Transcript
Page 1: Instructor : Po-Yu Kuo 教師 : 郭柏佑

Instructor : Po-Yu Kuo

教師:郭柏佑

Lecture3: Design Technique for Three-Stage Amplifiers

EL 6033類比濾波器 ( 一 )

Analog Filter (I)

Page 2: Instructor : Po-Yu Kuo 教師 : 郭柏佑

2

Outline

Introduction Structure and Hybrid-π Model Stability Criteria Circuit Structure

Page 3: Instructor : Po-Yu Kuo 教師 : 郭柏佑

3

Why We Need Three-Stage Amplifier? Continuous device scaling in CMOS technologies lead to decrease in

supply voltage

High dc gain of the amplifier is required for controlling different power management integrated circuits such as low-dropout regulators and switched-capacitor dc/dc regulators to maintain the constant of the output voltage irrespective to the change of the supply voltage and load current.

Page 4: Instructor : Po-Yu Kuo 教師 : 郭柏佑

4

High DC Gain in Low-Voltage Condition Cascode approach: enhance dc gain by stacking up transistors vertically by

increasing effective output resistance (X)

Cascade approach: enhance dc gain by increasing the number of gain stages horizontally (Multistage Amplifier)

Gain of single-stage amplifier [gmro]~20-40dB

Gain of two-stage amplifier [(gmro)2]~40-80dB

Gain of three-stage amplifier [(gmro)3]~80-120dB, which is sufficient for most applications

Page 5: Instructor : Po-Yu Kuo 教師 : 郭柏佑

5

Challenge and Soultion Three-stage amplifier has at least 3 low-frequency poles (each gain stage

contributes 1 low-frequency pole) Inherent stability problem

General approach: Sacrifice UGF for achieving stability

Nested-Miller compensation (NMC) is a classical approach for stabilizing the three-stage amplifier

Page 6: Instructor : Po-Yu Kuo 教師 : 郭柏佑

6

Structure of NMC

DC gain=(-A1)x(A2)x(-A3)=(-gm1r1) x(gm2r2) x(-gmLrL)

Pole splitting is realized by both

Both Cm1 and Cm2 realize negative local feedback loops for stability

Page 7: Instructor : Po-Yu Kuo 教師 : 郭柏佑

7

Hybrid-π Model

Structure

Hybrid-π Model

Hybrid- model is used to derive small-signal transfer function (Vo/Vin)

Page 8: Instructor : Po-Yu Kuo 教師 : 郭柏佑

8

Transfer Function

Assuming gm3 >> gm2 and CL, Cm1, Cm2 >> C1, C2

NMC has 3 poles and 2 zeros UGF = DC gain p-3dB = gm1/Cm1

mLm

mL

m

mLmLmm

mLm

mm

mL

mLmLmm

in

ov

gg

CCs

g

CsrrrggsC

gg

CCs

g

Csrrrggg

sV

sVsA

2

22

2

22121

2

21222121

11

1

)(

)()(

Page 9: Instructor : Po-Yu Kuo 教師 : 郭柏佑

9

Review on Quadratic Polynomial (1)

When the denominator of the transfer function has a quadratic polynomial as

The amplifier has either 2 separate poles (real roots of D(s)) or 1 complex pole pair (complex roots)

Complex pole pair exists if

20

2

0

1)(w

s

Qw

ssD

2

1

041

20

2

0

Q

wQw

Page 10: Instructor : Po-Yu Kuo 教師 : 郭柏佑

10

Review on Quadratic Polynomial (2)

The complex pole can be expressed using the s-plane:

The position of poles:

2 poles are located at

If , then

03,2 wp

14

22200

3,2 QQ

wj

Q

wp

2/1Q

2200

3,2wj

wp

Page 11: Instructor : Po-Yu Kuo 教師 : 郭柏佑

11

Stability Criteria

Stability criteria are for designing Cm1, Cm2, gm1, gm2, gmL to optimize unity-gain frequency (UGF) and phase margin (PM)

Stability criteria: Butterworth unity-feedback response for placing

the second and third non-dominant pole

Butterworth unity-feedback response is a systematic approach that greatly reduces the design time of the NMC amplifier

Page 12: Instructor : Po-Yu Kuo 教師 : 郭柏佑

12

Butterworth Unity-Feedback Response(1)

Assume zeros are negligible 1 dominant pole (p-3dB) located within the passband, and 2

nondominant poles (p2,3) are complex and |p2,3| is beyond the UGF of the amplifier

Butterworth unity-feedback response ensures the Q value of p2,3 is

PM of the amplifier

where |p2,3| =

2/1

60

/1

/tantan180

23,2

3,21

3

1

pUGFQ

pUGF

p

UGFPM

dB

)/( 232 mLmm CCgg

Page 13: Instructor : Po-Yu Kuo 教師 : 郭柏佑

13

Butterworth Unity-Feedback Response(2)

Page 14: Instructor : Po-Yu Kuo 教師 : 郭柏佑

14

Circuit Implementation

Schematic of a three-stage NMC amplifier

Page 15: Instructor : Po-Yu Kuo 教師 : 郭柏佑

15

Structure of NMC with Null Resistor (NMCNR)

Structure

Hybrid-π Model

Page 16: Instructor : Po-Yu Kuo 教師 : 郭柏佑

16

Transfer function

Assume gmL >> gm2, CL, Cm1, Cm2 >> C1, C2

mLm

mLm

mL

m

mLmLmm

mL

mLmLmm

mLm

mL

m

mLmLmm

mLm

mmLmmmLmmmmLmLmm

in

ov

gR

gg

CCs

g

CsrrrggsC

g

Csrrrggg

gg

CCs

g

CsrrrggsC

gg

RgCCsgRCRCsrrrggg

sV

sVsA

1if

11

1

11

)1()/1(1

)(

)()(

2

22

2

22121

12121

2

22

2

22121

2

212212121

Page 17: Instructor : Po-Yu Kuo 教師 : 郭柏佑

17

Structure of Nested Gm-C Compensation (NGCC)

Structure

Hybrid-π Model

Page 18: Instructor : Po-Yu Kuo 教師 : 郭柏佑

18

Transfer function

Assume CL, Cm1, Cm2 >> C1, C2

2211

2

22

2

22121

2121

2

22

2

2222121

21

11212

2

2222121

&if

11

)(11

)()(1

)(

)()(

mmfmmf

mLm

mL

m

mLmLmm

LmLmm

mLm

mL

mLm

mLmmfmLmLmm

mLmm

mmfmm

mLm

mmfmLmLmm

in

ov

gggg

gg

CCs

g

CsrrrggsC

rrrggg

gg

CCs

gg

gggCsrrrggsC

ggg

ggCCs

gg

ggCsrrrggg

sV

sVsA