Charles-Augustin de Coulomb

Izvor: https://hr.wikipedia.org/wiki/Charles-Augustin_de_Coulomb

Godine 1781. Coulomb je permanentno stacioniran u Parizu. Prije početka revolucije

1789. Coulomb daje otkaz na mjestu intendant des eaux et fontaines, i otišao u mirovinu na

svoje imanje u Bloisu. Ponovno je pozvan u Pariz na konferenciju da se odrede nove mjerne

jedinice, a sve to po naredbi Revolucionarne vlade. Iz Državnog instituta bio je jedan od prvih

članova, a 1802. postavili su ga za inspektora javnih instrukcija. No njegovo zdravlje je već

tada bilo jako krhko, te je umro četiri godine poslije u Parizu.

Coulombovo ime zauvijek je urezano u povijesti mehanike i elektriciteta magnetizma. On

je 1779. izdao važnu publikaciju o zakonima trenja (Théorie des machines simples, en ayant

24

Page 25: Zakoni u Elektrotehnici

21

égard au frottement de leurs parties et à la roideur des cordages) koji je uslijedio nakon

dvadeset godina po memoaru o viskoznosti.

SI jedinica za električni naboj kulon (C), i Coulombov zakon nazvani su u njegovu čast.

Elektrostatička sila jedan je od temeljnih pojmova područja fizike i elektrotehnike. Temeljna

svojstva elektrostatičke sile prvi je ispitao i objavio 1783. godine francuski fizičar Charles-

Augustin de Coulomb otvorivši time put u jedno novo područje kasnije nazvano

elektromagnetizam.

Djelovanje elektrostatičke sile opisano je u Coulombovom zakonu, premda je ovisnost

elektrostatičke sile o kvadratu udaljenosti bila ustanovljena i ranije, no nije objavljena. U

svojim pokusima Coulomb je koristio tzv. torziono njihalo, preteču torzione vage, napravu

koja je mogla detektirati i usporediti vrlo male sile.

Coulombov zakon u skalarnom obliku govori: "Veličina elektrostatičke sile između dva

točkasta naboja upravo je razmjerna umnošku veličine oba naboja i obrnuto razmjerna

kvadratu udaljenosti r između njih" gdje su q1 i q2 dva točkasta naboja. Kako bi povezao

sustav mehaničkih sila, već dobro poznat u to vrijeme, sa sustavom elektrostatičkih sila,

Coulomb je uveo konstantu proporcionalnosti (kasnije nazivanu i "Coulombova " konstanata)

gdje možemo zapisati da je:

F =

gdje je kasnije Coulombova konstanta povezana s drugim fizikalnim konstantama i iznosi:

k_{\mathrm{e}} = = = 8.987 5517873681764 x N x x

gdje je dielektričnost vakuuma, permeabilnost vakuuma, a brzina svjetla u

vakuumu.

5.1 ELEKTROSTATIČKA SILA

25

Page 26: Zakoni u Elektrotehnici

21

Jednostavnim eksperimentom može se pokazati da kao rezultat međusobnog trljanja

(trenja) neki materijali pokazuju svojstvo koje se naziva elektricitet (od grčke riječi elektron).

Ako na primjer trljamo štapić od jantara (plemenita smola) vunenom krpom, natrljani štapić

pokazuje svojstvo privlačenja sitnih predmeta, kao što su komadići papira. Sličan fenomen

iskazivanja privlačne sile pokazuje i stakleni štap natrljan svilenom krpom. Kao rezultat trenja

javlja se električna interakcija tj. električna sila koja može nadvladati silu gravitacije. Za

razliku od sile gravitacije koja je uvijek privlačna, rezultat električne interakcije

naelektriziranih tijela može biti privlačna ili odbojna sila. Na primjer, dva prethodno natrljana

staklena štapa međusobno se odbijaju. Temeljem spomenutih eksperimenata može se

zaključiti kako postoje dvije vrste naelektrisanja. Američki fizičar B. Frenklin smatrao je

elektricitet jedinstvenim fluidom koji je imanentan svakoj materiji i koji onda može prelaziti s

jednog tijela na drugo.Sa obzirom na tadašnja znanja zaključak je bio logičan, ali kako se

kasnije pokazalo, neispravan. Ne radi se o fluidu, nego je stvarni uzrok stvaranja statičkog

elektriciteta trenjem u unutrašnjoj strukturi materije. Frenklina ovde spominjemo, jer je uveo

pojmove pozitivnog i negativnog elektriciteta. Pri tom je smatrao da je tijelo pozitivno

elektrisano, ako mu je količina elektriciteta veća od normalne, odnosno negativno za količinu

elektriciteta manju od normalne. Eksperimenti pokazuju da sile izmedu električnih

opterećenja nisu iste kada opterćenja miruju i kada se kreću u odnosu na promatrača.

Najjednostavniji slučaj je kada sva opterećenja makroskopski miruju. (Naravno, na

mikroskopskoj skali takvo stanje ne postoji.). Dio fizike i elektrotehnike koji proučava

sisteme vremenski nepromjenljivih opterećenja na nepokretnim tijelima naziva se

elektrostatika. Elektrostatika je posebno područje elektrotehnike koje proučava međusobno

djelovanje električnih naboja u stanju mirovanja. U okviru elektrostatike postoje jednostavniji

i složeniji slučajevi. Najjednostavniji za razmatranje su slučajevi naelektrisanih provodnih

tijela koja se nalaze u vakumu (dakle, kada dielektrici nisu prisutni). Elektrostatika se temelji

na eksperimentalno utvrđenom inverznom kvadratnom zakonu. Do tog je zakona došao 1785.

god., nakon niza eksperimenata, francuski fizičar Coulomb.

26

Page 27: Zakoni u Elektrotehnici

21

5.2 ELEKTROSTATIČKA SILA KAO VEKTOR

Istoimeni električni naboji se djelovanjem elektrostatičke sile odbijaju, a naboji suprotnog

predznaka privlače. Elektrostatičku silu ne možemo opisati samo veličinom jer ona u prostoru

ima i svoj smjer te Coulombov zakon možemo izraziti i u vektorskom obliku:

gdje je r vektorom izražena udaljenost između dva naboja.

Slika 18. Elektrostatička sila između naboja

Izvor: https://hr.wikipedia.org/wiki/Coulombov_zakon#/media/File:CoulombsLaw.svg

Ovo je ustvari skalarna definicija Coulombovog zakona kojoj je dodan smjer po pravcu na

kojem leže točkasti naboji. Ako su naboji različitog predznaka, tada vektor pokazuje u smjeru

jednog naboja prema drugome, a ako su istog predznaka pokazuje u suprotnom

smjeru.Razmatramo li elektrostatičke sile u nekom dielektričkom materijalu, a ne vakuumu,

valja uzeti u obzir i relativnu dielektričku konstantu tvari u kojoj se nalaze naboji. Coulombov

27

Page 28: Zakoni u Elektrotehnici

21

zakon vrijedi za električne naboje u mirovanju. Ako se električni naboji gibaju, valja uzeti u

obzir i međusobni utjecaj magnetskih polja što proističe iz Maxwellovih jednadžbi.

28

Page 29: Zakoni u Elektrotehnici

21

6 JOULEOV ZAKON

James Prescott Joule (Salford, pored Manchestera, 24. prosinca 1818. - Sale, 11. listopada

1889.), engleski fizičar.

James Prescott Joule rođen je 24. prosinca 1818. godine u Salfordu, u Lancashireu u

Engleskoj. Bio je engleski fizičar. Proučavao je prirodu topline te je povezao s mehaničkim

radom. Tako je otkrio prvi zakon termodinamike - zakon o očuvanju energije. Zaključio je da

su različiti oblici energije mehanička, električka, toplina) u biti iste i samo mijenjaju oblike iz

jedne u drugu.Slika 19. James Prescott Joule

Izvor: https://upload.wikimedia.org/wikipedia/commons/d/da/James_Joule.jpg

1835. studirao je s engleskim kemičarom Johnom Daltonom[nedostaje izvor] na

sveučilištu u Manchesteru. Opisujući Jouleov zakon i proizvodnju topline iz galvanske

energije, utvrdio je da je toplina proizvedena strujom u vodiču srazmjerna umnošku otpora

vodiča i kvadrata struje. 1843. objavio je svoju jedinicu za količinu rada potrebnog za

proizvodnju jedinice topline, nazvanu mehaničkim ekvivalentom topline. Koristio je četiri

točne metode za određivanje te veličine. Koristeći razne materijale, utvrdio je da je toplina

oblik energije povezan sa materijalom koji je grijan.

1852. su Joule i William Thompson (kasnije lord Kelvin) otkrili da se izoliranom plinu sa

povećavanjem obujma smanjuje temperatura. Taj efekt je u toku 19. stoljeća zauzeo važno

29

Page 30: Zakoni u Elektrotehnici

21

mjesto u rashladnoj industriji. [nađimo bolji izraz] Joule je radeći s Thompsonom razvijao

razvijajući ljestvicu za temperaturu i otkrio je vezu između toka trenutnog rada kroz otpor i

toplinu, te se to danas zove Jouleov zakon.

Količina mehaničkog ekvivalenta toplini je općenito predstavljeno velikim slovom J, a

mjerna jedinica za energiju, džul (J) dobila je ime po njemu.

Joule je umro 11. listopada 1889. u Saleu, u Cheshireu.

6.1 JOULEOVA TOPLINA

Prolaskom električne struje kroz vodič otpora R, elektroni se ubrzavaju i sudaraju s

česticama materije, gubeći pri tom brzinu , kinetičku energiju. odbijaju se, mijenjaju smjer

kretanja, neki se čak i vraćaju. No, pod stalnim djelovanjem električnog polja elektroni će

ipak biti usmjeravani u jednom pravcu. Kako se energija prema Mayer-ovom zakonu ne može

uništiti, svakim sudarom elektroni izgubljenu kinetičku energiju predaju objektu s kojim se

sudaraju (čestica materije), pretvarajući tako električnu energiju u toplinu.

Dobivena količina toplinske energije može se izmjeriti i to tako da se s jedne strane mjere

toplinske veličine a s druge strane sve električne veličine. Uređaj za navedeno mjerenje zove

se Kalorimetrična bomba (slika 17).Slika 20. Kalorimetrična bomba

Izvor: Obrada autora

Prolaskom struje I kroz otpornik R stvara se toplina Q, koja će tekućinu u posudi zagrijati

za Du (°C). Prema zakonima termodinamike može se odrediti kolika je toplina Q što je od

otpornika R predana tekućini tokom vremena t dok je prolazila struja.

Uz prirast temperature Du, ako je masa tekućine m i specifične topline c, toplina Q se

može izračunati pomoću izraza:

30

Page 31: Zakoni u Elektrotehnici

21

Q = m• c • Du … (1)

Električnom strujnom krugu, prema slici 7, ampermetrom se mjeri jakost struje I,

voltmetrom privedeni napon U, a vrijeme prolaska struje t satom. Pokusi pokazuju da

proizvedena toplina Q ovisi direktno proporcionalno o naponu U, struji I i vremenu t, što se

može napisati kao:

Q = k • U • I • t … (2)

gdje je k faktor proporcionalnosti, koji služi da se brojčano povežu u jednadžbi veličine

različitih mjernih sustava.

Za slučaj da se toplina mjeri kalorijama (cal):

Q = 0,239 • U • I • t … (3)

Za slučaj da se toplina mjeri u džulim (J):

Q = U • I • t … (4)

Usporedbom (3) i (4) slijedi:

1 J = 0,239 cal … (5)

1 cal = 4,186 J … (6)

Ako se u jednadžbu (4), iskoristivši Ohmov zakon, uvrste izrazi za napon i struju,

dobivaju se slijedeći oblici jednog te istog fizikalnog zakona prema kojem se vrši pretvorba

električne energije u toplinu:

Q = U ∙ I ∙ t …(7)

Q = I2 ∙ R ∙ t …(8)

…(9)

31

Page 32: Zakoni u Elektrotehnici

21

U čast fizičara Joule-a taj se zakon naziva Jouleov zakon a tako, u otporu R, proizvedena

toplina naziva se Jouleova toplina.

Jednadžbe (8) i (9) opisuju da je proizvedena toplina Q u otporu R, ovisna o kvadratu

naponu U odnosno o kvadratu struje. Nelogičnost u jednadžbama od (7) do (9) može se

objasniti i tako da se jednadžbe (8) i (9) napišu na slijedeći način:

Q = I2∙R∙t = (I ∙ I) ∙ R ∙ t = I∙(I∙R)∙t = I∙U∙t … (10)

...(11)

Dakle, vidljivo je da se radi o istim jednadžbama.

Danas na tržištu postoji mnoštvo elektrotermičkih aparata koji električnu struju pomoću

ugrađenog elementa, grijača, pretvaraju u toplinu, kao što je to shematski prikazano na slici

7-3.Slika 21. Shematski prikaz pretvorbe električne energije u toplinsku

Izvor: Obrada autora

Da bi se pri prolazu struje I postigla tražena količina topline, otpor R treba biti

odgovarajućeg iznosa. Grijači osim što moraju biti od materijala sa velikim specifičnim

otporom, moraju biti otporni i na koroziju. To su najčešće legure od kroma i nikla (cekas,

kanthal), silicijeva karbida (silita) i dr.

32

Page 33: Zakoni u Elektrotehnici

21

7 ZAKLJUČAK

Elektrotehnika je područje tehnike koje se bavi svim aspektima elektriciteta. Tu spadaju

električna proizvodnja energije, prenos energije kao i sve vrste njene upotrebe. Počev sa

električnim mašinama, svim vrstama električnih sklopova, tehnike mjerenja i upravljanja,

računarske tehnike pa sve do telekomunikacione tehnike. Elektrotehnika nije samo inžinjerska

nauka koja tehničke procese proučava i upotrebljava već je i područje rada u mnogim

zanimanjima. Elektrotehniku definira mnoštvo teorema i zakona od kojih smo neke objasnili

u ovom radu i koji čine osnove elektrotehnike.

33

Page 34: Zakoni u Elektrotehnici

21

8 LITERATURA

1. http://hr.wikipedia.org/wiki/Coulombov_zakon

2. http://en.wikipedia.org/wiki/Charles-Augustin_de_Coulomb

3. https://hr.wikipedia.org/wiki/Gustav_Robert_Kirchhoff

4. http://www.elteh.net/projekti/Ohmov_zakon.html

5. Stanić Eugen; Osnove elektrotehnike (Zagreb 2007)

6. B. Jajac: „Teorijske osnove elektrotehnike“, svezak II, Istosmjerna struja,

7. Magnetizam,Graphis, Zagreb,2002.

8. V. Pinter: „Osnove elektrotehnike I dio“, sedmo izdanje, Tehnička knjiga,

Zagreb, 1989.

9. E. Šehović, M. Tkalić, I Felja: „Osnove elektrotehnike - zbirka primjera“, I dio,

peto izdanje, Školska knjiga, Zagreb,1992.

34

Page 35: Zakoni u Elektrotehnici

21

9 ILUSTRACIJE

Slika 1. Georg Simon Ohm............................................................................................5

Slika 2. Krug sa formulama Ohmovog zakona..............................................................6

Slika 3. Pad napona........................................................................................................7

Slika 4. Johann Carl Friedrich Gauß..............................................................................9

Slika 5. Primjer prikazivanja površine plohe vektorom...............................................11

Slika 6. Shematski prikaz toka vektora........................................................................12

Slika 7. Određivanje toka kroz zatvorenu plohu..........................................................13

Slika 8. Primjer određivanja polja primjenom Gaussova zakona.................................15

Slika 9. Prikaz primjene Gaussova zakona..................................................................16

Slika 10. Gustav Robert Kirchhoff.................................................................................17

Slika 11. Primjeri (protok vode u spoju nekoliko cijevi)...............................................18

Slika 12. Algebarska suma struja...................................................................................19

Slika 13. Primjer za 2 čvora iz prošlog primjera............................................................20

Slika 14. Primjer zatvorene petlje..................................................................................21

Slika 15. Padovi napona (i konvencija označavanja).....................................................22

Slika 16. Petlja 3.............................................................................................................22

Slika 17. Charles-Augustin de Coulomb........................................................................23

Slika 18. Elektrostatička sila između naboja..................................................................26

Slika 19. James Prescott Joule........................................................................................27

Slika 20. Kalorimetrična bomba.....................................................................................28

Slika 21. Shematski prikaz pretvorbe električne energije u toplinsku...........................30

35