Transcript

) 1( 1. : - 2. : )( 3. : ? 4. " " :Krebs . 5. Krebs ? Krebs Haeckel' . 6. )( "" )( . . ) ( . -. 7. ? * . * . * "" ) / ( . * . * . * , . 8. . 3 ) (? . : "" " . : . . 9.

: . : . 01. ) (? " .

) 2( 1. -: ) ( . : ) ( ), , '(. ) ,(Adaptation . 2. : ) ( . 3. : ' . , . : " " , . 4. 5 ? . ? . ( / : . ( ) (: . . : , - )(, , , ) (. ( : ) , '( . , . ) (. ( : . . ( : . 5. ? . 6. ( ) Fitness (: ' ) ( ' . Fi = Di/Dm Fi .i Di' .i Dm' . ( - fitness " " -, . 02 . :(

967.0 = 31/01 = 1f 516.0 = 31/8 = 3f

296.0 = 31/9 = 4f 31 = fm 329.0 = 31/21 = 2f 583.0 = 31/5 = 5f 1 = 31/31 = 6f 5,4,3 . 6,2,1 .

7. ) fitness (: - fitness . . 8. ESS )/( " , ) ( , " , ) ( . 9. ) (habitat " - )( )( . )\\(. )( )" -( ' . )- (niche ) -( , , . , . ? 01. " . " ) (. trade-off " " , 11. . . trade-off . )(. 21. ? . . . . . . 3 ) (: 31. : . 1( . : 2( . : )( 3( .

1 ) 3( ) 1. ( ? ).(size structure )/( ).(stage structure ).(age structure ).(sex ratio / ).(genotypic/phenotypic frequency : 2. , 1( . . 2( . 3( . 4( : ) (, . : 3. - b per capita birth rate - d per capita death rate - i per capira immigration rate - e per capita emigration rate - per capita . * . 0 b-0 d . 4. ) (. 0r: r = b0 d - rmax " " . rmax , , . r = rmax . dN/dt< rmax" . ) 5. ( ) ( . )( .

ln(Nt) = ln(N0) + rmax t Nt = N0e rmax t

. )(

ln((K - Nt) / Nt)

Continuous Logistic Growth120 100 80 N(t) 60 40 20 0 1 4 7 10 13 16 Time 19 22 25 28

a rmax

t

Nt = K / (1 + [e^(a - rmax t)]) a = ln((K-N0) / N0)

ln((K - Nt) / Nt) = a - rmax t

dN dt dN N] N[t ] N[ 0

= rmax = rmax

.(6. )

N d t

dN t r dt N = max 0

(ln[N(t)]-ln[N(0)] = rmax(t-0

= N0 e r N( ) tNt = N0e rmax t Nt/ N0 =2=e rmax t ln2=rmaxt t=ln2/rmax

t N( ) r t =e N(0)

mx a

t

mx a

t7.

r=0.025 t=27.73, 28 generations r=0.055 t=12.6, 13 generations

r=0.08 t=8.66, 9 generations r=1.2 t=0.57, 1 generation 2 3 t=ln3/rmax r=0.025 t=43.9, 44 generations r=0.055 t=19.9, 20 generations r=0.08 t=13.7, 14 generations r=1.2 t=0.9, 1 generation 8. - ) (G ), ...( . G rmaxG =e 0 = R , : 0= R : 1 = 0rmax = 0 R 9. :rmax 81 81 9=2/81=G=18, 0R81/)9(ln(R0)=rmaxG rmax = ln(R0)/G rmax = ln 21.0 = rmax 81 01 5=2/01=G=18, 0R81/)5(rmax = ln 980.0 = rmax 62 81 9=2/81=G=26, 0R62/)9(rmax = ln 480.0 = rmax 0 R G, rmax. 01. 01 Nt = N0e 2 = 0N 44.2=2.0 N1 = N0e 0.2 = 2e 89.2=2.0 N2 = N1e 0.2 = 2.44e 46.3=2.0 N3 = N2e 0.2 = 2.98e 44.4=2.0 N4 = N3e 0.2 = 3.64e 24.5=2.0 N5 = N4e 0.2 = 4.44e 16.6=2.0 N6 = N5e 0.2 = 5.42e 60.8=2.0 N7 = N6e 0.2 = 6.61e 38.9=2.0 N8 = N7e 0.2 = 8.06e 21=2.0 N9 = N8e 0.2 = 9.83e 4146.41=2.0 N10 = N9e 0.2 = 12e -K 11. . - 1 ) (Nt / K - . )])Nt = K / (1 + [e(a - rmax t 0a =ln (K-N0) / N 21. : ln((K - Nt) / Nt) = a - rmax t :0.2 t

31.)ln((K - Nt) / Nt

) (dN /dt)*(1/N

t

rmax

dNt/dt

a

Optimal yield

rmax -rmax /KK

t

2/K

K

t

Nt

Nt

41. . . ,K .

2 - : 1. 0-rmax rmax=b0-d0 b0/d / - 2. G rmax G R0- = e . 0= R 3. -G ) ( . 4. / 5. 6. )( Nt = N0e rmax t

7.

)])Nt = K / (1 + [e(a - rmax t 0a = ln (K-N0) / N

8. .9. ? .

03

2 ) 4( 1. - )( " . . ? 1. ) (. 2. ) (. 2 : 1. . . " . ) (time specific 2. : . : . , . . 2. - . . - , ) ( / . 3. I ) (. II . . . III . . :

Type I)Log(nx

Type II Type III

)Age (e.g., yrs ' " .

4. " " " ". * , ) (. - rmax .

5. ? " ) ( ): , , '( ) ( . : " " . : . : . " . " . ) ( . Trade-off , . : , . : ):' (. Iteroparity ' . Semelpari -ty . ):' (. . ): ' (. ): (. ) (.

6. k-:r ' -) k ( . k , . , . r . , . , k .r K , r , , )( )"(

1 - 2 3

7. ) :(random . . , . 4 : 1( . 2( . 3( . 4( . ) :(regular,uniform . . : . ) :(clumped, aggragated . )(. " 8. " . . . )

(. . ) ( - fitness . 3 " ": 1( 2( 3( " 9. " ) ( , ) (. ) (. . - ": . 1. 2. . ), -, ( , . ) , , .( . " . 01. : ) ( ) (, : . ), ( "" ) ( ), , .(K : . , . 11. - . - . . 21. "" " , . .

3 - : 1. " - trade-off " . )( : . 4. , , . 5. . 6. , . 7. , .= Pk m k m e !k

8. Life history ):' (. Iteroparity ' . Semelpari -ty . ):' (. . ): ' (. ): (. . 9. .- .

1 ) 5( 1. ) (. ) (, ) (, ) (. )0,0( . )+,0( . )+,+( . 2 . )-,+( ) (exploitation , "" . )-, 0( . ) ( )-,-( 2 . : , , . 2. ? ? , . , . . 3. . : , ), ( ), , (. 4. " ) (. . 5. :Lotka Voltera ( L - V = = )( , . " , . ( -0 1: )0, 1 (K X )0 ,1(12/K .Y -0 2: )0, 2 (21/K X )0 ,2 (K .Y 1 1 : 2 1 .K 1 2 1 .12/K -0 , 1 . , . " 2 ) (. ( 1 : K1/K2 > 12 ; K2/K1 < 21 2 : K1/K2 < 12 ; K2/K1 > 21 - K1/K2 > 12 ; K2/K1 > 21 - 2 21 > K2/K1; 12 < K1/K ( . ( :

= 5.21/6.31 = 880.1 12 = 5.8/22 = 2.5821

= 1 = 2

1K2/K > 21 53/27 < 85.2 650.2 > 85.2

* : K1/K2 < 12 - 880.1 < 27/53 < 880.1684.0 . : 2*21 0 = K2 N 1N2 *12 0 = K1 N 2*21 N2 += K 1N2 *12 K1 = N 27 =+ 2*2.58 N 1N2 *1.088 35 = N 42 = 1N ": : K1/ K2 > 12 - 880.1 < 53/27 880.1 > 650.2

1 N 1+ N 1+ N 01 = 2N K2/K1 < 21 5327/ < 85.2 684.0 < 85.2

) 1 (. , , .

4 - : ) - ( )( , 1. . 0 )( 2. , 0. " 3. . " :K1 / 21

2N2K

21 < K2/K1;

212 < K1/K

1K

K2 /

2 1

1N

)( 4. . " :2K2 1

- 2> K2/K1; 12 < K1/K

2NK1 / 21

12

> K2/K1;

21

2< K1/KK2 /

Saddle point

2 1

1K

1N

time series 5. . X Y .X . phase plane 6. X ,Y . . " . population trajectory 7. . 8. -? - 1

K1 /

1 2

2N

21 > K2/K1;

212 < K1/ K

2K

K2 /

2 1

1K

1N

2 ) ) 2 2 21 > K2/K1; 12 < K1/K2K

12

> K2/ K1;

21

2< K1/ K

2NK1 /

21

1K

K2 /

12

1N

9. -? . .

2 ) 6( ) (phase plane 1. 1 2. - x 1 - y 2. 0 )( , 0. ( 2. 1 2:

21 = 2K1 = 18 K 2 1 1 : 4.0 = 57.0/03.0 = 21 = 12 1 2 2 : 3.0 = 08.0/42.0 : 81 > 3.0/21 = 04 - 12K1< K2/ : 21 > 4.0/81 = 54 - 21K2< K1/ " . . 2 . ( " , ' ) ( . ' )' =' "(. )1( 0 1: = 2K1 N1 - 12 N )2( 0 = 2: 1K2 N2 - 21 N : 81 = 0 )1( 2N1 = 18 0.4N 2N1 0.4N )2( 0 = 21 1N2 0.3N )1( )2(: 0 = 21 8 5.7 = 2N2 0.3(18 0.4N2) 0 = 6.6 - 0.88N2 N 2N 51 = 11N: 0 = 12 -7.5 - 0.3N1 N 3. , - ) ( , . Gause - . , - ) (, , P. aurelia .P. caudatum " Gause P. caudatum- .P ,bursaria - . ) ( . - . 4. " " - - . . " . ,

. . . , ', .

5. . . : 1. ) , (. )(. ' 2 . -2 . 2. Trade-off ) , (. . 3 :Schoener 6. ( ) (. ( ) (. ( : , ) ( . * - . : - christmas island . )" (. : 2 . 2 ) (. Balanus Chthamalus " . Chthamalus . . : . . . . 7. ". . . , . .

5 - 1. -- ?life-dinner principle , . 2. . ) ( . 3. ? , . . . : 4. . )( . 5. 0. X Y . , . 6. - 0. X Y . , . 7. ) (g . 8. -? . . . . .9. - -? : ... . . .- .

) 7( 1. ) ( . : 1. ) , ( )(. 2. Trade-off ) , (. . , '. ) ( . " : ), (. ) (. , . 2 2. . . 2 . . - 3. : ( ) (. ( . ( . ) (prey swiching 4. , . , . , 1 2 . , 2 1. , - . life-dinner 5. , . , . : 6. : . : . : . : . -

: . . ).(mimicry .

7. 1. 2. 3. 4.

) 8. ( . , \ . - : . : 9. I , " . II . , )(. III . . , ) II , .(s

Number of prey consumed )(per-predator

Type I

Type II Type III

Density of prey population 3 :III 1( . III 2( . . . 3( , .

) (optimal foraging 01. . : ) ?/ ?(. 11. . . - .

6 - - 1 2. (Number of prey captured by that predator) / (Number of prey )captured by all predators ---------------------------------------------------------------------------= Fitness of predator)(Number of that predator) / (Total number of predators (Number of prey escaped of that prey) / (Number of prey escaped by all )prey -------------------------------------------------------------------------------- = Fitness of prey)(Starting number of that prey) / (Starting number of all prey 001 02 03 01 06 04 001 51 41 5 43 66 001 01 01 31 33 76 : 001 004 " 5 05 7 16 71 54 92 651 17 442

5 5 5 51

004/001(/)442/66(=)(fitness(knives)=(50/156)/(5/15) fitness(humus 3. -? . trade off . 4. -? . . 5. . : .: .: .: .6. , . 7. . 8. . 9. .

Number of prey consumed (per-predator)

Type I

Type II

Type III

Density of prey population

) ) 8 1( - . , . - . , . . . . . . 2 )(. . )(. )(. 2( . . . : 005-004 , -034 . )(: . : . : ( . ( )" "(. 3( - . - . - . 4( ), ...( . . : , , , . - . . )(. - . . .5( - "" : . , .

: . . . "" . 6( . " . )(. ) " (.

) 9( ) ( 1. . / / . 2. , , . )" "( . "" . , . . . : . )( : 3. ) :(assemblage ), (. . ) :(guild ), , (. ) :(functional group ), , (. 4. : ) (. . - \.

5. . ' . 6. " ". ) /(. : ) 7. (

536.0 = 2)791/1( *5 + 2)791/04( + 2)791/251( = 2Community 1: SD = pi 41.0 = 2)41.0( * 7 = 2Community 2: SD = pi : ) ( 75.1 = 536.0/1 = 2Community 1: SE = 1/ pi 41.7 = 41.0/1 = 2Community 2: SE = 1/ pi

: ) ( 2 22.0 = )7*536.0(/1 =)Community 1: SEW = 1/( pi *R 20.1 = )7*41.0(/1 =)Community 2: SEW = 1/( pi2*R : ) ( )791/04(Community 1: H' = - (pi ln(pi)) = -(152/197)ln(152/197) - (40/197)ln91.1 = )791/1(5*(1/197)ln 6.31 = )41.0(Community 2: H' = - (pi ln(pi)) = -7(0.14)ln

- 8. ) (log-series distribution . , , "" . )S = ln(1+n/ .' - S " . : 9. . . . 01. : " ". " . . " " . )( " " ". 3 : . 1( ) (tolerance 2( . . 3( . : " ". : , : , '. 11. . ) '(. / / . ".

) (. 21. . : 2 ) ( . ) (. , .

8- : 1. . . 2. 3. . 4. . ) ( 5. . 6. . ? (D = pi2(D'=1/D 7. -pi = ni / N , ni -i, N . ' ? 8. -c . -S ) ( 9. . . . .- .

) 01( 1. . , . , 2. . SPP = cAz SPP , c ) A , z (, . : log SPP = log c + z log A SPP = 10 = c10z 3. z 002) SPP = 15 = c c,z ( z z 01/51 = 01c200 /c 5.1 = )01/002(02(z = 20z ln1.5 = zln20 z = (ln1.5)/(ln 531.0=z z . ( , . . ( 1( ) (. 2( , . z 53.0-52.0. ( : 1( , . 2( . 3( -2 : . z 2.0-1.0. ( ) ( . , , z )( . 1-5.0. 3 : ( . ) (. ( . . , , . 4.

( . . . 5. )(? . : . , " . . , ) , 6. ( . - ' 7. : ) (, .I , .E , , . , ) (. : , . , ) , (. : 8. , ) (. : ) (.Close to mainland

)(Immigration or Extinction

Small island

Rate

Far from mainland Large island

FS CS

FL CL

Pool

Number of species on an island -4 . 4 : CL . ' . FS . ' . CS- FL ) CL-.(FS -

9. simberloff ) , '(. . )' ( ) (. . ". ) (. . * , ' , ' . , . (SLOSS (Single Large Or Several Small : ? : . . . : ) ( . ) (. 01.

)( 11. ' . ) ( ) (.

SpeciationRate

Extinction S

Number of species in the mainland

) Intermediate Disturbance Hypothesis " , , 21. '(. , ' . ' . .

Number of species

Disturbance regime - / . : . , , .31.

Number of species

Productivity ' : 41. , . "": ) (. ) - (.

- ) ; (. ) (. ) ][ (. ) (. ' . : 1( . 2( , ) 31( "" .

9 - - : 1. "" " . 2. "" " ) ( . 3. (SPAR (species area relationship . 4. . . 5. . . 6. , . . 7. , . . . 8. , . .

) 11( 1. - -. 2. : - . ), (. 3. : : ) , (. : , )( )%09 (. 4. ( NPP (Net primary production . * ** NPP = GPP -R * - (GPP (Gross primary production : " . ** ) -Respiration) R: ) (. %07-05 " . NPP: . )(. . . . . )(. , . 5. )-(Consumption efficiency . 1-CE = intake at trophic level n / net productivity at trophic level n ) (Production efficiency " . PE = net productivity / assimilation ) (Assimilation efficiency . 1-AE = assimilation at trophic level n / assimilation at trophic level n * . 6. , ) ( . : " ) (: .

) (.

7. . ) (. ) (. ) (. 8. " . , , . . . . 9. : 4 CO2, CO, CH .NO : )( . N .NO ) (. ". .NO01. . ": (SO4(g) + H2O(l) HSO4 (aq : . ): , (.

) 21(1. : / . : . "" --< . ) ( : .Edge effect ) :(Habitat fragmentation . . - , 2. . . , , ) ( 01-1 . , . 3. . ) (Inbreeding depression . );(Genetic drift4. . )3 (.) Chaotic dynamics : , 8.2>.(rmax ) (Demographic stochasticity / ) (. ) (Catastrophe , ) (. 5. : ) ( -: .Edge effect , . . ) (Hot Spots 6. . : ) 3 (, , . 7. - ) (. :

. . : 000,002 - " 3.8 \

1. 2. 3.

8. : " " . , , . " ". . , , . .