Transcript
Page 1: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

AgrAwAl, A. F. y M. C. whitloCk (2012). Mutation load: the fitness of individuals in popu-lations where deleterious alleles are abundant. Annual review of Ecology, Evolution, andSystematics, 43: 115-135.

AndErSSon l. y l. gEorgES (2004). domestic-animal genomics: deciphering the genetics ofcomplex traits. nature reviews genetics, 5: 202-212.

ÁlvArEz-CAStro, J. M., A. lE rouziC y o. CArlborg (2008). how to perform meaningfulestimates of genetic effects. PloS genetics, 5: e1000062.

AMAdor, C., A. gArCíA-dorAdo, d. bErSAbé y C. lóPEz-FAnJul (2010). regeneration ofthe variance of metric traits by spontaneous mutation in a drosophila population. geneticsresearch, 92: 91-102.

AMAdor, C., J. FErnÁndEz y t. h. E. MEuwiSSEn (2013). Advantages of using molecularcoancestry in the removal of introgressed genetic material. genetics, Selection, Evolution,45(1): 13.

AllEndorF, F. w., g. luikArt y S. n. AitkEn (2013). Conservation and the Genetics of Pop-ulations (2ª ed.) wiley-blackwell, oxford, reino unido.

ArMbruStEr, P. y P. h. rEEd (2005). inbreeding in benign and stressful environments. heredity,95: 235-242.

Arnold, S. J. y M. J. wAdE (1984a). on the measurement of natural and sexual selection:theory. Evolution, 38: 709-719.

— (1984b). on the measurement of natural and sexual selection: Applications. Evolution, 38:720-734.

Auton, A. et al., 1000 genomes Project Consortium (2015). A global reference for humangenetic variation. nature, 526: 68-74.

ÁvilA v., A. PérEz-FiguEroA, A. CAbAllEro, w. g. hill, A. gArCíA-dorAdo y C. lóPEz-FAnJul (2014). the action of stabilizing selection, mutation, and drift on epistatic quantitativetraits. Evolution, 68: 1974-1987.

BIBLIOGRAFÍA WEB

Page 2: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

ÁvilA, v, A. vilAS, J. FErnÁndEz y A. CAbAllEro (2013). An experimental assessment ofartificial within-family selection for fitness in conservation programs. Conservation genetics,14: 1149-1159.

biErnE, n., J. wElCh, E. loirE, F. bonhoMME y P. dAvid (2011). the coupling hypothesis:why genome scans may fail to map local adaptation genes. Molecular Ecology, 20: 2044-2072.

bEAuMont, M. A. y r. A. niCholS (1996). Evaluating loci for use in the genetic analysis ofpopulation structure. Proceedings of the royal Society of london, Series b, 263: 1619-1626.

bAllou, J. d. (1997). Ancestral inbreeding only minimally affects inbreeding depression inmammalian populations. Journal of heredity, 88: 169-178.

bAllou, J. d. y r. C. lACy (1995). identifying genetically important individuals for managementof genetic diversity in pedigreed populations. Págs. 76-111 en Population Management forSurvival and Recovery. Coord. J. d. ballou, M. gilpin y t. J. Foose, Columbia universityPress, new york, EE.uu.

bArton, n. h. (1990). Pleiotropic models of quantitative variation. genetics, 124: 773-782.bArton, n. h. y M. turElli (1989). Evolutionary quantitative genetics: how little do we

know? Annual review of genetics, 23: 337-370.— (1991). natural and sexual selection on many loci. genetics, 127: 229-255.— (2004). Effects of genetic drift on variance components under a general model of epistasis.

Evolution, 58: 2111-2132.bAtAillon, t. y S. F. bAilEy (2014). Effects of new mutations on fitness: insights from models

and data. Annals of the new york Academy of Sciences, 1320: 76-92. bAtEMAn, A. J. (1959). the viability of near-normal irradiated chromosomes. international

Journal of radiation biology, 1: 170-80.bErSAbé, d. y A. gArCíA-dorAdo (2013). on the genetic parameter determining the efficiency

of purging: an estimate for drosophila egg-to-pupae viability. Journal of Evolutionarybiology, 26: 375-385.

biJMA P., J. A. M. vAn ArEndonk y J. A. woolliAMS (2001). Predicting rates of inbreedingfor livestock improvement schemes. Journal of Animal Science, 79: 840-853.

blASCo, A. y M. A. toro (2014). A short critical history of the application of genomics toanimal breeding. livestock Science, 166: 4-9.

boAkES, E. h., J. wAng y w. AMoS (2007). An investigation of inbreeding depression andpurging in captive pedigreed populations. heredity, 98: 172-182.

bookStEin, F. l. (1991). Morphometric Tools for Landmark Data. Cambridge university Press,new york, EE.uu.

boyko, A. r., S. h. williAMSon, A. r. indAP, J. d. dEgEnhArdt, r. d. hErnAndEz, k. E.lohMuEllEr, M. d. AdAMS, S. SChMidt, J. J. SninSky, S. r. SunyAEv, t. J. whitE, r.niElSEn, A. g. ClArk y C. d. buStAMAntE (2008). Assessing the evolutionary impact ofamino acid mutations in the human genome. PloS genetics, 4: e1000083.

brookES, J. i. y r. roChEttE (2007). Mechanism of a plastic phenotypic response: predator-induced shell thickening in the intertidal gastropod Littorina obtusata. Journal of Evolutionarybiology, 20: 1015-1027.

bulMEr, M. g. (1971). the effect of selection on genetic variability. American naturalist, 105:201-211.

2 Genética cuantitativa

Page 3: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1985). The Mathematical Theory of Quantitative Genetics. Clarendon Press, oxford, reinounido.

butlin, r. k., M. SAurA, g. ChArriEr, b. JACkSon, C André, A. CAbAllEro, J. A. CoynE,J. gAlindo, J. w. grAhAME, J. hollAndEr, P. kEMPPAinEn, M. MArtínEz-FErnÁndEz,M. PAnovA, h. QuESAdA, k. JohAnnESSon y E. rolÁn-AlvArEz (2014). Parallel evolutionof local adaptation and reproductive isolation in the face of gene flow. Evolution, 68: 935-949.

CAbAllEro, A. (1994). developments in the prediction of effective population size. heredity,73: 657-679.

— (1995). on the effective size of populations with separate sexes, with particular reference tosex-linked genes. genetics, 139: 1007-1011.

— (2006). Analysis of the biases in the estimation of deleterious mutation parameters fromnatural populations at mutation-selection balance. genetical research, 88: 177-189.

CAbAllEro, A. y w. g. hill (1992a). Effective size of nonrandom mating populations. genetics,130: 909-916.

— (1992b). Effects of partial inbreeding on fixation rates and variation of mutant genes. genetics,131: 493-507.

CAbAllEro, A. y P. d. kEightlEy (1994). A pleiotropic nonadditive model of variation inquantitative traits. genetics, 138: 883-900.

CAbAllEro, A. y M. A. toro (2000). interrelations between effective population size and otherpedigree tools for the management of conserved populations. genetical research, 75: 331-343.

— (2002). Analysis of genetic diversity for the management of conserved subdivided populations.Conservation genetics, 3: 289-299.

CAbAllEro, A. y A. gArCíA-dorAdo (2013). Allelic diversity and its implications for the rateof adaptation. genetics, 195: 1373-1384.

CAbAllEro, A., P. d. kEightlEy y M. turElli (1997). Average dominance for polygenes:drawbacks of regression estimates. genetics, 147: 1487-1490.

CAbAllEro, A, E. SAntiAgo y M. A. toro (1996). Systems of mating to reduce inbreeding inselected populations. Animal Science, 62: 431-442.

CAbAllEro, A., M. A. toro y C. lóPEz-FAnJul, C. (1991). the response to artificial selectionfrom new mutations in Drosophila melanogaster. genetics, 127: 89-102.

CAbAllEro, A, A. tEnESA y P. d. kEightlEy (2015). the nature of genetic variation forcomplex traits revealed by gwAS and regional heritability mapping analyses. genetics,201:1601-1613.

CArvAJAl-rodríguEz, A., P. CondE-PAdín y E. rolÁn-AlvArEz (2005). decomposing shellform into size and shape by geometric morphometric methods in two sympatric ecotypesof Littorina saxatilis. Journal of Molluscan Studies, 71: 313-318.

CAStlE, w. E. (1921). An improved method of estimating the number of genetic factors concernedin cases of blending inheritance. Science, 54: 223.

CAvAlli-SForzA, l. l. y w. F. bodMEr (1971). The Genetics of Human Populations. Freeman,San Francisco, EE.uu.

ChArlESworth, b. (2009). Fundamental concepts in genetics: effective population size and pat-terns of molecular evolution and variation. nature reviews genetics, 10: 195-205.

ChArlESworth, d. y b. ChArlESworth (1979). A model for the evolution of distyly. Americannaturalist, 114: 467-498.

Bibliografía web 3

Page 4: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

ChArlESworth, b. y d. ChArlESworth (2010). Elements of Evolutionary Genetics.roberts & Company Publishers, greenwood village, Colorado, EE.uu.

ChArlESworth, d. y J. h. williS. (2009). the genetics of inbreeding depression. naturereviews genetics, 10: 783-796.

ClArk, S. A. y J. vAn dEr wErF (2013). genomic best linear unbiased prediction (gbluP) forthe estimation of genomic breeding values. Methods in Molecular biology, 1019: 321-330.

CoCkErhAM, C. C. (1969). variance of gene frequencies. Evolution, 23: 72-84.CollArd, b. C. y. y d. J. MACkill (2008). Marker-assisted selection: an approach for precision

plant breeding in the twenty-first century. Philosophical transactions of the royal Societyof london, Series b, 363: 557-572.

CoMStoCk, r. E., h. F. robinSon y P. h. hArvEy (1949). A breeding procedure designed tomake maximum use of both general and specific combining ability. Journal of the AmericanSociety of Agronomy, 41: 360-367.

CondE-PAdin, P., A. CArvAJAl-rodríguEz, M. CArbAllo, A. CAbAllEro y E. rolÁn-AlvA-rEz (2007). genetic variation for shell traits in a direct developing marine snail involvedin a putative sympatric ecological speciation process. Evolutionary Ecology, 21: 635-650.

CooPEr, v. S. y r. E. lEnSki (2000). the population genetics of ecological specialization inevolving Escherichia coli populations. nature, 407: 736-739.

CorbEtt-dEtig, r. b., d. l. hArtl y t. b. SACkton (2015). natural selection constrainsneutral diversity across a wide range of species. PloS biology, 13 (4): e1002112.

CrnokrAk, P. y S. C. h. bArrEtt (2002). Purging the genetic load: a review of the experimentalevidence. Evolution, 56: 2347-2358.

CrnokrAk, P. y d. A roFF (1995). dominance variance: associations with selection and fitness.heredity, 75: 530-540.

Crow, J. F. (1970). genetic loads and the cost of natural selection. Págs. 128-177 en MathematicalTopics in Population Genetics. Coord. ken-ichi kojima. Springer-verlag, heilderberg, Ale-mania.

— (1986). Basic Concepts in Population, Quantitative, and Evolutionary Genetics. w. h.Freeman and Company, new york, EE.uu.

— (1997). the high spontaneous mutation rate: is it a health risk? Proceedings of the nationalAcademy of Sciences of the u.S.A., 94: 8380-8386.

— (2000). the origins, patterns and implications of human spontaneous mutation. nature reviewsgenetics, 1: 40-47.

Crow, J. F. y M. kiMurA (1965). Evolution in sexual and asexual populations. American nat-uralist, 99: 439-450.

— (1970). An Introduction to Population Genetics Theory. harper & row, new york, EE.uu.Crow, J. F., Morton, n. F. (1955). Measurement of gene frequency drift in small populations.

Evolution, 9: 202-214.Crow, J. F., dEnniSton C. (1988). inbreeding and variance effective population numbers. Evo-

lution, 42: 482-495.CuMMingS, M. r. (2014). Human Heredity. Principles and Issues. 11ª edición. Cengage learning,

boston, EE.uu.dArwin, C. r. (1859). On the Origin of Species by Means of Natural Selection, or the Preser-

vation of Favoured Races in the Struggle for Life. John Murray, londres, reino unido. — (1876). The Effects of Cross- and Self-fertilization in the Vegetable Kingdom. John Murry,

london, reino unido.

4 Genética cuantitativa

Page 5: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,reino unido.

dE CArA, M. A. r., b. villAnuEvA, M. A. toro y J. FErnÁndEz (2013). using genomic toolsto maintain diversity and fitness in conservation programmes. Molecular Ecology, 22: 6091-6099.

dE loS CAMPoS, g., d. giAnolA y d. b. AlliSon (2010). Predicting genetic predisposition inhumans: the promise of whole-genome markers. nature reviews genetics, 11: 880-886.

dEMPFlE, l. (1975) A note on increasing the limit of selection through selection within families.genetical research, 24: 127-135.

dEng, h.-w. (1998). Estimating within-locus nonadditive coefficient and discriminating dom-inance versus overdominance as the genetic cause of heterosis. genetics, 148: 2003-2014.

dEng, h.-w. y M. lynCh (1996). Estimation of deleterious-mutation parameters in natural pop-ulations. genetics, 144: 349-60.

— (1997). inbreeding depression and inferred deleterious mutation parameters in daphnia.genetics, 147: 147-155.

dEroSE, M. A. y d. A. roFF (1999). A comparison of inbreeding depression in life-history andmorphological traits in animals. Evolution, 53: 1288-1292.

dEStA, z. A. y r. ortiz (2014). genomic selection: genome-wide prediction in plant improve-ment. trends in Plant Science, 19: 592-601.

dohM, M. r. (2002). repeatability estimates do not always set an upper limit to heritability.Functional Ecology, 16: 273-280.

drAkE, J. w., b. ChArlESworth, d. ChArlESworth y J. F. Crow (1998). rates of spontaneousmutation. genetics, 148: 1667-1686.

dudlEy, J. w. y r. J. lAMbErt (2004) 100 generations of selection for oil and protein in corn,1. Plant breeding reviews, 24: 79-110.

duMont, b. y b. PAySEur (2008). Evolution of the genomic rate of recombination in mam-mals.

Evolution, 62: 276-294.EdMAndS, S. (2007). between a rock and a hard place: evaluating the relative risks of inbreeding

and outbreeding for conservation and management. Molecular Ecology, 16: 463-475.EiChlEr, E. E., J. Flint, g. gibSon, A. kong, S. M. lEAl, J. h. MoorE y J. h. nAdEAu (2010).

Missing heritability and strategies for finding the underlying causes of complex disease.nature reviews genetics, 11: 446-450.

ElEnA, S. F. y r. E. lEnSki (2003). Evolution experiments with microorganisms: the dynamicsand genetic bases of adaptation. nature reviews, 4: 457-469.

EndlEr, J. A. (1986). Natural Selection in the Wild. Princeton university Press, new Jersey,EE.uu.

EyrE-wAlkEr, A. (2010). genetic architecture of a complex trait and its implications for fitnessand genome-wide association studies. Proceedings of the national Academy of Sciences ofthe u.S.A., 107: 1752-1756.

EyrE-wAlkEr, A. y P. d. kEightlEy (2007). the distribution of fitness effects of new mutations.nature reviews genetics, 8: 610-618.

FAlConEr, d. S. (1952). Asymmetrical responses in selection experiments. international Sym-posium on genetics and Population Structure. international union of biological Sciences,naples, Series b, 15: 16-41.

Bibliografía web 5

Page 6: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

FAlConEr, d. S y t. F. C. MACkAy (1996). Introduction to Quantitative Genetics. 4ª edición.longman, london, reino unido. (Edición en castellano en 2001 por Ed. Acribia, zaragoza).

FElSEnStEin, J. (1974). the evolutionary advantage of recombination. genetics, 78: 737-756.FErnÁndEz, J., M. A. toro y A. CAbAllEro (2003). Fixed contributions designs versus min-

imization of global coancestry to control inbreeding in small populations. genetics, 165:885-894.

— (2008). Management of subdivided populations in conservation programs: development ofa novel dynamic system. genetics, 179: 683-692.

FErnÁndEz, b., A. gArCíA-dorAdo y A. CAbAllEro (2004). Analysis of the estimators ofthe average coefficient of dominance of deleterious mutations. genetics, 168: 1053-1069.

— (2005a). the effect of antagonistic pleiotropy on the estimation of the average coefficient ofdominance of deleterious mutations. genetics, 171: 2097-2112.

FErnÁndEz, J., J. gAlindo, b. FErnÁndEz, A. PérEz-FiguEroA, A., CAbAllEro y E. rolÁn-AlvArEz (2005b). genetic differentiation and estimation of effective population size andmigration rates in two sympatric ecotypes of the marine snail Littorina saxatilis. Journal ofheredity, 96: 460-464.

FErnAndo, r. l. y M. groSSMAn (1989). Marker assisted selection using best linear unbiasedprediction. genetics Selection Evolution, 21: 467-477.

FiShEr, r. A. (1918). the correlation between relatives on the supposition of Mendelian inher-itance. transactions of the royal Society of Edinburgh, 52: 399-433.

— (1921). on the mathematical foundations of theoretical statistics. Philosophical transactionsof the royal Society of london, Series A, 222: 309-368.

— (1928). the possible modification of the response of the wild type to recurrent mutations.American naturalist, 62: 115-126.

— (1930). The Genetical Theory of Natural Selection. Clarendon Press, oxford, reino unido.— (1941). Average excess and average effect of a gene substitution. Annals of Eugenics, 11:

53-63.— (1954). A fuller theory of “junctions” in inbreeding. heredity, 8: 187-197.FlAthEr, C. h., g. d. hAywArd, S. r. bEiSSingEr y P. A. StEPhEnS (2011). Minimum viable

populations: is there a ‘magic number’ for conservation practitioners? trends in Ecologyand Evolution, 26: 307-316.

Foll, M. y o. gAggiotti (2008). A genome-scan method to identify selected loci appropriatefor both dominant and codominant markers: a bayesian perspective. genetics, 180: 977-995.

Fox, C. w y d. h. rEEd (2011). inbreeding depression increases with environmental stress: anexperimental study and meta-analysis. Evolution, 65: 246-258.

FrAnkhAM, r. (1980). the founder effect and response to artificial selection in Drosophila.Págs. 87-90 en Heritage from Mendel. Coord. r. A. brink. university of wisconsin Press,Madison, wisconsin, EE.uu.

— (1990). Are responses to artificial selection for reproductive fitness characters consistentlyasymmetrical? genetical research, 53: 35-42.

— (1995). Effective population size / adult population size ratios in wildlife: a review. geneticalresearch, 66: 95-107.

FrAnkhAM, r., J. d. bAllou y d. A. briSCoE (2010). Introduction to Conservation Genetics.Cambridge university Press, Cambridge, reino unido.

6 Genética cuantitativa

Page 7: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

FrAnkhAM, r., C. J. A. brAdShAw y b. w. brook (2014). genetics in conservation manage-ment: revised recommendations for the 50/500 rules, red list criteria and populationviability analyses. biological Conservation, 170: 56-63.

FrAnklin, i. r. (1980). Evolutionary change in small populations. Págs. 135-149 en ConservationBiology: An Evolutionary-Ecological Perspective. Coord. M. E. Soulé y b. A. wilcox.Sinauer, Sunderland, Massachusetts, EE.uu.

gAlindo, J. (2007). divergencia adaptativa en dos ecotipos de un caracol marino relacionadoscon un proceso incompleto de especiación simpátrica y ecológica. tesis doctoral, universidadde vigo.

gAllEgo, A. y C. lóPEz-FAnJul (1983). the number of loci affecting a quantitative traitin Drosophila melanogaster revealed by artificial selection. genetical research, 42: 137-149.

gAlton, F. (1889). Natural Inheritance. MacMillan, london, reino unido.gArCíA, C. v. ÁvilA, h. QuESAdA y A. CAbAllEro. (2012). gene-expression changes caused

by inbreeding protect against inbreeding depression in drosophila. genetics, 192: 161-172.gArCíA dE lEAniz, C., E. vErSPoor, y d. hAwkinS. (1989). genetic determination of the con-

tribution of stocked and wild Atlantic salmon, Salmo salar l., to the angling fisheries intwo Spanish rivers. Journal of Fish biology, 35 (Suppl. A): 261-270.

gArCíA-dorAdo, A. (1997). the rate and effects distribution of viability mutation in drosophila:minimum distance estimation. Evolution, 51: 1130-1139.

— (2012). understanding and predicting the fitness decline of shrunk populations: inbreeding,purging, mutations, and standard selection. genetics, 190: 1461-1476.

gArCíA-dorAdo, A. y A. CAbAllEro (2000). on the average coefficient of dominance of dele-terious spontaneous mutations. genetics, 155: 1991-2001.

gArCíA-dorAdo, A., C. lóPEz-FAnJul y A. CAbAllEro (1999). Properties of spontaneousmutations affecting quantitative traits. genetical research, 74: 341-350.

gArCíA-dorAdo, A., A. CAbAllEro y J. F. Crow (2003). on the persistence and pervasivenessof a new mutation. Evolution, 57: 2644-2646.

gArCíA-dorAdo, A., C. lóPEz-FAnJul y A. CAbAllEro (2004). rates and effects of deleteriousmutations and their evolutionary consequences. Págs. 20-32 en Evolution: From Moleculesto Ecosystems. Coord. A. Moya y E. Font. oxford: oxford university Press, reino unido.

gArCíA-dorAdo A., v. ÁvilA, E. SÁnChEz-MolAno, A. MAnriQuE y C. lóPEz-FAnJul(2007). the build up of mutation-selection- drift balance in laboratory drosophila populations.Evolution, 61: 653-665.

gArdnEr, A., S. A. wESt y n. h. bArton (2007). the relation between multilocus populationgenetics and social evolution theory. American naturalist, 169: 207-226.

gEorgE, A. w., P. M. viSSChEr y C. S. hAlEy (2000). Mapping quantitative trait loci in complexpedigrees: a two-step variance component approach. genetics, 156: 2081-2092.

giAnolA, d. (2013). Priors in whole-genome regression: the bayesian alphabet returns. genetics,194: 573-596.

giAnolA, d. y g. J. M. roSA (2015). one hundred years of statistical developments in animalbreeding. Annual review of Animal biosciences, 3: 19-56.

gillESPiE, J. h. (2000). genetic drift in an infinite population: the pseudohitchhiking model.genetics, 155: 909-919.

goddArd, M. (2008). genomic selection: prediction of accuracy and maximization of longterm response. genetica, 136: 245-257.

Bibliografía web 7

Page 8: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

goddArd, M. E., b. J. hAyES y t. h. E. MEuwiSSEn (2010). genomic selection in livestockpopulations. genetical research, 92: 413-421.

goodAlE, h. d. (1938). A study of the inheritance of body weight in the albino mouse by selec-tion. Journal of heredity, 29: 101-112.

goodwilliE, C., S. kAliSz y C. g. ECkErt (2005). the evolutionary enigma of mixed matingsystems in plants: occurrence, theoretical explanations, and empirical evidence. Annualreview of Ecology, Evolution, and Systematics, 36: 47-79.

goudEt, J. y l. büChi (2006). the effects of dominance, regular inbreeding and samplingdesign on QST, an estimator of population differentiation for quantitative traits. genetics,172: 1337-1347.

grAnt, b. r. y P. r. grAnt (1989). natural selection in a population of darwin’s finches.American naturalist, 133: 377-393.

groEnEn, M. A. M., A. l. ArChibAld, h. uEniShi, C. k. tugglE, y. tAkEuChi, M. F. roth-SChild, C. rogEl-gAillArd, C. PArk, d. MilAn, h.-J. MEgEnS, et al. (2012). Analysesof pig genomes provide insight into porcine demography and evolution. nature, 491: 393-398.

gutiérrEz, J. P., i. CErvAntES, A. MolinA, M. vAlErA y F. goyAChE. (2008). individualincrease in inbreeding allows estimating effective sizes from pedigrees. genetics, Selection,Evolution, 40: 359-378.

gowE, r. S., A. robErtSon y b. d. h. lAttEr (1959). Environment and poultry breedingproblems. 5. the design of poultry control strains. Poultry Science, 38: 462-471.

hAAg-liAutArd, C. M. dorriS, x. MASidE, S. MACASkill, d. l. hAlligAn, b.ChArlESworth y P. d. kEightlEy (2007). direct estimation of per nucleotide and genomicdeleterious mutation rates in Drosophila. nature, 445: 82-85.

hAigh, i. (1978). the accumulation of deleterious genes in a population–Muller´s ratchet. the-oretical Population biology, 14: 251-257.

hAldAnE, J. b. S. (1927). A mathematical theory of natural and artificial selection. Part v:Selection and mutation. Proceedings of the Cambridge Philosophical Society, 23: 838-844.

— (1931). A mathematical theory of natural and artificial selection. Part vii. Selection intensityas a function of mortality rate. Mathematical Proceedings of the Cambridge PhilosophicalSociety, 27: 131-136.

— (1932). The Causes of Evolution. longmans, green & Co., london, reino unido.— (1937). the effect of variation on fitness. American naturalist, 71: 337-349.hAlEy, C. S. y S. A. knott (1992). A simple regression method for mapping quantitative trait

loci in line crosses using flanking markers. heredity, 69: 315-324.hAlligAn, d. l. P. d. kEightlEy (2009). Spontaneous mutation accumulation studies in evo-

lutionary genetics. Annual review of Ecology, Evolution and Systematics, 40: 151-172.hAndlEy, l. J. l., A. MAniCA, J. goudEt y F. bAlloux (2007). going the distance: human

population genetics in a clinal world. trends in genetics, 23: 432-439.hArtl, d. l. y A. g. ClArk (2007). Principles of Population Genetics. 3ª edición. Sinauer,

Sunderland, Massachusetts, EE.uu.hAyES, b. J. y M. E. goddArd (2001). the distribution of the effects of genes affecting quan-

titative traits in livestock. genetics Selection Evolution, 33: 209-229.hAyES, b. J., P. M. viSSChEr, h. C. MCPArtlAn y M. E. goddArd (2003). novel multilocus

measure of linkage disequilibrium to estimate past effective population size. genomeresearch, 13: 635-643.

8 Genética cuantitativa

Page 9: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

hAyES, b. J, h. A. lEwin y M. E. goddArd (2013). the future of livestock breeding: genomicselection for efficiency, reduced emissions intensity, and adaptation. trends in genetics, 29:206-214.

hAzEl, l. n. (1943). the genetic basis for constructing selection indexes. genetics, 28: 476-490.

hAzEl, l. n. y J. l. luSh (1943). the efficiency of three methods of selection. Journal of hered-ity, 33: 393-399.

hEdriCk, P. w. (2005). A standardized genetic differentiation measure. Evolution, 59: 1633-1638.

— (2012). what is the evidence for heterozygote advantage selection? trends in Ecology andEvolution, 27: 698-704.

hEdriCk, P. w. y C. C. CoCkErhAM (1986). Partial inbreeding: equilibrium heterozygosity andthe heterozygosity paradox. Evolution, 40: 856-861.

hEdriCk, P. w. y A. gArCíA-dorAdo (2016). understanding inbreeding depression, purging,and genetic rescue. Annual review of Ecology, Evolution and Systematics, en prensa.

hEndErSon, C. r. (1976). A simple method for computing the inverse of a numerator relationshipmatrix used in prediction of breeding values. biometrics, 32: 69-83.

— (1984). Applications of Linear Models in Animal Breeding. university of guelph, guelph,ontario, Canada.

— (1985). best linear unbiased prediction of non-additive genetic merits in noninbred populations.Journal of Animal Science, 60: 111-117.

hill, w. g. (1971). design and efficiency of selection experiments for estimation of geneticparameters. biometrics, 27: 293-311.

— (1979). A note on effective population size with overlapping generations. genetics, 92: 317-322.

— (1980). design of quantitative genetic selection experiments. Págs. 1-13 en Selection Exper-iments in Laboratory and Domestic Animals. Coord. A. robertson. Commonwealth Agri-cultural bureaux, Slough, reino unido.

— (1981). Estimation of effective population size from data on linkage disequilibrium. geneticalresearch, 38: 209-216.

— (1982). Predictions of response to artificial selection from new mutations. genetical research,40: 255-278.

— (2012). Quantitative genetics in the genomics era. Current genomics, 13: 196-206.— (2014). Applications of population genetics to animal breeding, from wright, Fisher and

lush to genomic prediction. genetics, 196: 1-16.hill, w. g. y l. bungEr (2004). inferences on the genetics of quantitative traits from long-

term selection in laboratory and farm animals, 2. Plant breeding reviews, 24: 169-210.hill, w. g. y A. CAbAllEro (1992). Artificial selection experiments. Annual review of Ecology

and Systematics, 23: 287-310.hill, w. g y h. A. MuldEr (2011). genetic analysis of environmental variation. genetics

research, 92: 381-395.hill, w. g. y J. rASbASh (1986). Models of long term artificial selection in finite populations.

genetical research, 48: 41-50.hill, w. g. y A. robErtSon (1966). the effect of linkage on limits to artificial selection. genet-

ical research, 8: 269-294.

Bibliografía web 9

Page 10: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1968). linkage disequilibrium in finite populations. theoretical and Applid genetics, 38:226-231.

hill, w. g. y b. S. wEir (2011). variation in actual relationship as a consequence of Mendeliansampling and linkage. genetics research, 93: 47-64.

hill, w. g., M. E. goddArd y P. M. viSSChEr (2008). data and theory point to mainly additivegenetic variance for complex traits. PloS genetics, 4: e1000008.

hoSPitAl, F. (2009). Challenges for effective marker-assisted selection in plants. genetica, 136:303-310.

houlE, d. (1992). Comparing evolvability and variability of quantitative traits. genetics, 130:195-204.

houlE, d., b. MorikAwA y M. lynCh (1996). Comparing mutational variabilities. genetics,143: 1467-1483.

ibAnEz-ESCriChE, n. y h. SiMiAnEr (2016). Animal breeding in the genomics era. AnimalFrontiers, 6: 4-5.

JAMES, J. w. (1970). the founder effect and response to artificial selection. genetical research,16: 241-250.

JódAr, b. y C. lóPEz-FAnJul (1977). optimum proportions selected with unequal sex numbers.theoretical and Applied genetics, 50: 57-61.

JohAnnSEn, w. (1903). Über Erblichkeit in Populationen und in Reinen Linien. gustav Fischer,Jena, Alemania.

JoSt, l. (2008). g(St) and its relatives do not measure differentiation. Molecular Ecology, 17:4015-4026.

kACSEr, h. y J. A. burnS (1981). the molecular basis of dominance. genetics, 97: 639-666.kArdoS, M., g. luikArt y F. w. AllEndorF (2015). Measuring individual inbreeding in the

age of genomics: marker-based measures are better than pedigrees. heredity, 115: 63-72.kEArSEy, M. J. y b. w. bArnES (1970). variation for metrical characters in Drosophila popu-

lations. ii. natural selection. heredity, 25: 11-21.kEightlEy, P. d. (1994). the distribution of mutation effects on viability in Drosophila

melanogaster. genetics, 138: 1315-1322.— (2012). rates and fitness consequences of new mutations in humans.

genetics, 190: 295-304.kEightlEy, P. d. y w. g. hill (1990). variation maintained in quantitative traits with muta-

tion-selection balance: pleiotropic side effects on fitness traits. Proceeding of the royalSociety, Series b, 242: 95-100.

kEightlEy, P. d., t. F. C. MACkAy y A. CAbAllEro (1993). Accounting for bias in the estimationof the rate of polygenic mutation. Proceedings of the royal Society of london, Series b,253: 291-296.

kEMPthornE, o. (1957). An Introduction to Genetic Statistics. wiley, nueva york, EE.uu.kEvlES, d. J. (1998). In the Name of Eugenics: Genetics and the Uses of Human Heredity. har-

vard university Press, Cambridge, Massachusetts, EE.uu.kiMurA, M. (1957). Some problems of stochastic processes in genetics. Annals of Mathematical

Statistics, 28: 882-901.— (1965). A stochastic model concerning the maintenance of genetic variability in quantitative

characters. Proceedings of the national Academy of Sciences of the u.S.A., 54: 731-736.— (1983). The Neutral Theory of Molecular Evolution, Cambridge university Press, Cambridge,

reino unido.

10 Genética cuantitativa

Page 11: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

kiMurA, M. y J. F. Crow (1963a). the measurement of effective population number. Evolution,17: 279-288.

kiMurA, M. y J. F. Crow (1963b). on the maximum avoidance of inbreeding. genetical rese-arch, 4: 399-415.

kiMurA, M. y J. F. Crow (1964). the number of alleles that can be maintained in a finite pop-ulation. genetics, 49: 725-738.

kiMurA, M. y t. ohtA (1969). the average number of generations until extinction of an indi-vidual mutant gene in a finite population. genetics, 63:701-709.

king, J. l. (1966). the gene interaction component of genetic load. genetics, 53: 403-13. kingSolvEr, J. g., h. E. hoEkStrA, J. M. hoEkStrA, d. bErrigAn, S. n. vigniEri, C. E.

hill, A. hoAng, P. gibErt y P. bEErli (2001). the strength of phenotypic selection innatural populations. American naturalist, 157: 245-261.

kirkPAtriCk, M. (2009). Patterns of quantitative genetic variation in multiple dimensions.genetica, 136: 271-284.

kirkPAtriCk, M., t. JohnSon y n. h. bArton (2002). general models of multilocus evolution.genetics, 161: 1727-1750.

koJiMA, k.-i. (1959). role of epistasis and overdominance in stability of equilibria with selection.Proceedings of the national Academy of Sciences of the u.S.A., 97: 984-989.

knott, S. A., J. M. ElSEn y C. S. hAlEy (1996). Methods for multiple-marker mapping ofquantitative trait loci in half-sib populations. theoretical and Applied genetics, 93: 71-80.

kondrAShov, A. S. y J. F. Crow (1988). king’s formula for the mutation load with epistasis.genetics, 120: 853-56.

— (1993). A molecular approach to estimating the human deleterious mutation rate. humanMutation, 2: 229-234.

kondrAShov, F. A. y A. S kondrAShov (2010). Measurements of spontaneous rates of muta-tions in the recent past and the near future. Philosophical transactions of the royal Societyof london, Series b, 365: 1169-1176.

kriMbAS, C. b. y S. tSAkAS (1971). the genetics of Dacus oleae v. Changes of esterase poly-morphism in a natural population following insecticide control: selection or drift? Evolution,25: 454-460.

kriStEnSEn, t. n., P. SørEnSEn, M. kruh, k. S. PEdErSEn y v. loESChCkE (2005). genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. genetics,171: 157-167.

kruuk, l. E. b. (2003). Estimating genetic parameters in natural populations using the `animalmodel´. Philosophical transactions of the royal Society of london, Series b, 359: 873-890.

kruuk, l. E. b., t. h. Clutton-broCk, J. SlAtE, J. M. PEMbErton, S. brothErStonE y F.E. guinnESS (2003). heritability of fitness in a wild mammal population. Proceedings ofthe national Academy of Sciences of the u.S.A., 97: 698-703.

lAndE, r. (1975). the maintenance of genetic variability by mutation in a polygenic characterwith linked loci. genetical research, 26: 221-235.

— (1979). Quantitative genetic of multivariate evolution, applied to brain: body allometry. Evo-lution, 33: 402-416.

— (1992). neutral theory of quantitative genetic variance in an island model with local extinctionand colonization. Evolution, 46: 381-389.

Bibliografía web 11

Page 12: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

lAndE, r. y S. J. Arnold (1983). the measurement of selection on correlated characters. Evo-lution, 37: 1212-1226.

lAndE, r. y r. thoMPSon (1990). Efficiency of marker-assisted selection in the improvementof quantitative traits. genetics, 124: 743-756.

lAndEr, E. S. y d. botStEin (1989). Mapping Mendelian factors underlying quantitative traitsusing rFlP linkage maps. genetics, 121: 185-199.

lAttEr, b. d. h. (1965). the response of artificial selection due to autosomal genes of largeeffect. i. Changes in gene frequency at an additive locus. Australian Journal of biologicalSciences, 18: 585-598.

lAttEr, b. d. h. y A. robErtSon (1962). the effects of inbreeding and artificial selection onreproductive fitness. genetical research, 3: 110-138.

lAwSon, h. A., J. M. ChEvErud y J. b. wolF (2013). genomic imprinting and parent-of-origineffects on complex traits. nature reviews genetics, 14: 609-617.

lECorrE, v. y A. krEMEr (2003). genetic variability at neutral markers, quantitative trait lociand trait in a subdivided population under selection. genetics, 164: 1205-1219.

lEFFlEr, E. M., k. bullAughEy, d. r. MAtutE, w. k. MEyEr, l SégurEl, A. vEnkAt, P.AndolFAtto y M. PrzEworSki (2012). revisiting an old riddle: what determines geneticdiversity levels within species? PloS biology, 10(9): e1001388.

lEgArrA, A, i. AguilAr y i. MiSztAl (2009). A relationship matrix including full pedigree andgenomic information. Journal of dairy Science, 92: 4656-4663.

lErnEr, i. M. (1950). Population Genetics and Animal Improvement. university Press, Cam-bridge, reino unido.

— (1954). Genetic Homeostasis. oliver & boyd, Edimburgo, reino unido.lEwontin, r. C. (1964). the interaction of selection and linkage. i. general considerations;

heterotic models. genetics, 49: 49-67.— (1974). The Genetic Basis of Evolutionary Change. Columbia university Press, new york,

EE.uu.lEwontin, r. C. y k.-i. koJiMA (1960). the evolutionary dynamics of complex polymorphisms.

Evolution, 14: 458-472.lEwontin, r. C. y J. krAkAuEr (1973). distribution of gene frequency as a test of the theory

of the selective neutrality of polymorphisms. genetics, 74: 175-195.li, w. y l. SAdlEr (1991). low nucleotide diversity in man. genetics, 129: 513-523.lloyd, d. g. y C. J. wEbb (1992). the evolution of heterostyly. Pág. 151-178 en Evolution

and function of Heterostyly. Coord. S. C. h. barrett. Springer, berlin, Alemania.lEbErg, P. l. y b. d. FirMin (2008). role of inbreeding depression and purging in captive

breeding and restoration programmes. Molecular Ecology, 17: 334-343.lEinonEn, t., r. J. S. MCCAirnS, r. b. o’hArA y J. MErilä (2013). QST – FST comparisons:

evolutionary and ecological insights from genomic heterogeneity. nature reviews genetics,14: 179-190.

lEroy, g. (2014). inbreeding depression in livestock species: review and meta-analysis. Animalgenetics, 45: 618-628.

lóPEz-CortEgAno, E., A. vilAS, A. CAbAllEro y A. gArCíA-dorAdo (2016). Estimationof genetic purging under competitive conditions. Evolution, doi: 10.1111/evo.12983.

lóPEz-FAnJul, C., A. FErnÁndEz y M. A. toro (2000). Epistasis and the conversion of non-additive to additive genetic variance at population bottlenecks. theoretical Populationbiology, 58: 49-59.

12 Genética cuantitativa

Page 13: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (2003). the effect of neutral non-additive gene action on the quantitative index of populationdivergence. genetics, 164: 1627-1633.

— (2006). the effect of genetic drift on the variance/covariance components generated by mul-tilocus additive × additive epistatic systems. Journal of theoretical biology, 239: 161-171.

luikArt, g., n. ryMAn, d. A. tAllMon, M. k. SChwArtz y F. w. AllEndorF (2010). Esti-mation of census and effective population sizes: the increasing usefulness of dnA-basedapproaches. Conservation genetics, 11: 355-373.

luSh, J. l. (1945). Animal Breeding Plans. 3ª edición. iowa State Coll. Press, Ames, iowa,EE.uu.

— (1947). Family merit and individual merit as bases for selection. American naturalist, 81:241-261.

lynCh, M. (2016). Mutation and human exceptionalism: our future genetic load. genetics, 202:869-875.

lynCh, M. y J. ConEry (2003). the origins of genome complexity. Science, 302: 1402-1404. lynCh, M. y w. gAbriEl (1990). Mutation load and survival of small populations. Evolution,

44: 1725-1737.lynCh, M. y r. lAndE (1998). the critical effective size for a genetically secure population.

Animal Conservation, 1: 70-72. lynCh, M. y w. g. hill (1986). Phenotypic evolution by neutral mutation. Evolution, 40: 915-

935.lynCh, M. y b. wAlSh (1997). Genetics and Analysis of Quantitative Traits. Sinauer. Sunderland,

Massachusetts, EE.uu. lynCh, M., J. ConEry y r. bürgEr (1995). Mutation accumulation and the extinction of small

populations. American naturalist, 146: 489-518.MACkAy, t. F. C. (2001). the genetic architecture of quantitative traits. Annual review of genet-

ics, 35: 303-339.— (2009). Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical

transactions of the royal Society of london, Series b, 365: 1229-1239.— (2014). Epistasis and quantitative traits: using model organisms to study gene-gene interactions.

nature reviews genetics, 15: 22-33.MACkAy, t. F. C., E. A. StonE y J. F. AyrolES (2009). the genetics of quantitative traits: chal-

lenges and prospects. nature reviews genetics, 10: 565-577.MACkAy, t. F. C., S. riChArdS, E. A. StonE, A. bArbAdillA, J. F. AyrolES, d. h. zhu, S.

CASillAS, y. hAn, M. M. MAgwirE, J. M. CridlAnd, et al. (2012). the Drosophilamelanogaster genetic reference panel. nature, 482: 173-178.

MAhEr, b. (2008). Personal genomes: the case of the missing heritability. nature, 456: 18-21.MAléCot, g. (1948). Les Mathématiques de l’Hérédité. Masson et Cie, Paris, Francia.— (1952). les processes stochastiques et la methode des fonctions generatrices ou caracteresti-

ques. Publications de l’institut de Statistique de l’universite de Paris 1(3): 1-16.MAnolio, t., F. CollinS, n. Cox, d. goldStEin, l. hindorFF, d. huntEr, M. MCCArthy,

E. rAMoS, l. CArdon, A. ChAkrAvArti, J. h. Cho, A. E. guttMAChEr, A. kong, l.kruglyAk, E. MArdiS, C. n. rotiMi, M. SlAtkin, d. vAllE, A. S. whittEMorE, M.boEhnkE, A. g. ClArk, E. E. EiChlEr, g. gibSon, J. l. hAinES, t. F. C. MACkAy, S. A.MCCArroll y P. M. viSSChEr (2009). Finding the missing heritability of complex diseases.nature, 461: 747-753.

Bibliografía web 13

Page 14: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

MArtin, g y t. lEnorMAnd (2006). the fitness effects of mutations across environments: asurvey in the light of fitness landscape models. Evolution, 60: 2413-2427.

MArtin, g., C. ElodiE y J. goudEt (2008). Multivariate QST – FST comparisons: a neutralitytest for the evolution of the g Matrix in structured populations. genetics, 180: 2135-2149.

MAynArd-SMith, J. y J. hAigh (1974). the hitch-hiking effect of a favourable gene. geneticalresearch, 23: 23-35.

MCPhEE, C. P. y A. robErtSon (1970). the effect of suppressing crossing-over on the responseto selection in Drosophila melanogaster. genetical research, 16: 1-16.

MCQuillAn, r., A. l. lEutEnEggEr, r. AbdEl-rAhMAn, C. S. FrAnklin, M. PEriCiC, l.bArAC-lAuC, n. SMolEJ-nArAnCiC, b. JAniCiJEviC, o. PolASEk, A. tEnESA, A. k.MAClEod, S. M. FArrington, P. rudAn, C. hAywArd, v. vitArt, i. rudAn, S. h.wild, M. g. dunloP, A. F. wright, h. CAMPbEll y J. F. wilSon (2008). runs of homozy-gosity in European populations. American Journal of human genetics, 83: 359-372.

MEuwiSSEn, t. h. E. y goddArd, M. E. (1996). the use of marker haplotypes in animal breedingschemes. genetics Selection Evolution, 28: 161-176.

MEuwiSSEn, t. h. E., b. J. hAyES y M. E. goddArd (2001). Prediction of total genetic valueusing genome-wide dense marker maps. genetics, 157: 1819-1829.

MEyEr, k. (1989). restricted maximum-likelihood to estimate variance components for animalmodels with several random effects using a derivative-free algorithm. genetics SelectionEvolution, 21: 317-340.

MillS, l. S. y F. w. AllEndorF (1996). the one-migrant-per-generation rule in conservationand management. Conservation biology, 10: 1509-1518.

MiSztAl, i. (2006). Challenges of application of marker assisted selection – a review. AnimalScience Papers and reports vol. 24 (2006) no. 1, 5-10. institute of genetics and Animalbreeding, Jastrzębiec, Polonia.

MittEll, E. A., S. nAkAgAwA y J. d. hAdFiEld (2015). Are molecular markers useful predictorsof adaptive potential? Ecology letters, 18: 772-778.

Morton, n. E., J. F. Crow y h. J. MullEr (1956). An estimate of the mutational damage inman from data on consanguineous marriages. Proceedings of the national Academy of Sci-ences of the u.S.A., 42: 855-863.

MouSSEAu, A y d. A. roFF (1987). natural selection and the heritability of fitness components.heredity, 59: 181-197.

MukAi, t. (1964). the genetic structure of natural populations of Drosophila melanogaster. i.Spontaneous mutation rate of polygenes controlling viability. genetics, 50: 1-19.

— (1969a). the genetic structure of natural populations of Drosophila melanogaster. vii. Syn-ergistic interaction of spontaneous mutant polygenes controlling viability. genetics, 61:749-761.

— (1969b). the genetic structure of natural populations of Drosophila melanogaster. viii.natural selection on the degree of dominance of viability polygenes. genetics, 63: 467-478.

— (1985). Experimental verification of the neutral theory. Págs. 125-145 en Population Geneticsand Molecular Evolution, Coord. t. ohta y k. Aoki. Japan Scientific Society Press/Springer-verlag, tokio/berlin.

— (1988). genotype-environment interaction in relation to the maintenance of genetic variabilityin populations of Drosophila melanogaster. Págs. 21-31 en Proceedings of the Second Inter-national Conference on Quantitative Genetics, Cap. 3. Coord. b. S. weir, E. J. Eisen, M.M. goodman y g. namkoong. Sinauer, Sunderland, MA, EE.uu.

14 Genética cuantitativa

Page 15: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

MukAi, t, S. i. ChiguSA, l. E. MEttlEr y J. F. Crow (1972). Mutation rate and dominanceof genes affecting viability in Drosophila melanogaster. genetics, 72: 335-355.

MukAi, t. y t. yAMAzAki (1968). the genetic structure of natural populations of Drosophilamelanogaster. v. Coupling-repulsion effects of spontaneous mutant polygenes controllingviability. genetics, 59: 513-535.

MuldEr, h. A., P. biJMA y w. g. hill (2008). Selection for uniformity in livestock by exploitinggenetic heterogeneity of residual variance. genetics Selection Evolution, 40: 37-59.

MullEr, h. J. (1928). the measurement of gene mutation rate in drosophila, its high variability,and its dependence upon temperature. genetics, 13: 279-357.

— (1932). Some genetic aspects of sex. American naturalist, 66: 118-138.— (1950). our load of mutations. American Journal of human genetics, 2: 111-176.— (1964). the relation of recombination to mutational advance. Mutation research, 1: 2-9.nAgylAki, t. (1978). the correlation between relatives with assortative mating. Annals of

human genetics, london, 42: 131-137.nEi, M. (1968). the frequency distribution of lethal chromosomes in finite populations. Pro-

ceedings of the national Academy of Sciences of the u.S.A., 60: 517-524.— (1973). Analysis of gene diversity in subdivided populations. Proceedings of the national

Academy of Sciences of the u.S.A., 70: 3321-3323.— (1987). Molecular Evolutionary Genetics. Columbia university Press, new york, EE.uu.nEi, M. y M. MurAtA (1966). Effective population size when fertility is inherited. genetical

research, 8: 257-260.nEiMAnn-SorEnSEn, A. y A. robErtSon (1961). the association between blood groups and

several production characteristics in three danish cattle breeds. Acta Agriculturale Scandi-navica, 11: 163-196.

niCholAS, F. w. y A. robErtSon (1980). the conflict between natural and artificial selectionin finite populations. theoretical and Applied genetics, 56: 57-64.

nilSSon-EhlE, h. (1909). kreuzung untersuchungen an hafer und weizen. lunds university,Arsskrift, n. s. series 2, vol. 5, no 2: 1-122.

noMurA, t. (2000). Effective population size under marker assisted selection. Japanese Journalof biometrics, 21: 1-12.

— (2002). Effective size of populations with unequal sex ratio and variation in mating success.Journal of Animal breeding and genetics, 118: 297-310.

— (2008). Estimation of effective number of breeders from molecular coancestry of singlecohort sample. Evolutionary Applications, 1: 462-474.

noSil, P. y J. l. FEdEr (2012). genomic divergence during speciation: causes and consequences.Philosophical transactions of the royal Society of london, Series b, 367: 332-342.

nuSSEy, d. h., A. J. wilSon y J. E. broMMEr (2007). the evolutionary ecology of individualphenotypic plasticity in wild populations. Journal of Evolutionary biology, 20: 831-844.

o’grAdy, J. J., b. w. brook, d. h. rEEd, J. d. bAllou, d. w. tonkyn y r. FrAnkhAM(2006). realistic levels of inbreeding depression strongly affect extinction risk in wild pop-ulations. biological Conservation, 133: 42-51.

PAlStrA, F. P. y d. E. ruzzAntE (2008). genetic estimates of contemporary effective populationsize: what can they tell us about the importance of genetic stochasticity for wild populationpersistence? Molecular Ecology, 17: 3428-3447.

PAttErSon, h. d y r. thoMPSon (1971). recovery of interblock information when block sizesare unequal. biometrika, 58: 545-554.

Bibliografía web 15

Page 16: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

PérEz-EnCiSo, M. (2014). genomic interrelationships computed from either next-generationsequence or array SnP data. Journal of Animal breeding and genetics, 131: 85-96.

PérEz-FiguEroA A., M. SAurA, J. FErnÁndEz, M. A. toro y A. CAbAllEro (2009a).MEtAPoP – A software for the management and analysis of subdivided populations in con-servation programs. Conservation genetics, 10: 1097-1099.

PérEz-FiguEroA, A., A. CAbAllEro, A. gArCíA-dorAdo y C. lóPEz-FAnJul (2009b). theaction of purifying selection, mutation and drift on fitness epistatic systems. genetics, 183:299-313.

PérEz-FiguEroA, A., M. J. gArCíA-PErEirA, M. SAurA, E. rolÁn-AlvArEz y A. CAbAllEro(2010). Comparing three different methods to detect selective loci using dominant markers.Journal of Evolutionary biology, 23: 2267-2276.

PigliuCCi, M. (2005). Evolution of phenotypic plasticity: where are we going now? trends inEcology and Evolution, 20: 481-486.

PoldErMAn, t. J. C., b. bEnyAMin, C. A. dE lEEuw, P. F. SullivAn, P. M. viSSChEr y d.PoSthuMA (2015). Meta-analysis of the heritability of human traits based on fifty years oftwin studies. nature genetics, 47: 702-709.

Poon, A. y l. ChAo (2005). the rate of compensatory mutation in the dnA bacteriophagefx174. genetics, 170: 989-999.

PowEll, J. E., P. M. viSSChEr y M. E. goddArd (2010). reconciling the analysis of ibd andibS in complex trait studies. nature reviews genetics, 11: 800-805.

PriCE, g. r. (1970). Selection and covariance. nature, 227: 520-521.Pudovkin, A. i., d. v. zAykin y d. hEdgECoCk (1996). on the potential for estimating the

effective number of breeders from heterozygote-excess in progeny. genetics, 144: 383-387.QAnbAri, S., d. giAnolA, b. hAyES, F. SChEnkEl, S. MillEr, S. MoorE, g. thAllEr y

h. SiMiAnEr (2011). Application of site and haplotype-frequency based approaches fordetecting selection signatures in cattle. bMC genomics, 12: 318.

QuESAdA, h., d. PoSAdA, A. CAbAllEro, P. MorÁn y E. rolÁn-AlvArEz (2007). Phylogeneticevidence for multiple sympatric ecological diversification in a marine snail. Evolution, 61:1600-1612.

rAndS, C. M., S. MEAdEr, C. P. Ponting y g. luntEr. (2014). 8.2% of the human genomeis constrained: variation in rates of turnover across functional element classes in the humanlineage. PloS genetics, 10(7): e1004525.

rEEd, d. h. y r. FrAnkhAM (2001). how closely related are molecular and quantitative measuresof genetic variation? A meta-analysis. Evolution, 55: 1095-1103.

— (2003). Correlation between fitness and genetic diversity. Conservation biology, 17: 230-237.

rEEd, d. h., C. w. Fox, l. S. EndErS y t. n. kriStEnSEn (2012). inbreeding-stress interactions:evolutionary and conservation consequences. Annals of the new york Academy of Sciences,1256: 33-48.

rEEvE, E. C. r y F. w. robErtSon (1954). Studies in quantitative inheritance vi. Sternite chaetanumber in Drosophila: A metameric quantitative character. zeitschrift für induktive Abstam-mungs- und vererbungslehre, 86: 269-288.

ritlAnd, k. (1996). A marker-based method for inferences about quantitative inheritance innatural populations. Evolution, 50: 1062-1073.

robErtSon, A. (1952). the effect of inbreeding on the variation due to recessive genes. genetics,37: 189-207.

16 Genética cuantitativa

Page 17: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1960). A theory of limits in artificial selection. Proceeding of the royal Society of london,Series b, 153: 234-249.

— (1961). inbreeding in artificial selection programmes. genetical research, 2: 189-194.— (1964). the effect of nonrandom mating within inbred lines on the rate of inbreeding. genetical

research, 5: 164-167.— (1965). the interpretation of genotypic ratios in domestic animal populations. Animal Pro-

duction, 7: 319-324. — (1966). A mathematical model of the culling process in dairy cattle. Animal Production, 8:

95-108.robErtSon, F. w. (1957). Studies in quantitative inheritance x. genetic variation of ovary size

in drosophila. Journal of genetics, 55: 410-427rodríguEz-rAMilo, S.t., P. MorÁn y A. CAbAllEro (2006). relaxation of selection with

equalization of parental contributions in conservation programs: an experimental test withDrosophila melanogaster. genetics, 172: 1043-1054.

rodríguEz-rAMilo, S. t., M. A. toro, A. CAbAllEro y J. FErnÁndEz (2007). the accuracyof a heritability estimator using molecular information. Conservation genetics, 8: 1189-1198.

roFF, d. A. (1996). the evolution of genetic correlations: an analysis of patterns. Evolution,50: 1392-1403.

— (2001). Life History Evolution. Sinauer, Sunderland, Massachusetts, EE.uu.rogErS, A. r. y h. C. hArPEnding (1983). Population structure and quantitative characters.

genetics, 105: 985-1002.rolÁn-AlvArEz, E., C. J. AuStin y E. g. boulding (2015). the contribution of Littorina to

the field of Evolutionary Ecology. oceanography and Marine biology: an Annual review,53: 157-214.

roMiguiEr, J., P. gAyrAl, M. bAllEnghiEn, A. bErnArd, v. CAhAiS, A. ChEnuil, y. ChiAri,r. dErnAt, l. durEt, n. FAivrE, E. loirE, J. M. lourEnCo, b. nAbholz, C. roux, g.tSAgkogEorgA, A. A. wEbEr, l. A. wEinErt, k. bElkhir, n. biErnE, S. gléMin yn. gAltiEr (2014). Comparative population genomics in animals uncovers the determinantsof genetic diversity. nature, 515: 261-263.

roSEnbErg, n. A, J. k. PritChArd, J. l. wEbEr, h. M. CAnn, k. k. kidd, l. A. zhivotovSkyy M. w. FEldMAn (2002). genetic structure of human populations. Science, 298: 2381-2385.

ruttEr, M. t., F. h. ShAw y C. b. FEnStEr (2010). Spontaneous mutation parameters for Ara-bidopsis thaliana measured in the wild. Evolution, 64: 1825-1835.

SAbEti, P. C., d. E. rEiCh, J. M. higginS, h. z. lEvinE, d. J. riChtEr, S. F. SChAFFnEr, S.b. gAbriEl, J. v. PlAtko, n. J. PAttErSon, g. J. MCdonAld, h. C. ACkErMAn, S. J.CAMPbEll, d. AltShulEr, r. CooPEr, d. kwiAtkowSki, r. wArd y E. S. lAndEr (2002).detecting recent positive selection in the human genome from haplotype structure.nature, 419: 832-837.

SÁnChEz l., P. biJMA y J. A. woolliAMS (2003). Minimizing inbreeding by managing geneticcontributions across generations. genetics, 164: 1589-1595.

SAnJuÁn, r. y S. F. ElEnA (2006). Epistasis correlates to genomic complexity. Proceedings ofthe national Academy of Sciences of the u.S.A., 103: 14402-14405.

SAntiAgo, E. y A. CAbAllEro (1995). Effective size of populations under selection. genetics139: 1013-1030.

Bibliografía web 17

Page 18: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1998). Effective size and polymorphism of linked neutral loci in populations under directionalselection. genetics, 149: 2105-2117.

— (2001). Application of reproductive technologies to the conservation of genetic resources.Conservation biology, 14: 1831-1836.

— (2016). Joint prediction of the effective population size and the rate of fixation of deleteriousmutations. genetics, en prensa.

SAntoS, J., M. PASCuAl, P. SiMõES, i. FrAgAtA, M. liMA, b. kEllEn, M. SAntoS, A. MArQuES,M. r. roSE y M. MAtoS. (2012). From nature to the laboratory: the impact of founder effectson adaptation. Journal of Evolutionary biology, 25: 2607-2622.

SAnturE, A. w. y J. wAng (2009). the joint effects of selection and dominance on the QST –FST contrast. genetics, 181: 259-276.

SAurA, M., A. CAbAllEro, P. CAbAllEro y P. MorÁn (2008). impact of precocious male parron the effective size of a wild population of Atlantic salmon. Freshwater biology, 53: 2375-2384.

SChlutEr, d. (2001). Ecology and the origin of species. trends in Ecology and Evolution, 16:372-380.

ShAw, F. h., C. J. gEyEr y r. g. ShAw (2002). A comprehensive model of mutations affectingfitness and inferences for Arabidopsis thaliana. Evolution, 56: 453-463.

ShAw, r. g. y J. r. EttErSon (2012). rapid climate change and the rate of adaptation: insightfrom experimental quantitative genetics. new Phytologist, 195: 752-765.

ShriMPton, A. E. y A. robErtSon (1988). the isolation of polygenic factors controlling bristlescore in Drosophila melanogaster. ii. distribution of third chromosome bristle effects withinchromosome sections. genetics, 118: 445-459.

SiMMonS, M. J y J. F. Crow (1977). Mutations affecting fitness in drosophila populations.Annual review of genetics, 11: 49-78.

SlAtE, J. y J. M. PEMbErton (2002). Comparing molecular measures for detecting inbreedingdepression. Journal of Evolutionary biology, 15: 20-31.

SMith, S. P. y A. MAki-tAnilA (1990). genotypic covariance matrices and their inverses formodels allowing dominance and inbreeding. genetics Selection Evolution, 23: 65-91.

SniEgowSki, P. d. y P. J. gErriSh (2010). beneficial mutations and the dynamics of adaptationin asexual populations. Philosophical transactions of the royal Society of london, Seriesb, 365: 1255-1263.

SorEnSEn, d. y d. giAnolA (2002). Likelihood, Bayesian and MCMC Methods in QuantitativeGenetics. Springer-verlag, new york, EE.uu.

SorEnSEn, d. A. y b. w. kEnnEdy (1984). Estimation of genetic variances from unselectedand selected populations. Journal of Animal Science, 58: 1097-1106.

Soulé, M. E., (1980). thresholds for survival: maintaining fitness and evolutionary potential.Págs. 151-169 en Conservation Biology: An Evolutionary-Ecological Perspective. Coord.M. E. Soulé y b. A. wilcox. Sinauer, Sunderland, Massachusetts, EE.uu.

SPitzE, k. (1993). Population structure in Daphnia obtusa: quantitative genetic and allozymicvariation. genetics, 135: 367-374.

StErn, C. (1973). Principles of Human Genetics. Freeman, San Francisco, EE.uu.SvEd, J. A. (1971). linkage disequilibrium and homozygosity of chromosome segments in finite

populations. theoretical Population biology, 2: 125-141.tAFt, h. r. y d. A. roFF (2012). do bottlenecks increase additive genetic variance? Conservation

genetics, 13: 333-342.

18 Genética cuantitativa

Page 19: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

tAkAhAtA, n. (1983). gene identity and genetic differentiation of populations in the finite islandmodel. genetics, 104: 497-512.

tAnkSlEy, S.d. (1993). Mapping polygenes. Annual review of genetics, 27: 205-233.thE uk10k ConSortiuM (2015). the uk10k project identifies rare variants in health and dis-

ease. nature, 526: 82-90.thornton, k., A. ForAn y A. long (2013). Properties and modeling of gwAS when complex

disease risk is due to non-complementing, deleterious mutations in genes of large effect.PloS genetics, 9: e1003258.

toro, M. A., C. bArrAgÁn, C. óvilo, J. rodrigAñEz, C. rodríguEz y l. Silió (2002). Esti-mation of coancestry in iberian pigs using molecular markers. Conservation genetics, 3:309-320, 2002.

toro, M. A., l. A. gArCíA-CortéS y A, lEgArrA (2011). A note on the rationale for estimatinggenealogical coancestry from molecular markers. genetics Selection Evolution, 43: 27.

toro, M. A. y M. PérEz-EnCiSo (1990). optimization of selection response under restrictedinbreeding. genetics Selection Evolution, 22: 93-107.

trAill, l. w., C. J. A. brAdShAw y b. w. brook (2007). Minimum viable population size: ameta-analysis of 30 years of published estimates. biological Conservation, 139: 159-166.

truSSEll, g. C. (1996). Phenotypic plasticity in an intertidal snail: the role of a common crabpredator. Evolution, 50: 448-454.

turElli, M. (1984). heritable genetic variation via mutation-selection balance: lerch’s zetameets the abdominal bristle. theoretical Population biology, 25: 138-193.

uEMoto, y., r. Pong-wong, P. nAvArro, v. vitArt, C. hAywArd, J. F. wilSon, i. rudAn,h. CAMPbEll, n. d. hAStiE, A. F. wright y C. S. hAlEy (2013). the power of regionalheritability analysis for rare and common variant detection: simulations and application toeye biometrical traits. Frontiers in genetics, 4: 232.

vAn buSkirk, J. y y. willi (2006). the change in quantitative genetic variation with inbreeding.Evolution, 60: 2428-2434.

vAn rAdEn, P. M. (2008). Efficient methods to compute genomic predictions. Journal of dairyScience, 91: 4414-4423.

vEnCovSky, r., l. J. ChAvES y J. CroSSA (2012). variance population size for dioecious species.Crop Science, 52: 79-90.

vErMEulEn, C. J. y r. biJlSMA (2004). Characterization of conditionally expressed mutantsaffecting age-specific survival in inbred lines of Drosophila melanogaster: lethal conditionsand temperature-sensitive periods. genetics, 167: 1241-1248.

viA, S. (2012). divergence hitchhiking and the spread of genomic isolation during ecologicalspeciation-with-gene-flow. Philosophical transactions of the royal Society of london,Series b, 367: 451-460.

vilAS, A. (2014). Caracterización y Gestión de la Diversidad Genética en Poblaciones Estruc-turadas. tesis doctoral. universidad de vigo.

vilAS, A., A. PérEz-FiguEroA y A. CAbAllEro (2012). A simulation study on the performanceof differentiation-based methods to detect selected loci using linked neutral markers. Journalof Evolutionary biology, 25: 1364-1376.

vilAS, A., A. PérEz-FiguEroA, h. QuESAdA y A. CAbAllEro (2015). Allelic diversity forneutral markers retains a higher adaptive potential for quantitative traits than expected het-erozygosity. Molecular Ecology, 24: 4419-4432.

Bibliografía web 19

Page 20: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

vinkhuyzEn, A. A., n. r. wrAy, J. yAng, M. E. goddArd y P. M. viSSChEr (2013). Estimationand partition of heritability in human populations using whole-genome analysis methods.Annual review of genetics, 47: 75-95.

viSSChEr, P. M. y M. E. goddArd (2015). A general unified framework to assess the samplingvariance of heritability estimates using pedigree of marker-based relationships. genetics,199: 223-232.

viSSChEr, P., M. brown, M. MCCArthy y J. yAng (2012). Five years of gwAS discovery.American Journal of human genetics, 90: 7-24.

vitEziCA, z. g., i. AguilAr, i. MiSztAl y A. lEgArrA (2011). bias in genomic predictionsfor populations under selection. genetical research, 93: 357-366.

voight, b. F., S. kudArAvAlli, x. wEn y J. k. PritChArd (2006). A map of recent positiveselection in the human genome. PloS biology, 4: e72.

wAdE, M. J. y C. J. goodnight (1998). the theories of Fisher and wright in the context ofmetapopulations: when nature does many small experiments. Evolution, 52: 1537-1553.

wAgnEr, g. P. y J. zhAng (2011). the pleiotropic structure of the genotype–phenotype map:the evolvability of complex organisms. nature reviews genetics, 12: 204-213.

wAhlund, S. (1928). zusammensetzung von populationen und korrelationserscheiningen vomstandpunkt der vererbungslehre aus betrachtet. hereditas, 11: 65-106.

wAllACE, b. (1975). hard and soft selection revisited. Evolution, 29: 465-473.wAlSh, b. y M. lynCh (2009). Genetics and Analysis of Quantitative Traits. Vol. 2: Evolution

and Selection of Quantitative Traits. disponible en:http://nitro.biosci.arizona.edu/zbook/newvolume_2/newvol2.html.

wAng, J. y A. CAbAllEro (1999). developments in predicting the effective size of subdividedpopulations. heredity, 82: 212-226.

wAng, J. (1997). More efficient breeding systems for controlling inbreeding and effective sizein animal populations. heredity, 79: 591-599.

— (2009). A new method for estimating effective population sizes from a single sample of mul-tilocus genotypes. Molecular Ecology, 18: 2148-2164.

— (2004). Monitoring and managing genetic variation in group breeding populations withoutindividual pedigrees. Conservation genetics, 5: 813-825.

wAng, J. y w. g. hill (2000). Marker assisted selection to increase effective population sizeby reducing Mendelian segregation variance. genetics, 154: 475-489.

wAng, J., E. SAntiAgo y A. CAbAllEro (2016). Prediction and estimation of effective populationsize. heredity, doi:10.1038/hdy.2016.43.

wAPlES, r. S. (2005) genetic estimates of contemporary effective population size: to what timeperiods do the estimates apply? Molecular Ecology, 14: 3335-3352.

wEbEr, k. E y l. t. digginS (1990). increased selection response in larger populations. ii.Selection for ethanol vapor resistance in Drosophila melanogaster at two population sizes.genetics, 125: 585-97.

wEbEr, k. E. (2004). Population size and long-term selection. Plant breeding reviews, 24 Parti: 249-268.

wEi, M., A. CAbAllEro y w. g. hill (1996). Selection response in finite populations. genetics,144: 1961-1974.

wEir, b. S. y C. C. CoCkErhAM (1984). Estimating F-statistics for the analysis of populationstructure. Evolution, 38: 1358-1370.

20 Genética cuantitativa

Page 21: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

wEllEr, J. i. (2009). Quantitative Trait Loci Analysis in Animals. Segunda edición, CAbi,wallingford, oxford, reino unido.

wEltEr, d., J. MACArthur, J. MorAlES, t. burdEtt, P. hAll, h. JunkinS, A. klEMM, P.FliCEk, t. MAnolio, l. hindorFF y h. PArkinSon. (2014). the nhgri gwAS Catalog,a curated resource of SnP-trait associations. nucleic Acids research, 42 (database issue):d1001-d1006. https://www.ebi.ac.uk/gwas/

whitloCk, M. C. (1999). neutral additive genetic variance in a metapopulation. geneticalresearch, 74: 215-221.

— (2008). Evolutionary inference from QST. Molecular Ecology, 17: 1885-1896.— (2011). G´ST and D do not replace FST. Molecular Ecology, 20: 1083-1091.whitloCk, M. C. y n. h. bArton (1997). the effective size of a subdivided population.

genetics, 146: 427-441.whitloCk, M.C. y d. bourguEt (2000). Factors affecting the genetic load in drosophila: syn-

ergistic epistasis and correlations among fitness components. Evolution, 54: 1654-1660.whitloCk, M. C. y r. bürgEr (2004). Fixation of new mutations in small populations. Págs.

155-170 en Evolutionary Conservation Biology. Coord. r. Ferrière, u. dieckmann y d.Couvet. Cambridge university Press, Cambridge, reino unido.

williAMS, S. E. y E. A. hoFFMAn (2009). Minimizing genetic adaptation in captive breedingprograms: A review. biological Conservation, 142: 2388-2400.

wilSon, S. P., h. d. goodAlE, w. h. kylE y E. F. godFrEy (1994). long term selection forbody weight in mice. Journal of heredity, 62: 228-234.

witzEnbErgEr, k. A. y A. hoChkirCh (2011). Ex situ conservation genetics: a review ofmolecular studies on the genetic consequences of captive breeding programmes for endan-gered animal species. biodiversity and Conservation, 20: 1843-1861.

wolF, J. b., E. d. brodiE iii, A. J. ChEvErud, A. J. MoorE y M. J. wAdE (1998). Evolutionaryconsequences of indirect genetic effects. trends in Ecology and Evolution, 13: 64-69.

wood, A., t. ESko, J. yAng, S. vEdAntAM, t. PErS, S. guStAFSSon, A. Chun, k. EStrAdA,J. luAn, z. kutAlik, et al. (2014). defining the role of common variation in the genomicand biological architecture of adult human height. nature genetics, 46: 1173-1186.

woolliAMS, J. A. y r. thoMPSon (1994). A theory of genetic contributions. Proceedings ofthe 5th world Congress on genetics Applied to livestock Production, 19: 127-134.

wrAy, n. r., J. A. woolliAMS y r. thoMPSon (1994). Predicting of rates of inbreeding inpopulations undergoing index selection. theoretical and Applied genetics, 87: 878-892.

wrAy, n. r., M. E. goddArd y P. M. viSSChEr (2007). Prediction of individual genetic riskto disease from genome-wide association studies. genome research, 17: 1520-1528.

wright, S. (1921). Systems of mating. genetics, 6: 111-178.— (1922). Coefficients of inbreeding and relationship. American naturalist, 56: 330-338.— (1931). Evolution in Mendelian populations. genetics, 16: 97-159.— (1933). inbreeding and homozygosis. Proceedings of the national Academy of Sciences of

the u.S.A., 19: 411-420.— (1934). Physiological and evolutionary theories of dominance. American naturalist, 67: 24-

53.— (1938). Size of population and breeding structure in relation to evolution. Science, 87: 430-

431.— (1943). isolation by distance. genetics, 28: 114-138.— (1951). the genetical structure of populations. Annals of Eugenics, 15: 323-354.

Bibliografía web 21

Page 22: 00 alfabetizaciones (prel.) - Editorial Síntesis Genetica... · 4 Genética cuantitativa —(1877). The Different Forms of Flowers on Plants of the Same Species. John Murry, london,

— (1952). the genetics of quantitative variability. Págs. 5-41 en Quantitative Inheritance, herMajesty´s Stationary office, Agricultural research Council, london, reino unido.

— (1969). Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies.university of Chicago Press, Chicago, EE.uu.

— (1977). Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolu-tionary Deductions. university of Chicago Press, Chicago, EE.uu.

wu, M. C., S. lEE, t. CAi, y. li, M. boEhnkE y x. lin (2011). rare-variant association testingfor sequencing data with the sequence kernel association test. American Journal of humangenetics, 89: 82-93.

yAng, J., b. bEnyAMin, b. MCEvoy, S. gordon, A. hEndErS, d. nyholt, P. MAddEn, A.hEAth, n. MArtin, g. w. MontgoMEry, M. E. goddArd y P. M. viSSChEr (2010). Com-mon SnPs explain a large proportion of the heritability for human height. nature genetics,42: 565-569.

yAng, J., A. bAkShi, z. zhu, g. hEMAni, A. E. vinkhuyzEn, S. h. lEE, M. r. robinSon, J.r. b. PErry, i. M. noltE, J. v vAn vliEt-oStAPtChouk, h. SniEdEr, liFElinES CohortStudy, t. ESko, l. MilAni, r. Mägi, A. MEtSPAlu, A. hAMStEn, P. k. MAgnuSSon, n.l. PEdErSEn, E. ingElSSon, n. SorAnzo, M. C. kEllEr, n. r. wrAy, M. E. goddArdy P. M. viSSChEr (2015). genetic variance estimation with imputed variants finds negligiblemissing heritability for human height and body mass index. nature genetics, 47: 1114-1120.

yonEzAwA, k. (1997). Effective population size of plant species propagating with mixed sexualand asexual reproduction system. genetical research, 70: 251-258.

yoo, b. h. (1980). long-term selection for a quantitative trait in large replicate populations ofDrosophila melanogaster. i. response to selection. genetical research, 35: 1-17.

yulE, g. u. (1902). Mendel´s laws and their probable relation to intra-racial heredity. newPhytologist, 1: 193-207, 222-238.

zAitlEn n., P. krAFt, n. PAttErSon, b. PASAniuC, g. bhAtiA, S. PollACk y A. l. PriCE(2013). using extended genealogy to estimate components of heritability for 23 quantitativeand dichotomous traits. PloS genetics, 9: e1003520.

zhAng, x.-S. y w. g. hill (2005). Predictions of patterns of response to artificial selection inlines derived from natural populations. genetics, 169: 411-425.

zEng, z.-b, d. houlE y C. C. CoCkErhAM (1990). how informative is wright’s estimator ofthe number of genes affecting a quantitative character. genetics, 126: 235-247.

zuC, o., E. hEChtEr, S. r. SunyAEv y E. S. lAndEr (2011). the mistery of missing heritability:genetic interactions create phantom heritability. Proceedings of the national Academy ofSciences of the u.S.A., 109: 1193-1198.

22 Genética cuantitativa