ZVI Pentachlorophenol

Embed Size (px)

Citation preview

  • 8/17/2019 ZVI Pentachlorophenol

    1/9

    The reactivity of well-dispersed zerovalent iron

    nanoparticles toward pentachlorophenol in water

    Chih-ping Tso, Yang-hsin Shih* 

    Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106,

    Taiwan, ROC

    a r t i c l e i n f o

    Article history:

    Received 5 August 2014

    Received in revised form

    26 November 2014

    Accepted 23 December 2014

    Available online 30 December 2014

    Keywords:

    Pentachlorophenol (PCP)

    Ultrasonication

    Well-suspension

    Pd/Fe nanoparticles

    Anions

    a b s t r a c t

    In order to prevent the aggregation of nanoparticles (NPs), surface modification or the

    addition of a stabilizer are used for stabilization. However, the real reactivity of NPs is still

    unclear because of the surface coating. For different physical dispersion methods, the

    particle stabilization for nanoscale zerovalent iron (NZVI) particles and their reactivity are

    studied. The particle properties of different preparations and their reactivity toward one

    polychlorinated aromatic compound, pentachlorophenol (PCP), with different electrolytes

    are also evaluated. Ultrasonication (US) with magnetic stirring disperses NZVI and Pd/Fe

    NPs well in water and does not affect the surface redox property a lot under the operating 

    conditions in this study. The well-suspended NZVI cannot dechlorinate PCP but adsorption

    removal is observed. Compared to shaking, which gives limited removal of PCP (about 43%),

    Pd/Fe NPs remove 81% and 93% of PCP from water in the US and the US/stirring systems,

    respectively, which demonstrates that a greater surface area is exposed because of effec-

    tive dispersion of Pd/Fe NPs. As the Pd doping increases, the dechlorination kinetics of PCPis improved, which shows that a catalyst is needed. With US/stirring, chloride ions do not

    significantly affect the removal kinetics of PCP, but the removal efficiency increases in the

    presence of nitrate ions because PCP anions were adsorbed and coagulated by the greater

    amount of iron (hydro)oxides that are generated from the reduction of nitrate on Pd/Fe.

    However, bicarbonate ions significantly block the adsorption and reaction sites on the Pd/

    Fe NP surface with US/stirring. The US/stirring method can be used to evaluate the actual

    activity of NPs near the nanoscale. The use of Pd/Fe NPs with US/stirring removes PCP from

    water effectively, even in the presence of common anions expect a high concentration of 

    bicarbonate.

    © 2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    Pentachlorophenol (PCP) is widely used throughout the world

    in disinfectants, biocides, wood preservatives and pesticides.

    Therefore, PCP can be found in the air, surface water, soil, and

    groundwater aquifers because of its environmental stability

    (Goerlitz et al., 1985; Mannisto et al., 2001). An old shutdown

    PCP factory in An-shun area of Taiwan is a seriously PCP-

    contaminated site with a high PCP concentration ranging 

    from 0.312 mg kg 1 to 110 mg kg 1 in the soil (Thuan and

    Chang, 2012). PCP is a priority pollutant because of its

    *   Corresponding author. Tel./fax:  þ886 2 33669443.E-mail address: [email protected] (Y.-h. Shih).

     Available online at www.sciencedirect.com

    ScienceDirect 

    j o u r n a l h o m e p a g e :   w w w . e l s e v i er . c o m / l o c a t e / wa t r e s

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0

    http://dx.doi.org/10.1016/j.watres.2014.12.038

    0043-1354/© 2014 Elsevier Ltd. All rights reserved.

    mailto:[email protected]://www.sciencedirect.com/science/journal/00431354http://www.elsevier.com/locate/watreshttp://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://www.elsevier.com/locate/watreshttp://www.sciencedirect.com/science/journal/00431354http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2014.12.038&domain=pdfmailto:[email protected]

  • 8/17/2019 ZVI Pentachlorophenol

    2/9

    carcinogenicity and toxicity (Morales et al., 2014; Duan et al.,

    2008; Zhu and Shan, 2009). However, the remediation

    methods for PCP have been found to be inefficient mainly due

    to its adsorption characteristics (Lindsey and Tarr, 2000).

    Some of the intermediate products during the decomposition

    of PCP, such as polychlorinated dibenzo- p-dioxins and poly-

    chlorinated dibenzofurans in the environment, may be more

    toxic than the original PCP (Harnly et al., 2000). In the pastdecade, abiotic dechlorination using granular zerovalent iron

    (ZVI) particles has garnered much interest (Su et al., 2012), but

    the transformation of chlorinated organic compounds using 

    granular ZVI is slow and may not be complete (Morales et al.,

    2002).

    Nanoscale ZVI (NZVI) particles can remove several toxic

    chemicals more promptly as compared to microscale ZVI

    (MZVI) because they have a higher surface area than MZVI

    (Tratnyek and Johnson, 2006; Shih and Tai, 2010). Compared

    with NZVI, the bimetallic Fe nanoparticles (NPs) have exhibi-

    ted higher potential for the dehalogenation of many haloge-

    nated aromatic compounds (Shih et al., 2009; Wang et al.,

    2013; Zhao et al., 2014), especially Pd/Fe NPs can degrade PCP(Shih et al., 2011). However, it is difficult to maintain the sta-

    bility of Fe NPs in their original size during the reactions.

    When Fe NPs aggregate and precipitate, their mobility and

    reactivity in the environment are significantly reduced

    (Glavee et al., 1995; He and Zhao, 2007). The aggregation of Fe

    NPs depends upon their physical and chemical properties,

    such as the size, the dosage and their surface characteristics,

    as well as on the other chemical species in water (e.g., salinity,

    solution composition, and the solution pH) (Mylon et al., 2004;

    Yang et al., 2007; Hu et al., 2010). Therefore, various chemical

    and physical dispersion methods have been proposed to pre-

    vent the aggregation of metallic nanoparticles (Wang et al.,

    2013; Zhao et al., 2014; Dong and Lo, 2013; Kaifas et al., 2014;Xie et al., 2014; Yang et al., 2014; Soukupova et al., 2015).

    Chemical dispersion methods involve the use of solution

    additives and surface modifiers such as adding carboxymethyl

    cellulose, poly(methyl methacrylate), poly(ethylene glycol),

    Tween 80, and chitosan (He and Zhao, 2007; Kaifas et al., 2014;

    Soukupova et al., 2015; Parshetti and Doong, 2009; Wang and

    Zhou, 2010; Kustov et al., 2011). These stabilizer molecules

    provide inter-particle electrostatic forces and steric repulsion,

    which are strong enough to overcome the interfacial forces

    (He and Zhao, 2007; Harendra and Vipulanandan, 2008; He and

    Zhao, 2005; Sakulchaicharoen et al., 2010). Although the

    amendments can enhance the colloidal stability, they alter

    the surface properties of NPs and affect their interaction withcontaminants (Kim et al., 2009; Phenrat et al., 2007; Tiraferri

    et al., 2008). Modifiers can also affect the sorption and

    desorption of contaminants so they limit the reaction rates of 

    the reactions that occur at the iron surface (Phenrat et al.,

    2009).

    However, different physical techniques, including high-

    energy ball milling, magnetic stirring, shaking and ultra-

    sonication (US), are also used to disperse metal NPs ( Xing,

    2004; Imamura et al., 2005; Mondragon et al., 2012; Lowry

    and Reinhard, 2001; Dickson et al., 2012; Lai et al., 2013). Of 

    these methods, US efficiently breaks down the parti-

    cleeparticle interactions of nano-sized Fe NPs without the

    need for synthetic modifiers (Dickson et al., 2012; Liang et al.,

    2008; Rasheed et al., 2011). Moreover, using sonication irradi-

    ation, nanoparticles with hydrodynamic diameters smaller

    than 150 nm remain in suspension for more than 7 days

    (Dickson et al., 2012). However, the collapse of cavitation

    bubbles may also allow the formation of oxidizing species,

    superoxide radicals, and hydrogen peroxide during ultrasonic

    irradiation (Chen et al., 2011; Hou et al., 2012). US could not

    only disperse nanoparticles, but also could alter the surfacecharacteristics of Fe NPs, which might further affect the re-

    action efficiency. Therefore, the mechanisms of NZVI with

    ultrasound could be complicated in the degradation of organic

    compounds.

    Electrolytes that are dissolved in the environment are an

    important influencing factor on the reactivity of Fe aggregates

    (Phenrat et al., 2007; Giasuddin et al., 2007; Shih et al., 2010;

    Wang and Zhang, 1997) because they interact with ferrous

    and ferric ions to form iron oxides or hydroxides on the iron

    surface. The formation of passive layers on the surface of ZVI

    causes a rapid decrease in the activity because it inhibits ac-

    cess for target compounds to the active sites (Agrawal et al.,

    2002; Kober et al., 2002). There have been many studies of the effect of anions on the removal reactions by Fe NPs, but

    there has been little study of the performance of well-

    suspended Fe NPs in the presence of anions. The aims of 

    this study are to investigate the feasibility of removing PCP

    using well suspended Fe NPs under different physical

    dispersion methods, to understand the reaction mechanisms

    of Fe NPs assisted with ultrasonication, and to evaluate the

    effect of common anions (chloride, nitrate and bicarbonate)

    on the Fe NPs at close to nanoscale.

    2. Materials and methods

    2.1. Chemicals

    Pentachlorophenol (PCP) was purchased from Sigma. Ferrous

    sulfate heptahydrate, sodium chloride, sodium nitrate, so-

    dium hydroxide, methanol,   n-hexane and hydrochloric acid

    were obtained from J. T. Baker. Sodium borohydride was

    purchased from Shiyaku Kogyo Co. Ltd., Japan. Potassium

    hexachloropalladate (IV) was provided by Acros. Sodium bi-

    carbonate was purchased from Riedel-deHa€en. Chlorophenol

    standard (DIN EN 12673 chlorophenols) including 19 chlor-

    ophenols was purchased from Supelco (USA). All organic  sol-

    vents used  for the study  were  of   analytical grade. All solutions

    were made in water that was purified using a Milli-Q system(18.2 MU /cm).

    2.2. The synthesis of Fe bimetallic nanoparticles

    NZVI particles and Pd/Fe bimetallic (Pd/Fe) nanoparticles were

    chemically synthesized in an anaerobic chamber (Coy Lab)

    and used immediately. An aqueous solution of ferrous sulfate

    was reduced, using sodium borohydride at a molar ratio for

    BH4 /Fe2þ of 2.0, with vigorous stirring (14,000 rpm) at ambient

    temperature. The obtained black nanoparticle suspension

    was filtered through a 0.45   mm membrane and then washed

    with pH 4 sulfuric acid and deionized water several times to

    remove the residual reagents and salts. Pd/Fe NPs were

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0   373

    http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038

  • 8/17/2019 ZVI Pentachlorophenol

    3/9

    synthesized by injecting potassium hexachloropalladate (IV)

    solution into fresh NZVI suspension under the anaerobic

    condition. After synthesis, the concentration of Pd ions in

    solution decreased from 16.4 mg/L to 0.06 mg/L, that is, over

    99% of Pd ions were deposited and reduced on NZVI surface.

    The Pd/Fe NPs were then rinsed several times with deionized

    and deoxygenated ultrapure water to remove chloride ions.

    The concentrations of Fe and Pd were quantified using aninductively coupled plasma spectrophotometer (ICP). The

    hydrodynamic particle size of the suspended nanoparticles

    was measured by dynamic light scattering   (DLS) (Nano-ZS,

    Malvern). The atomic and molecular structures of the crystals

    of the Pd/Fe NPs were determined using X-ray diffraction

    (XRD, National Synchrotron Radiation Research Center,

    Taiwan). During XRD analysis, these nanoparticle samples

    were stored in plastic bags with their original solutions.

    2.3. Dispersion techniques

    The PCP stock solution was prepared by dissolving PCP in

    methanol/water (1:200, v/v) as the stock solution and this was

    stored at 4   C. In order to compare the different dispersion

    techniques, a shaker (LM-530R, YIH DER), a magnetic stirrer

    (PC-420D, Corning), an US probe (Ultrasonic 250, HOYU), as

    well as a combination of a magnetic stirrer and an US probe

    (US/stir) were used to disperse Fe nanoparticles.

    For shaking, the batch reactions were conducted in 5 mL

    amber vials, sealed with Teflon-lined septa. Each vial con-

    tained2 mL of PCP stocksolution, 2.5mL of Fe NPs suspension,

    and around 0.5 mL deoxygenated ultrapure water to eliminate

    headspace, which was prepared in the anaerobic chamber. An

    orbital shaker operating at 150 rpm was used. For the US

    (23 kHz and a rated output power of 250 W) and US/stirring 

    systems, all of the time-dependent experiments were per-

    formed in the anaerobic chamber. The removal rates of PCP

    increased with an increase in output intensity of US from 0 to

    75 W, accompanied with a decrease in hydrodynamic particle

    size of Pd/Fe NPs (Figure S1). However, the increase of US

    output intensity from 75 W to 250 W did not significantly

    enhance the removal but increased the particle size. The

    output intensity of the US probe about 30% of 250 W (i.e. 75 W)

    was chosen in this study. The 10 mL of PCP stock solution and

    12.5 mL Fe NPs suspension were placed in a 100 mL beaker,

    which was covered with aluminum foil in a water bath and

    maintained at a constant temperature of 25   C during soni-

    cation. The initial concentration of the PCP in all reactors was5.0 mg/L. The Fe dosage for all the experiments quantified

    using ICP was 4.5 g L1. The setting for the US/stirring system

    is shown in Scheme 1. The magnetic stirring rate was 120rpm.

    The solution pH and the reduction potential were monitored

    during these reactions.

    The effectof nanoparticle dosage, Pd loading andanionson

    the removal of PCPby well-suspended Fe NPs wasdetermined.

    Individual solutes of three common anions were used in so-

    dium form (i.e. chloride, nitrate and bicarbonate) without a

    buffer.

    2.4. Analytic methods

    The concentration of PCP was quantified using high perfor-

    mance liquid chromatography (HPLC, Agilent 1200) with a UV/

    Vis detector and gas chromatography (GC, Agilent 6890) with a

    micro-electron capture detector or mass spectrometer (Agi-

    lent 5975B). The mobile phase was a mixture of methanol and

    1% H3PO4  (80:20 v/v) at a flow rate of 1.0 mL min1 and the

    wavelength was set at 254 nm for PCP analysis. The GC was

    equipped with an HP-5 column (30m 0.25 mm, 0.25 mm film).

    The carrier gas was ultra-high-purity N2  of 99.999% and the

    flow rate was 60 cm/s. The injector temperature was 250  C,

    the oven temperature was maintained at 80  C for 2 min and

    then increased at 7   C/min to 280   C, at which temperature

    was maintained for 5 min. The detector temperature was

    320  C. For byproduct analysis, chlorophenols were separated

    using a GC program with an initial temperature of 60   C for

    2 min, ramping at 20  C/min to 140   C with 0.5 min holding,

    1   C/min to 150   C with 0.5 min holding, and 15   C/min to

    300  C with 3 min final holding time. The flow rate was 30 cm/

    s. The anion concentrations (chloride and nitrate) in the so-

    lutions were monitored using ion chromatography (IC, Met-

    rohm, Switzerland) after filtering through a 0.22   mm filter

    (Minisart, non-pyrogenic).

    2.5. Kinetic experiments

    At selected time intervals, aliquots were withdrawn using a

    magnet to separate the Fe nanoparticles. The ratio of the final

    aqueous PCP concentration to its initial concentration is

    defined as the   residual fraction. The removal rate constant is

    described by a pseudo-first order reaction.

    Ct  ¼ C0ekt (1)

    where C0 and Ct are the initial concentration (mg L1) and the

    concentration at reaction time t (min), in theaqueous phase of 

    the reacted vial, and k  is the measured rate constant (min1).

    The Pd/Fe particles were dried and extracted with hexane

    and concentrated HCl, until there was no PCP residue in the

    extract. This was then used to determine whether PCP and its

    Scheme 1  e  Schematic of the main experimental setup

    employed in the present study.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0374

    http://-/?-http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://-/?-

  • 8/17/2019 ZVI Pentachlorophenol

    4/9

    derivatives had been adsorbed on the Fe surface. The ratio of 

    the measured adsorbed PCP concentration to its initial con-

    centration is defined as the adsorption fraction. The degradation

    efficiency is calculated by subtracting the initial PCP from the

    residual and the adsorption PCP fractions.

    Removal efficiencyð%Þ ¼

    C0 C final

    C0 100 (2)

    Degradation efficiencyð%Þ ¼

    C0 adsorption fraction C final

    C0 100

    (3)

    where   C final   is the final PCP concentration (mg L1) in the

    aqueous phase.

    Dechlorination efficiency can be expressed as the ratio of 

    the measured chloride concentration (MCl , mM) to the theo-

    retical chloride concentration (MCl

    0, mM) from the complete

    dechlorination of PCP.

    Dechlorination efficiencyð%Þ ¼ MCl

    5 MCl  0 100 (4)

    3. Results and discussion

    3.1. The removal of PCP using different iron NPs for

    different dispersion systems

    The range of the particle sizes for the synthesized NZVI and

    Pd/Fe NPs was 50e100 nm shown in the TEM images

    (Figure S2); however, the hydrodynamic particle sizes of these

    two nanoparticles in aqueous solutions were more than 10 mm

    (about 34  mme58  mm) measured by DLS. Because of the mag-

    netic attractive force and the van der Waals forces between

    these iron NPs, they tend to from aggregates in solution

    (Giasuddin et al., 2007; Shih et al., 2010; Wang and Zhang,

    1997). Four different dispersion methods were used to sus-

    pend particles in solution, but the size remained on the

    microscale except for the ultrasonic method. The average

    particle size of the Pd/Fe NPs decreased from the microscale

    (34  mm) to the nanoscale (123 nm) after US for 60 min ( Fig. 1).

    The same trend was observed for NZVI. Since Pd/Fe NPs were

    generated from NZVI, more aggregates of Pd/Fe NPs could

    form during their synthesis, which might result in the larger

    particle size of Pd/Fe NPs than NZVI after ultrasonication. An

    ultrasonic probe has also been used to disperse other metal

    nanoparticle aggregates to a small particle size (Tso et al.,

    2010).

    In order to determine the effect of well-suspended Fe NPson the removal of PCP, comparative experiments were per-

    formed for the four different dispersion methods: the

    shaking, the stirring, the US and the US/stirring system. No

    obvious PCP removal was noted for NZVI in a shaking system.

    PCP was removed using NZVI in the US system, but no

    chloride ions were measured, which showed that no

    dechlorination occurred, as shown in   Figure S3   (discussed

    later). Obviously, PCP is not removed in the US system, which

    shows that the US power used in this study does not elimi-

    nate PCP.  Fig. 2a shows the results for the removal experi-

    ments that were conducted under the same operating 

    conditions of a temperature of 25   C, an initial pH value of 

    about 6.7, an iron dosage of 4.5 g L1 and a Pd loading of 0.1%(w/w). Using US dispersion in both the US and the US/stirring 

    systems, Pd/Fe NPs were well dispersed in aqueous solutions

    (Figure S4) and the reactant molecules were not removed.

    The average particle size is 295  ±  176 nm during the irradi-

    ation time.

    In the presence of Pd/Fe NPs, the PCP removal efficiency

    was only around 43% and 74% for the shaking system and the

    stirring system after 1 h but 81% and 93% for the US and the

    US/stirring systems, respectively (Fig. 2a). The removal rates

    for PCP for the shaking, thestirring, the US and the US/stirring 

    systems were 0.01, 0.05, 0.06 and 0.13 min1, respectively. The

    adsorption fractions of PCP for the US, thestirring,and the US/

    stirring systems were about 70%, 64%, and 73%, which weremuch higher than that for the shaking system (12%) (Fig. 2b).

    When large NP aggregates become smaller, there is more

    surface area for the reaction. Using the US probe, Pd/Fe NPs

    revert to a nanoscale size so there are more active sites than

    nano-aggregates. The increased removal of PCP in US systems

    Fig. 1 e

     DLS results of NZVI and Pd/Fe nanoparticles under US probe irradiation.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0   375

    http://-/?-http://-/?-http://-/?-http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://-/?-http://-/?-http://-/?-

  • 8/17/2019 ZVI Pentachlorophenol

    5/9

    is due to an increase in PCP adsorption on the Pd/Fe NP

    surface.

    Several dechlorination products (2,3,4,5-tetrachlorophenol

    (TeCP), 2,3,4,6-TeCP, 2,3,4-trichlorophenol (TCP), and 3,4,5-

    TCP) were identified in the US/stirring system. Three

    byproducts (2,3,4,5-TeCP, 2,4,5-TCP, and 3,4,5-TCP) were

    detected in the stirring system; however, only 2,3,4,5-TeCP

    were found in the shaking system, which indicated furtherdechlorination occurred in other systems but not in the

    shaking system although it had more degradation of parent

    compound, PCP.

    3.2. The removal mechanism for PCP using Pd/Fe NPs in

    US dispersion systems

    The XRD spectra for the Pd/Fe NPs, before and after irradiation

    with US, are shown in Fig. 3. A weak peak at 44, representing 

    the crystal structure of zerovalent iron, and some peaks for

    iron (hydro)oxides were observed for our synthesized Pd/Fe

    nanoparticles. It might be because the zerovalent iron wasamorphous, oxidized by the reduction process of Pd ions by

    NZVI surface, or oxidized during the specimen preparation for

    XRD. No significant increase in oxidized metals was observed

    in a comparison of the XRD spectra for Pd/Fe before and after

    US irradiation. This demonstrates that the reactive oxygen

    species(ROS) that are generated by cavitation under US do not

    affect the character of the Pd/Fe surface. In general, an in-

    crease in the power and duration of US results in the gener-

    ation of more ROS, due to cavitation (Hou et al., 2012).

    However, under the operating conditions in this study, cavi-tation does not destroy PCP (Fig. 2a) and seems not to modify

    the Pd/Fe nanoparticle surface.

    Using US, the removal rates for PCP are accelerated by

    adsorption because there is good dispersion of Pd/Fe for both

    the US and the US/stirring systems shown in  Scheme S1. Fe

    particles in natural water are almost charged because there

    are Fe (hydro)oxides on the iron surface that can be ionized.

    This surface charge is opposite in sign to that of the existing 

    ionized PCP (pka ¼ 4.75), in common neutral pH, so there is an

    electrostatic attraction between the PCP anions in solution

    and the generally positive Fe hydroxides on the Pd/Fe nano-

    particle surface (Scheme S2). The same interactive force at-

    tracts PCP anions and chlorides that are released from PCPnear a positively charged Fe surface in water. The adsorption

    of PCP on the Pd/Fe NPs surface also increases when the

    particle size decreases, for systems using US.   Kim and

    Carraway (2000) also noted that PCP losses occur because of 

    strong sorption on ZVI and bimetallic ZVI, rather than by

    dechlorination.

    3.3. The effect of Pd doping on the removal of PCP using

    well-dispersed Fe NPs

    The addition of Pd onto iron nanoparticles increased the

    removal rate and the degradation of PCP as compared to NZVI

    (Fig. 4a). For the US/stirring system, when the Pd loading 

    increased from0 % to 0.2 %, the removal rate constants for PCP

    generally increased from 0.038 to 0.14 min1. For the US/stir-

    ring system, more than 90% PCP was removed after 40 min

    with different amounts of Pd doping. Most of the PCP was

    adsorbed on the Pd/Fe surface and only 12% of PCP was

    degraded in the presence of 0.05% Pd (Fig. 4b). When the Pd

    doping increased to 0.2%, the degradation faction of PCP

    Fig. 2 e (a) Removal reactions of PCP with Pd/Fe NPs under

     various suspended system and (b) the degradation,

    adsorption, and residual fractions of PCP reacted with Pd/ 

    Fe. PCP initial concentration was 5 mg/L, Pd/Fe dosage was

    4.5 g L¡1 and Pd content was 0.1% (w/w).

    Fig. 3 e XRD spectra of Pd/Fe nanoparticles and those after

    reactions under various conditions.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0376

    http://-/?-http://-/?-http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://-/?-http://-/?-

  • 8/17/2019 ZVI Pentachlorophenol

    6/9

    increased to around 30% but the adsorption fraction

    decreased to 75%. Obviously, the increase of Pd doping can

    enhance the degradation.

    From the measurement of chloride ions, the dechlorination

    rate constants and dechlorination efficiencies for PCP for Pd/

    Fe NPs with different Pd contents are shown in  Fig. 5. When

    the Pd loading increased from 0.05 % to 0.2 %, the dechlori-

    nation rate constants for PCP increased from 0.0024 to0.0064 min1 (Fig. 5a), which were calculated from the gener-

    ation of chloride and the pseudo-first order kinetics. Since no

    significant dechlorination of PCP is observed for zerovalent

    iron NPs, even with US irradiation (Fig. 5b), the well-dispersed

    Fe NPs remove PCP by adsorption onto the iron surface. There

    is also a strong linear relationship between Pd doping and the

    dechlorination efficiency (R2 is 0.968) of well dispersed Pd/Fe

    NPs. The dechlorination of PCP increased from 12 to 30 %

    when Pd loading increased from 0.05 % to 0.2 %. When the Pd

    loading increases, more hydrogen, which is generated during 

    the corrosion of iron, is adsorbed onto the Pd and increases

    the reactivity (Cheng et al., 1997). The process of iron oxidation

    is also accelerated by the galvanic contact between Pd andiron (Cheng et al., 1997; Yan et al., 2010; Cwiertny et al., 2006).

    Both of these effects result in the increased dechlorination of 

    PCP.

    3.4. The effect of anions on the removal of PCP using Pd/ 

    Fe NPs

    The effect of anions on the removal of PCP, using well-

    dispersed Pd/Fe NPs, is determined using three common

    electrolytes  e  NaCl, NaNO3   and NaHCO3  e   in a US/stirring 

    dispersion system (Fig. 6a). In the presence of chloride, the

    removal rate for PCP increased slightly from 0.12 min1 to0.16 min1 when the chloride concentration increased from

    5 mMto 10 mM, which comparedto 0.099min1 forpure water

    (Fig. 6), but the dechlorination efficiency did not increase,

    compared to that for pure water (Fig. 7). In general, chloride

    promotes corrosion and increases the reactivity of granular

    iron toward chlorinated compounds (Devlin and Allin, 2005;

    Gotpagar et al., 1999; Johnson et al., 1998). However, in this

    dispersion system, chloride does not significantly affect the

    reaction rate or the degradation efficiency.

    For nitrate, the removal rate constants increased from 0.26

    to 0.54 min1, when the concentration of nitrate was raised

    from 5 mM to 10 mM, and most of the PCP was removed in the

    presence of nitrate (Fig. 6). Compared to pure water and otheranion systems, the presence of nitrate accelerated the ki-

    netics. However, nitrate generally inhibits the reduction

    power of zerovalent iron nanoparticles, because it competes

    Fig. 4 e   (a) Removal reactions of PCP with Pd/Fe NPs with

     various Pd dosage in the US/stirring system and (b) the

    degradation, adsorption, and residual fractions of PCP

    reacted with Pd/Fe. PCP initial concentration was 5 mg L¡1

    and Fe dosage was 4.5 g L¡1.

    Fig. 5  e  Effect of Pd dosage on (a) the dechlorination

    reaction rates and (b) dechlorination efficiencies of PCP by

    Pd/Fe nanoparticles under US/stirring system. PCP initial

    concentration was 5 mg L¡1 and Fe dosage was 4.5 g L¡1.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0   377

    http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038

  • 8/17/2019 ZVI Pentachlorophenol

    7/9

    with chemicals that have a high oxidation state, such as

    halogenated compounds. Since nitrate obtains electrons from

    the iron surface and reduces them to nitrite and ammonia,

    using iron powder (Alowitz and Scherer, 2002) and NZVI (Shih

    et al., 2009), the concentrations of nitrate, nitrite and ammo-

    nium were measured. Over 99% of the nitrate was trans-

    formed by Pd/Fe NPs and about 72% and 63% of these

    transformed nitrate ions were further reduced to ammonium

    the presence of 5 mM and 10 mM nitrate, respectively. This

    result demonstrates that nitrate is reduced by Pd/Fe NPs,

    during the degradation of PCP. The reduction of nitrate by iron

    is also a corrosive process, which causes more iron (hydro)

    oxides to form a film on the iron surface. In the XRD analysis

    (Fig. 3), the specific peaks for zerovalent metals almost dis-

    appeared and more peaks for iron oxides were found than for

    other treatments. In particular, magnetite (Feþ2Fe2þ

    3O4) was

    observed on the Pd/Fe nanoparticle surface in the presence of nitrate. Fig. 7 shows that the adsorption fraction for PCP in the

    presence of nitrate (about 89%) is the highest among these

    anions. This result is consistent with the nitrate trans-

    formation and the XRD observation and only around 10% is

    degraded by Pd/Fe NPs. Since the electrochemical reduction of 

    PCP is mediated in the range, 1.6 to 2.3 V (Ross et al., 1997;

    Lin and Tseng, 1999), which is higher than the reduction po-

    tential of nitrate (0.88 V), the Pd/Fe surface reacts with the

    nitrate first and generates iron (hydro)oxides. The fast

    removal kinetics is mainly due to the adsorption or coagula-

    tion of PCP on these iron oxides.

    In the presence of bicarbonate, the removal rate for PCP

    was significantly reduced in the same dispersion system asthat used for the anions (Fig. 6). When the bicarbonate con-

    centration increased from 0 to 10 mM, the reaction rate con-

    stant decreased from 0.099 to 0.023 min1 and the removal

    efficiency after 40 min decreased from 96 to 46 % (Fig. 6a). The

    degradation and adsorption fractions were less than those for

    other anions and that for pure water (Fig. 7), which demon-

    strated that bicarbonate blocks the reactive and attachment

    sites for PCP on the Pd/Fe surface. However, no significant

    peaks for metal oxides on Pd/Fe surface were observed (Fig.3).

    These inneresphere complexes form passivation layers that

    inhibit the adsorption and degradation of PCP by Pd/Fe

    nanoparticles (Phenrat et al., 2007; Agrawal et al., 2002; Kober

    et al., 2002). The solution pH also increased from 5.4 to 8.9 inthe presence of 10 mM bicarbonate. Because the chemical

    reduction of polychlorinated aromatic compounds by NZVI

    favors acidic conditions (Shih et al., 2009), this high solution

    pH, buffered by hydrogen carbonate, significantly decreases

    the rate of degradation PCP by Pd/Fe NPs.

    4. Conclusions

    The effect of physically mixing zero-valent iron nanoparticles,

    with or without Pd, on the removal of PCP by Pd/Fe NPs is

    studied. The US/stirring system, suspends NZVI andPd/Fe NPs

    most effectively of anyof the dispersion methods, at about thenanoscale. Since NP aggregates become smaller, most of the

    PCP is removed by adsorption onto the iron surface because

    there is a larger surface area. Under the operating conditions,

    US does not degrade PCP, even with NZVI, and does not affect

    the surface characteristics of Pd/Fe. When the Pd doping on

    the Pd/Fe NPs increases, the dechlorination kinetics for PCP

    increases in the US/stirring system. The actual activity of well-

    suspended Pd/Fe NPs is evaluated for different electrolytes

    that are commonly found in treatment systems. In the pres-

    ence of common anions, nitrate ions are reduced by well-

    suspended Pd/Fe NPs and more (hydro)oxides are generated,

    which increases the adsorption or coagulation of PCP from

    water, while chloride ions only cause a slight increase in the

    Fig. 6 e  (a) Effect of anions on the removal of PCP by Pd/Fe

    under US/stirring. (b) The relation between the reaction

    rate constants and anions. PCP initial concentration was

    5.0 mg/L, iron dosage was 4.5 g/L, and Pd content was 0.1%.

    Fig. 7 e The degradation, adsorption, and residual fractions

    of PCP reacted with Pd/Fe in the presence of anions under

    US/stirring system after 40 min.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0378

    http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038

  • 8/17/2019 ZVI Pentachlorophenol

    8/9

    removal kinetics. However, bicarbonate significantly inhibits

    the removal of PCP because bicarbonate could form com-

    plexes with metal cations from Pd/Fe and then precipitate on

    the iron surface, which blocks the adsorption and reaction

    sites. These better understandings of the real activity and

    removal mechanisms of well-dispersed Pd/Fe as well as the

    common ion effect can facilitate the application of NPs in

    water treatments and the environmental remediation.

    Acknowledgments

    The authors gratefully acknowledge the financial support of 

    the Ministry of Science and Technology of Taiwan, R. O. C.

    (Contract 101-2313-B-002-035-MY3).

    Appendix A. Supplementary data

    Supplementary data related to this article can be found athttp://dx.doi.org/10.1016/j.watres.2014.12.038.

    r e f e r e n c e s

    Agrawal, A., Ferguson, W.J., Gardner, B.O., Christ, J.A.,Bandstra, J.Z., Tratnyek, P.G., 2002. Effects of carbonate specieson the kinetics of dechlorination of 1,1,1-trichloroethane byzero-valent iron. Environ. Sci. Technol. 36 (20), 4326e4333.

    Alowitz, M.J., Scherer, M.M., 2002. Kinetics of nitrate, nitrite, andCr(VI) reduction by iron metal. Environ. Sci. Technol. 36 (3),299e306.

    Chen, B., Wang, X., Wang, C., Jiang, W., Li, S., 2011. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron. Ultrason. Sonochem. 18 (5), 1091e1096.

    Cheng, I.F., Fernando, Q., Korte, N., 1997. Electrochemicaldechlorination of 4-chlorophenol to phenol. Environ. Sci.Technol. 31 (4), 1074e1078.

    Cwiertny, D.M., Bransfield, S.J., Livi, K.J.T., Fairbrother, D.H.,Roberts, A.L., 2006. Exploring the influence of granular ironadditives on 1,1,1-trichloroethane reduction. Environ. Sci.Technol. 40 (21), 6837e6843.

    Devlin, J.F., Allin, K.O., 2005. Major anion effects on the kineticsand reactivity of granular iron in glass-encased magnet batchreactor experiments. Environ. Sci. Technol. 39 (6), 1868e1874.

    Dickson, D., Liu, G.L., Li, C.Z., Tachiev, G., Cai, Y., 2012. Dispersionand stability of bare hematite nanoparticles: effect of 

    dispersion tools, nanoparticle concentration, humic acid andionic strength. Sci. Total Environ. 419, 170e177.

    Dong, H., Lo, I.M.C., 2013. Influence of calcium ions on thecolloidal stability of surface-modified nano zero-valent iron inthe absence or presence of humic acid. Water Res. 47 (7),2489e2496.

    Duan, Z., Zhu, L., Zhu, L., Kun, Y., Zhu, X., 2008. Individual and joint toxic effects of pentachlorophenol and bisphenol A onthe development of zebrafish (Danio rerio) embryo. Ecotoxicol.Environ. Saf. 71 (3), 774e780.

    Giasuddin, A.B.M., Kanel, S.R., Choi, H., 2007. Adsorption of humicacid onto nanoscale zerovalent iron and its effect on arsenicremoval. Environ. Sci. Technol. 41 (6), 2022e2027.

    Glavee, G.N., Klabunde, K.J., Sorensen, C.M., Hadjipanayis, G.C.,1995. Chemistry of borohydride reduction of Iron(Ii) and

    Iron(Iii) ions in aqueous and nonaqueous media e

     formation

    of nanoscale Fe, Feb, and Fe2b powders. Inorg. Chem. 34 (1),28e35.

    Goerlitz, D.F., Troutman, D.E., Godsy, E.M., Franks, B.J., 1985.Migration of wood-preserving chemicals in contaminatedgroundwater in a sand aquifer at Pensacola, Florida. Environ.Sci. Technol. 19 (10), 955e961.

    Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E.,Bhattacharyya, D., 1999. Reductive dehalogenation of 

    trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 15 (24),8412e8420.

    Harendra, S., Vipulanandan, C., 2008. Degradation of highconcentrations of PCE solubilized in SDS and biosurfactantwith Fe/Ni bi-metallic particles. Colloids Surf. A Physicochem.Eng. Asp. 322 (1e3), 6e13.

    Harnly, M.E., Petreas, M.X., Flattery, J., Goldman, L.R., 2000.Polychlorinated dibenzo-p-dioxin and polychlorinateddibenzofuran contamination in soil and home-producedchicken eggs near pentachlorophenol sources. Environ. Sci.Technol. 34 (7), 1143e1149.

    He, F., Zhao, D.Y., 2005. Preparation and characterization of a newclass of starch-stabilized bimetallic nanoparticles fordegradation of chlorinated hydrocarbons in water. Environ.

    Sci. Technol. 39 (9), 3314e

    3320.He, F., Zhao, D.Y., 2007. Manipulating the size and dispersibility of 

    zerovalent iron nanoparticles by use of carboxymethylcellulose stabilizers. Environ. Sci. Technol. 41 (17), 6216e6221.

    Hou, L.W., Zhang, H., Xue, X.F., 2012. Ultrasound enhancedheterogeneous activation of peroxydisulfate by magnetitecatalyst for the degradation of tetracycline in water. Sep. Purif.Technol. 84, 147e152.

    Hu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J., Jin, Y., 2010. Effectof dissolved organic matter on the stability of magnetitenanoparticles under different pH and ionic strengthconditions. Sci. Total Environ. 408 (16), 3477e3489.

    Imamura, H., Masanari, K., Kusuhara, M., Katsumoto, H., Sumi, T.,Sakata, Y., 2005. High hydrogen storage capacity of nanosizedmagnesium synthesized by high energy ball-milling. J. Alloys

    Compd. 386 (1e

    2), 211e

    216. Johnson, T.L., Fish, W., Gorby, Y.A., Tratnyek, P.G., 1998.

    Degradation of carbon tetrachloride by iron metal:complexation effects on the oxide surface. J. Contam. Hydrol.29 (4), 379e398.

    Kaifas, D., Malleret, L., Kumar, N., Fetimi, W., Claeys-Bruno, M.,Sergent, M., Doumenq, P., 2014. Assessment of potentialpositive effects of nZVI surface modification andconcentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design. Sci.Total Environ. 481 (0), 335e342.

    Kim, Y.-H., Carraway, E.R., 2000. Dechlorination of pentachlorophenol by zero valent iron and modified zerovalent irons. Environ. Sci. Technol. 34 (10), 2014e2017.

    Kim, H.J., Phenrat, T., Tilton, R.D., Lowry, G.V., 2009. Fe-

    0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.Environ. Sci. Technol. 43 (10), 3824e3830.

    Kober, R., Schlicker, O., Ebert, M., Dahmke, A., 2002.Degradation of chlorinated ethylenes by Fe-0: inhibitionprocesses and mineral precipitation. Environ. Geol. 41 (6),644e652.

    Kustov, L.M., Finashina, E.D., Shuvalova, E.V., Tkachenko, O.P.,Kirichenko, O.A., 2011. PdeFe nanoparticles stabilized bychitosan derivatives for perchloroethene dechlorination.Environ. Int. 37 (6), 1044e1052.

    Lai, B., Chen, Z., Zhou, Y., Yang, P., Wang, J., Chen, Z., 2013.Removal of high concentration p-nitrophenol in aqueoussolution by zero valent iron with ultrasonic irradiation(USeZVI). J. Hazard. Mater. 250e251 (0), 220e228.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0   379

    http://dx.doi.org/10.1016/j.watres.2014.12.038http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref27http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref26http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref25http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref24http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref23http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref22http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref21http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref20http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref19http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref18http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref17http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref16http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref15http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref14http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref13http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref12http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref11http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref10http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref9http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref8http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref7http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref6http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref5http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref4http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref3http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref2http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://refhub.elsevier.com/S0043-1354(14)00870-7/sref1http://dx.doi.org/10.1016/j.watres.2014.12.038

  • 8/17/2019 ZVI Pentachlorophenol

    9/9

    Liang, F., Fan, J., Guo, Y., Fan, M., Wang, J., Yang, H., 2008.Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind. Eng. Chem. Res. 47 (22),8550e8554.

    Lin, C.-H., Tseng, S.-K., 1999. Electrochemically reductivedechlorination of pentachlorophenol using a highoverpotential zinc cathode. Chemosphere 39 (13), 2375e2389.

    Lindsey, M.E., Tarr, M.A., 2000. Inhibition of hydroxyl radical

    reaction with aromatics by dissolved natural organic matter.Environ. Sci. Technol. 34 (3), 444e449.

    Lowry, G.V., Reinhard, M., 2001. Pd-Catalyzed TCE dechlorinationin Water: effect of [H2](aq) and H2-utilizing competitivesolutes on the TCE dechlorination rate and productdistribution. Environ. Sci. Technol. 35 (4), 696e702.

    Mannisto, M.K., Salkinoja-Salonen, M.S., Puhakka, J.A., 2001. Insitu polychlorophenol bioremediation potential of theindigenous bacterial community of boreal groundwater.Water Res. 35 (10), 2496e2504.

    Mondragon, R., Julia, J.E., Barba, A., Jarque, J.C., 2012.Characterization of silicaewater nanofluids dispersed with anultrasound probe: a study of their physical properties andstability. Powder Technol. 224 (0), 138e146.

    Morales, J., Hutcheson, R., Cheng, I.F., 2002. Dechlorination of 

    chlorinated phenols by catalyzed and uncatalyzed Fe(0) andMg(0) particles. J. Hazard. Mater. 90 (1), 97e108.

    Morales, M., Martı́nez-Paz, P., Martı́n, R., Planello, R., Urien, J.,Martı́nez-Guitarte, J.L., Morcillo, G., 2014. Transcriptionalchanges induced by in vivo exposure to pentachlorophenol(PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat.Toxicol. 157 (0), 1e9.

    Mylon, S.E., Chen, K.L., Elimelech, M., 2004. Influence of naturalorganic matter and ionic composition on the kinetics andstructure of hematite colloid aggregation: implications to irondepletion in estuaries. Langmuir 20 (21), 9000e9006.

    Parshetti, G.K., Doong, R.A., 2009. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Res. 43 (12),3086e3094.

    Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G.V., 2007.Aggregation and sedimentation of aqueous nanoscalezerovalent iron dispersions. Environ. Sci. Technol. 41 (1),284e290.

    Phenrat, T., Liu, Y., Tilton, R.D., Lowry, G.V., 2009. Adsorbedpolyelectrolyte coatings decrease Fe o nanoparticle reactivitywith TCE in water: conceptual model and mechanisms.Environ. Sci. Technol. 43 (5), 1507e1514.

    Rasheed, Q.J., Pandian, K., Muthukumar, K., 2011. Treatment of petroleum refinery wastewater by ultrasound-dispersednanoscale zero-valent iron particles. Ultrason. Sonochem. 18(5), 1138e1142.

    Ross, N.C., Spackman, R.A., Hitchman, M.L., White, P.C., 1997. Aninvestigation of the electrochemical reduction of pentachlorophenol with analysis by HPLC. J. Appl.

    Electrochem. 27 (1), 51e

    57.Sakulchaicharoen, N., O'Carroll, D.M., Herrera, J.E., 2010.

    Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J. Contam.Hydrol. 118 (3e4), 117e127.

    Shih, Y.-h., Tai, Y.-t., 2010. Reaction of decabrominated diphenylether by zerovalent iron nanoparticles. Chemosphere 78 (10),1200e1206.

    Shih, Y.-h., Chen, Y.C., Chen, M.Y., Tai, Y.T., Tso, C.P., 2009.Dechlorination of hexachlorobenzene by using nanoscale Fe

    and nanoscale Pd/Fe bimetallic particles. Colloids Surf. APhysicochem. Eng. Asp. 332 (2e3), 84e89.

    Shih, Y.-h., Tso, C.P., Tung, L.Y., 2010. Rapid degradation of methyl orange with nanoscale zerovalent iron particles. J.Environ. Eng. Manag. 20, 137e143.

    Shih,Y.-h., Chen,M.-Y., Su, Y.-F.,2011. Pentachlorophenol reductionby Pd/Fe bimetallic nanoparticles: effects of copper, nickel, andferric cations. Appl. Catal. B Environ. 105 (1e2), 24e29.

    Soukupova, J., Zboril, R., Medrik, I., Filip, J., Safarova, K., Ledl, R.,Mashlan, M., Nosek, J., Cernik, M., 2015. Highly concentrated,reactive and stable dispersion of zero-valent ironnanoparticles: direct surface modification and siteapplication. Chem. Eng. J. 262 (0), 813e822.

    Su, Y.F., Hsu, C.Y., Shih, Y.-h., 2012. Effects of various ions on thedechlorination kinetics of hexachlorobenzene by nanoscalezero-valent iron. Chemosphere 88 (11), 1346e1352.

    Thuan, N.T., Chang, M.B., 2012. Investigation of the degradationof pentachlorophenol in sandy soil via low-temperaturepyrolysis. J. Hazard. Mater. 229e230 (0), 411e418.

    Tiraferri, A., Chen, K.L., Sethi, R., Elimelech, M., 2008. Reducedaggregation and sedimentation of zero-valent ironnanoparticles in the presence of guar gum. J. Colloid InterfaceSci. 324 (1e2), 71e79.

    Tratnyek, P.G., Johnson, R.L., 2006. Nanotechnologies forenvironmental cleanup. Nano Today 1 (2), 44e48.

    Tso, C.P., Zhung, C.M., Shih, Y.-h., Tseng, Y.M., Wu, S.-c.,Doong, R.A., 2010. Stability of metal oxide nanoparticles inaqueous solutions. Water Sci. Technol. 61 (1), 127e133.

    Wang, C.B., Zhang, W.X., 1997. Synthesizing nanoscale ironparticles for rapid and complete dechlorination of TCE andPCBs. Environ. Sci. Technol. 31 (7), 2154e2156.

    Wang, W., Zhou, M.H., 2010. Degradation of trichloroethyleneusing solvent-responsive polymer coated Fe nanoparticles.Colloids Surf. A Physicochem. Eng. Asp. 369 (1e3), 232e239.

    Wang, X., Zhu, M., Liu, H., Ma, J., Li, F., 2013. Modification of PdeFenanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Sci. Total Environ. 449 (0), 157e167.

    Xie, Y., Fang, Z., Qiu, X., Tsang, E.P., Liang, B., 2014. Comparisons of 

    the reactivity, reusability and stability of four different zero-valent iron-based nanoparticles. Chemosphere 108 (0), 433e436.

    Xing, Y., 2004. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles onsonochemically-treated carbon nanotubes. J. Phys. Chem. B108 (50), 19255e19259.

    Yan, W., Herzing, A.A., Li, X.-q., Kiely, C.J., Zhang, W.-x, 2010.Structural evolution of Pd-doped nanoscale zero-valent iron(nZVI) in aqueous media and implications for particle aging and reactivity. Environ. Sci. Technol. 44 (11), 4288e4294.

    Yang, G.C.C., Tu, H.C., Hung, C.H., 2007. Stability of nanoironslurries and their transport in the subsurface environment.Sep. Purif. Technol. 58 (1), 166e172.

    Yang, J., Wang, X., Zhu, M., Liu, H., Ma, J., 2014. Investigation of PAA/PVDFeNZVI hybrids for metronidazole removal:

    synthesis, characterization, and reactivity characteristics. J.Hazard. Mater. 264 (0), 269e277.

    Zhao, D., Zheng, Y., Li, M., Baig, S.A., Wu, D., Xu, X., 2014. Catalyticdechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticlesprepared in the presence of ultrasonic irradiation. Ultrason.Sonochem. 21 (5), 1714e1721.

    Zhu, B.-Z., Shan, G.-Q., 2009. Potential mechanism forpentachlorophenol-induced carcinogenicity: a novelmechanism for metal-independent production of hydroxylradicals. Chem. Res. Toxicol. 22 (6), 969e977.

    w a t e r r e s e a r c h 7 2 ( 2 0 1 5 ) 3 7 2 e3 8 0380

    http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://dx.doi.org/10.1016/j.watres.2014.12.038http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref62http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref61http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref60http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref59http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref58http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref57http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref56http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref55http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref54http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref53http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref52http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref51http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref50http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref49http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref48http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref47http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref46http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref45http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref44http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref43http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref42http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref41http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref40http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref39http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref38http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref37http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref36http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref35http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref34http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref33http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref32http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref31http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref30http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref29http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28http://refhub.elsevier.com/S0043-1354(14)00870-7/sref28