Transcript
Page 1: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

AmiensAmiens

US DOE EFRC Summit and Forum

Washington DCRenaissance Penn Quarter Hotel

May 25th-27th, 2011

Jean Marie TARASCON

Key challenges and new trends inbattery research

Page 2: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Outline

Personal view of the future of batteries

Present ongoing research activities to tackle them

Conclusions ?

Flash recall on why energy storage …EU and French research structuring initiatives …

Rapid assessement of today’s state of the art in Li-ion batterySpot/highlight present limitations and upcoming issues (recycling)

Mention/discuss a few chemistries beyond Li-ion

A few comments beyond science

Page 3: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

PHOTO-SYNTHESIS

BIOMASS

-CHOH-

CO 2

O2

O2

SUN

Energy

ENERGY

H2O

-CHOH-

COMBUSTION

7 kWh/kg

4.3 kWh/kg

h

6 CO2 + 6 H2O

C8H12O8 + 6 O2

H2O

CO2

O2

O2

PHOTO-SYNTHESIS

BIOMASS

-CHOH-

CO 2

O2

O2

SUN

Energy

ENERGY

H2O

-CHOH-

COMBUSTION

7 kWh/kg

4.3 kWh/kg

h

6 CO2 + 6 H2O

C8H12O8 + 6 O2

6 CO2 + 6 H2O

C8H12O8 + 6 O2

H2O

CO2

O2

O2

FOSSIL FUELS13 kWh/kg

Millionsof years

95 MBa/day

3.7 milliards1.35 tep/hab

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

3.7 milliards1.35 tep/hab

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

3.7 Billions1.35 tep/hab

World AnnualConsumption

108 tep

6 Billions1.7 tep/hab

8.2 Billions2.2 tep/hab

3.7 milliards1.35 tep/hab

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

3.7 milliards1.35 tep/hab

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

20001970 2030

5

10

17.7

Consommation Mondiale Annuelle

(109 tep)8.2 milliards2.2 tep/hab

6 milliards1.7 tep/hab

6 892 760 01213:00 aujourd’hui

3.7 Billions1.35 tep/hab

World AnnualConsumption

108 tep

6 Billions1.7 tep/hab

8.2 Billions2.2 tep/hab

14 TW

28 TW

Renewable EnergiesRenewable EnergiesRenewable Energies

WHY ENERGY STORAGE ?

Bill

ions

de

bar

ils /

an

Années Découvertes à venir

Consommation

Réserves découvertes

Bill

ions

de

bar

ils /

an

Années Découvertes à venir

Consommation

Réserves découvertes

gap

Consumption

Discovery

Projected discoveriesyears

Page 4: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Energy storage:Another challenge of the 21st century

Chemical Electric

To improve-create new energy storage technologies

Wind Solar Oceans

To better handle therenewable energy resources

of our planet

MWh kWhElectric

To favour thedevelopment of electric vehicles

Wind Solar Oceans

To better handle therenewable energy resources

of our planet

MWh kWhElectric

To favour thedevelopment of electric vehicles

To develop better electrochemical energy storage devices

Batteries

Page 5: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Restructuring of the scientific and technological landscape via the creation of new federative tools

Page 6: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

MaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & Conversion

ALISTOREEducation Programme

http://www.u-picardie.fr/mundus_MESC

MaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & Conversion

ALISTOREEducation Programme

http://www.u-picardie.fr/mundus_MESC

MaterialsMaterials for for EnergyEnergy Storage & ConversionStorage & Conversion

ALISTOREEducation Programme

http://www.u-picardie.fr/mundus_MESChttp://www.u-picardie.fr/mundus_MESCE

I

R

E

I

R

ELITE (75 k€/an) SILVER (25 k€/an)

11

4

EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasol

CEARenaultVolkswagenRobert Bosch

Aeronautic &Space users

PV’s usersCar makers MaterialMakers

BatteryMakers

Cell-phonemakers

15 members15 members

Business of industrial club membersBusiness of industrial club members

ALISTOREALISTORE--ERI Industrial Club compositionERI Industrial Club composition

ELITE (75 k€/an) SILVER (25 k€/an)

11

4

EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasol

CEARenaultVolkswagenRobert Bosch

ELITE (75 k€/an) SILVER (25 k€/an)

11

4

ELITE (75 k€/an) SILVER (25 k€/an)

11

4

EDFSaftArkemaUmicoreSolvionicHoneywellSolvayESATOTALBASFSasol

CEARenaultVolkswagenRobert Bosch

Aeronautic &Space users

PV’s usersCar makers MaterialMakers

BatteryMakers

Cell-phonemakers

15 members15 members

Business of industrial club membersBusiness of industrial club members

ALISTOREALISTORE--ERI Industrial Club compositionERI Industrial Club composition

18 European Research Labs_

European Initiative: ALISTORE-ERILaunched in 2004 (FP6) with the incorporation of industries in 2008

The Research/Innovation/EducationTriangle

Page 7: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Partenaires Industriels

Management/Direction

Research CenterCRA CRTI

● University + CNRS labs

● Pre-transfert unitsResearchers + engineers

Bordeaux, Nantes, Montpellier, Toulouse, Orleans, Pau, AmiensMarseille,Paris-tech, …….

Technology Research and integration Center● Nationnal Labs (EPICs )CEA, INERIS, IFP, …

- Industrialisation platforms- Safety platform- BMS platform- Testing platform

Industrial Club(14 Members)

CI

R hR hMaillons nécessaires pour l’intégration rapide en un produit fini.

Intégrer et fédérer tous les acteursTo ensure a continuum from research to development via

prototyping and then a quick transfer to our industriesMaillons nécessaires pour l’intégration rapide en un produit fini.

Intégrer et fédérer tous les acteursTo ensure a continuum from research to development via

prototyping and then a quick transfer to our industries

Research and Technology National Network on Electrochemical Energy Storage (RS2E)

(Created July 2010)

Page 8: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Primary cells

Rechargeable(Batteries)

Li / S

CuO

CuS

CuOCu4O(PO4)2

Solidcathodes

I2 SO2Liquid

cathodes

SOCl2

CFx

MnO2Ag2CrO4

Ag2CrO4

CrOx

Li/I2Li/SOCl2

Li/SO2Li/MnO2 Li/FeS2

Li/Cfx

Bi2Pb2O5

Bi2O3

FeS2

Ag2V4O11

Composés d’insertionTiS2

Electrolyte polymèrePEO

Chlorides, sulfides, fluorides…

Plastifiants

V6O13

NbSe3

NiPS3

MoS2

MnO2LiCoO2LiNiO2

Li/PEO/VOx

Li ionLiCx

LiCx/LiCoO2

LiMn2O4LiNCALiNMC

LiFePO4

19491949

19601960

19701970

19801980

19901990

20062006

Jan Hajek

?

Genealogic tree for Li-based batteries

From . Broussely (adapted)

Li-airLi-air

Li-airLi-air

Li-airLi-air

Page 9: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

V

Non-aqueous electrolyte

Cathode Anode

Li+

Li+

3.0 V

+

LiMnLiMn22OO444.2- 5 V

LiCoOLiCoO22--NMCNMC4.2- 4.6 V

LiFeSOLiFeSO44FF3.6 - 4 V

LiLi22FeSiOFeSiO44

LiLiLiFePOLiFePO443.45 V

-

ac

TiO2(B)TiO2(B)1.8 V

LiLi44TiTi55OO12121.5 V

LiLixxSiSiyy0.4 VLiLixxCC66

0.2 V

The Li-ion technology:A versatile technology in terms of potential

Page 10: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

The Li-ion technology:a versatile technology in terms of power

Battery

Supercapacitors

ENERGY DENSITY (Wh/kg) AUTONOMY

SP

EC

IFIC

PO

WE

R (W

/kg)

S

PE

ED

Page 11: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

# ## ## #

The Li-ion technology: a large potential market

………… WhWh kWh kWh MWhMWh …………………… WhWh kWh kWh MWhMWh …………

2 MW Li-ion storage

EV’s pack

Different energy domainsDifferent materialsDifferent safety and cost aspects

186505-10Wh 30-100kWh

Page 12: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

210Wh/kg

625Wh/l

Is it sufficient for EVs applications ?

Today’s state of the art performancefor the Li-ion technology

Page 13: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

ForesightForesight

HigherHigher RateRate

HigherHigher EnergyEnergy

LowerLower CostCost

HigherHigher SafetySafety

ForesightForesight

HigherHigher RateRate

HigherHigher EnergyEnergy

LowerLower CostCost

HigherHigher SafetySafety

Challenges Facing batteries for EVsapplications

LowerLower CostCostLowerLower CostCostSustainabilitySustainability

Materials/processes having the minimum environmental footprint and lowest possible life cycle cost

500 € /kWh

130Wh/kg

/ 2 x2x2

*Source:Nedo (2009)

500 € /kWh

130Wh/kg

/ 2 x2Energyx2

*Source:Nedo (2009)

Cost

Durability

Page 14: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

The Li-ion batteries: Sustainable aspects

Page 15: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Energy-demanding step(e.g. high CO2 released

10 Billionbatteries peryear in 2010: compulsory

recycling

Oresextraction

Battery +

_

Ashes with

Oresextraction

Electrode elaboration via HT processes

Recycling

Purification

+

_

metal co

ntents

Battery

ass

embly

Thermal treatment

The way we are making batteries today:

Energy-demanding step

Energy needed ≈ 287 kWhFabrication of a battery of 1 kWh

CO2 rejected: ≈ 110 kgNeed to make more sustainable and “greener” Li-ion batteries

Life Cycle Analysis of Large-size Li-ion secondary batteries, K. Ishihara et al. (2009)

Page 16: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Moleculesextraction

CO2 +

_Biomasse

Assembling

Recycling

2 +

_

Elaboration of electrochemically active materials via the

“green” chemistry concepts

Biomass

Ideal Situation

Routes followed• Elaboration of inorganic materials via eco-efficient processes• Use of organic materials as renewable Li electrodes• Other chemistries : Na-ion

Tomorrow’s needs and challenges:Develop sustainable Li-ion batteries

Page 17: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Ceramic process Solvothermal

process Hydrothermalprocess Ionothermal

process Bio-mineralizationprocess

Bulk NanoLower temperatures Economy of atoms

700°C 120°C 180°C

q

NN NN

TFSI -

NN NN

TFSI -

q

NN NN

TFSI -

NN NN

TFSI -

200°C 60°CSolution reactionsSolid state

reactions

Towards energy saving processesfor materials preparation

Page 18: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Ionothermal approach to the synthesis of inorganic compounds

N. Recham, M. Armand and J-M. Tarascon Patent Filed N°: 2110141 (2008)

Ionic liquidsMolten salts at ambient temperature

Solvent recycling : classic organic route washing CH2Cl2-centrifugation

Time= 5hTime= 5hTime= 5h

Flask

Synthesis at ambient pressure up toT= 300-350°C

°CC°CC

Autoclave

NN NN

TFSI -

NN NN

TFSI -

NN NN

TFSI -

NN NN

TFSI -No vapour tension

Thermal stability > 300°C

Non flammable

Good solvent for numerous salts and polymers

cations-anions combinations (estimated at 15000, 1000 realized)

Page 19: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

1 5 2 0 2 5 3 0 3 5 4 01 5 2 0 2 5 3 0 3 5 4 02, CoK

?

? ? ????

?

(200)

(101)

(210) (011)(111)

(211)

(301)

1h

3h

5h

7h

24h

Inte

nsity

LiFePO4 FeC2O4.2H2O Li4P2O7 Fe3O4 LiPO3

1h

24h

5h

2 Co K

24 hrs

7 hrs

5 hrs

3 hrs

1 hrs

mm1

100-200nm

mm1

100-200nm

N. Recham, L. Dupont, D. Larcher, M. Armand, and J-M. Tarascon Chemistry of Materials 21(6), (2009), 1096-1107.

LiH2PO4 + FeC2O4.2H2O

LiFePO4 + 3 H2O + CO2

EMI-TFSI

220-250°C

Ionothermal synthesis of LiFePO4: The case example

Page 20: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Ionic liquids as reacting media: Beneficial Aspects

Synthesis of numerous known phases at T =200°C (ceramic routes T 700°C)

Na2Fe(Mn)PO4F

LiFe(Mn)PO4F

LiFePO4

Li2FeSiO4

Changing and adjusting the size and morphology of the powders

NN

+N

F3

CO

2S

SO

2C

F3

-

NN

+C

N

NF

3C

O2

SS

O2

CF

3-

100-200nm100 à 200nm100-200nm100 à 200nm

Page 21: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

New electrochemical active materials Via ionothermal synthesis

New family of Fluorosulfates AMSO4F, A= Li, Na; M =Fe, Ni, Co

N. Recham, J-M. Tarascon et al.: Nat Mater. 2010, 9(1), 68-75.

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1po

tent

ial v

s. L

i+ /Li

x in LixFeSO

4F

60

80

10 0

12 0

14 0

16 0

0 10 20 30 40 50

Cap

acity

(mA

h/g)

N um be r o f c yc le

3.6 V

140 mAh/g

Unstable: Decompose for T> 320°CSoluble in water

285°C, 24hMSO4. H2O + LiF LiMSO4F

EMI-TFSI

285°C, 24hMSO4. H2O + LiF LiMSO4F

EMI-TFSI

Serious contender to LiFePO4

P. Barpanda, J-M. Tarascon et al.: Angewendte . 2011, 9(1), 68-75.

LiFeSO4F LiZnSO4F LiMnSO4F

Tavorite TripliteSillimaniteP-1 Pnma C2/c

Page 22: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Fluorosulfates LiMSO4F: a true challenge for theorists

LiFeSO4F LiZnSO4F LiMnSO4F

Tavorite TripliteSillimaniteP-1 Pnma C2/c

Why different structures depending on M ?DFT + U calculations give little thermodynamic differences; less than kBT…??.

Make theory more predictive: To reach the point where new compounds together with their properties can be predicted

Key challenge …

Unstable: Decomposes for T> 320°C

Page 23: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Towards the eco-efficient elaborationof electrode materials: a few tendencies

Return to life chemistry

● To develop bio-assisted, bio-inspired or bio-mimetic synthesis approaches to

elaborate known or new inorganic materials

Fe2O3

Can we make electrode materials at toom temperature ?

Page 24: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

From bacteria to electrode materials

bio-mineralization approachBacillus pasteurii « Urease » kinetically controls urea hydrolysis

Collaboration: F. Guyot (Université de Paris VI)

LiFePO4 synthesis

T = 60°CH2N NH2

OLiH2PO4 + + FeSO4.7H2O LiFePO4 + (NH4)2SO4

50 nm

020

10-1000

11-1

12-1

010dd

8 hours

50 nm

Page 25: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Fabrication of Genetically Engineered Lithium Ion Batteries

Electrodes from genetically modified viruses+

-

aa--FePOFePO44/CNT/CNT

CoCo33OO44/Au/Au

ModifiedM13 virusModified

M13 virus

+

-

aa--FePOFePO44/CNT/CNT

CoCo33OO44/Au/Au

ModifiedM13 virusModified

M13 virusaa--FePOFePO44/CNT/CNT

CoCo33OO44/Au/Au

ModifiedM13 virusModified

M13 virusModified

M13 virusModified

M13 virusModified

M13 virusViruses are Used as

building blocks,templates

Growth of nano-composite

conducting electrodes

Bio-mineralization or virus engineering offers a new approach to design sustainable electrodes

J-M. Tarascon; Nature nanotechnology, 4-341-342(2009)Nam, K.T. et al. Science. 312, 885-888 (2009).

Page 26: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Inorganicelectrodes

Possibility of using

organic electrodesMineral

Further inspiration from life chemistry

Page 27: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Looking for electrochemically active organic electrodes

M2C6O6 (with M = Li, Na, K, Rb and Cs)Get inspiration from the old chemistry on oxocarbons

OO

OO

LiO

LiO

OLiO

LiO

O

O

LiO

LiO

O

O

O

LiO

LiOOxocarbones2

Croconate

Squarate

Deltate

Rhodizonate

2. West, R. & Powell, D. L. New aromatic anions. III. Molecular orbital calculations on oxyganated anions. J. Am. Chem. Soc., 85, 2577-2579 (1963).

1. N. Ravet, C. Michot, M. Armand, Mater. Res. Soc. Symp. Proc., 496, 263-173 (1998).

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6

Pot

entia

l(V

vs.

Li/L

i+ )

x in Li2+xC6O6

4 injected e- / unit formula

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6

Pot

entia

l(V

vs.

Li/L

i+ )

x in Li2+xC6O6

4 injected e- / unit formula

Page 28: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

myo-inositol Lithium Rhodizonate

O

O

O

O

L iO

L iO

. 2 H 2 O

O H

O H

O H

H O

H O

H O

1 ) H N O 3

2 ) O 2 , , Acet. de Li

How to make Li2C6O6 from natural resources ?

Preisler, P. W. & Berger, J. Am. Chem. Soc., 64, 67-69 (1942).

8 % of the dry weight of corn-steeping liquor

6

OH

OH

OH

HO

HO

HO

OPO3H2

OPO3H2

OPO3H2

H2O3PO

H2O3PO

H2O3PO

myo-Inositol

Chemical/enzymaticdiphosphorylation

Phytic-acidFrom

biomass

to

a

ctive electro

de

(25% yield)

Page 29: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

The field of organic chemistry:a fertile domain for sustainable electrodes

Flexibility of the redox potential according to the nature and environment of the electro-active centre

0

2

100 300200 400 500

1

3 Carbonyle

mAh/g

Pot

entie

l (V

vs.

Li)

O

O

OLi

OLiLiO

LiOO

O

OLi

OLiLiO

LiO

Ester

O

O

OLi

LiO

O

O

OLi

LiO

CarboxyleO

-O O

O- Li+

Li+

O

-O

O

-O-O O

O-

O

O-O- Li+

Li+

+

_

O

O

O

O

LiO

LiO O

O

O

O

LiO

LiO

Chem sus chem 2008

JACS 2009

JACS 2010

Nat. Mat. 2009

Chem. Com. 2011

Jr. Mat.Chem 2011

reducing

oxidizinga

Page 30: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Elaboration of the1st organic and bio-compatible Li-ion battery …

Good thermal stabilityGood cycling behaviourPoor performance

x in

00,5

11,5

22,5

33,5

4

2 2,5 3 3,5

Pote

ntia

l/V v

s. L

i 6C 6O6

xC

6O

6

CycledcellCycledcellLi2C6O6/Li6C6O6 Ion cell

More ecological systemsNew concept

Main remaining issue ??

Find highly oxidizing Li-based organic electrodes to be used

as Li reservoir

Li2C6O6 2Li+ + 2e- + C6O6 Li2C6O6 2Li+ + 2e- + C6O6 Li2C6O6 2Li+ + 2e- + C0/CO2

Page 31: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

February 3, 2009Peak Lithium: Will Supply Fears Drive Alternative Batteries?

February 3, 2009Peak Lithium: Will Supply Fears Drive Alternative Batteries?

Tuesday, February 3, 2009Bolivia: The Saudi Arabia of lithium?

Tuesday, February 3, 2009Bolivia: The Saudi Arabia of lithium?

Key numbers:160 000 tons Li2CO3 annual production20-25% for battery sector (>32 000 tons)Roughly 0.5 kg of Li2CO3 per 1kWh battery

Simple estimation if:10 % of the 60 million cars are pure EVs(25kWh): 75 000 tons : half of today’s total production

Li Resources (13 M of T)

●Mineral: ●Salars: ● See water:0.2 ppm

Issues in Lithium resourcesSustainability

BEST Spring, 37-41(2009) US. Geological survey (2007) Under the microscope, MIR (2008)

Page 32: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

A few alternatives

To promote recycling

Simple considerations toproduce 1 Ton of Lithium

250 T 750 T 28 T

● To develop Li-recovery processes Hydro-metallurgy

● Higher availability of precursors

Post-lithium chemistry:the sodium alternative ?

Na-3.04 -2.71Li

3860 1166

Electrode potential (V) Electrode capacity mAh/g)

Na-3.04 -2.71Li

3860 1166

Electrode potential (V) Electrode capacity mAh/g)

Na-3.04 -2.71Li

3860 1166

Electrode potential (V) Electrode capacity mAh/g)

Li1s22s1

Lithium

6.9413

0.534180.50.98 Na

2s23s1Sodium

23.94111

0.97980.9 Li1s22s1

Lithium

6.9413

0.534180.50.98 Na

2s23s1Sodium

23.94111

0.97980.9

Na in Earth: 103 ppmNa in Sea : 105 ppm

● Lower performance than Li-Ion

Potentially cheaper than Lithium chemistry

Reincarnation chemistry of materials will become an

essential part of future battery business

Page 33: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

From Li-ion to Na-ion batteries

Still a material problem

Capacité (mAh/g)

0.5

2.0

1.0

4.5

1.5

2.5

4.0

3.0

3.5

10050 150 200 250

Pot

entie

l (V

vs.

Na+

/Na)

Pos

itive

sN

égat

ives

NaVPO4F

Na0.44MnO2

Na0.6 CoO2

Na0.6 Mo2O4 Nax(MoO2)2 P2O7

NaxC

Na2FePO4F

NaFeSO4F

V2O5

MoO3NaTi2(PO4)3

Na3V2(PO4)3

MoSe2

Na2C8O4H4a

Key Challenge: To find new negative electrode materials ?

1

1 , 5

2

2 , 5

3

3 , 5

4

4 , 5

1 1 , 2 1 , 4 1 , 6 1 , 8 2

Pote

ntia

l (V

) vs

Na+ /N

a

x i n N ax

F e P O4

F

3.1 V

B.L. Ellis , L.F. Nazar et al. .,,Nature Materials 6, 749 – 753, (2007)

1 , 2

1 , 4

1 , 6

1 , 8

2

2 , 2

2 , 4

2 , 6

0 , 5 0 , 6 0 , 7 0 , 8 0 , 9 1

Pot

entia

l (V

vs.

Na+ /N

a)

x i n N ax

V O2

( P )

1.6 V

P. Rozier, J.M. Tarascon et al. (submitted)

Sustainability

y

Poten

tial

Neg

ativ

eP

ositi

ve

Page 34: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Energy aspects

Page 35: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Capacity

Pote

ntia

l (V

vs.

Li+ /L

i)

Energy

Energy= Capacity x Potential

Increased energy density

ab

c

1.75 Li

Li2MnSiO4 60°C

Increased capacity (2e- per 3d-metal?)

Increased potential V (5 V ?)

Vol

tage

x in Li2-xCoPO4F

6V

5V

4V

LiCaCoF6???

Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4

LiMn2O4Ni, Me)O2

6V

5V

4V

LiCaCoF6???

Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4

LiMn2O4Ni, Me)O2

6V

5V

4V

LiCaCoF6???

Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4

LiMn2O4Ni, Me)O2

6V

5V

4V

LiCaCoF6???

Co, Ni)PO4n1.5Ni0.5]O4LiMnPO4

LiMn2O4Ni, Me)O2

ENERGY Short and mid-term developments

Page 36: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Thermal vs. Electrical vehicles

1 liter of gaz2300Wh/Kg

1kg of Li-ion 150Wh/Kg

A factor 15 gap

How to close the gap between Octane vs. Li-ion?

ENERGYENERGY

Which chemistries are around the corner ???

(Revisiting Li-S and Metal- air systems and more so the Li-air system)

Page 37: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Li-S Li-O2

2Li+ + 2e- + S Li2S (E°= 2,27 V )Energy density = 3802 Wh/kg

2Li ++ 2e- + O2 Li2O2 (E°= 3,14 V) Energy density = 5259 Wh/kg

natural, abundant,

cheap

feedstock

≈380 Wh/kg

Factor of 10

≈180 Wh/kg

0,5Li+ + 0,5e- + Li0,5CoO2 LiCoO2 Energy density = 550 Wh/kg

x 3≈ 500 Wh/kg

Factor of 10

What are these “attractive” technologies?What can we expect ?

Page 38: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

The Li-oxygen battery

C_MnO2

C_MnO2

Progresses have been achieved, but major problems remain ..

Nano MnO21000mAh/g

Capacity in mAhg-1 (carbon)

Vol

tage

(vol

ts v

s. L

i)

Collaboration avec P. Bruce: University of St-Andrews, Scottland

0.7 V

Shao-Horn – JACS_132_12170_2010:

Discharge Reaction :Discharge Reaction :2 Li2 Li++ + 2 e+ 2 e-- + O+ O22 LiLi22OO22

O2 + e- O2·-

O2 + e- O2

·-

Page 39: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Li-air _ the numerous challenges

● To reduce the voltage gap ● To master electrode porosity

CathodeAnode● Inherits problems of Li

dendrites

Electrolyte● Master the O2

.- reactivity● O2 solubility, diffusivity

Commercial rechargeable Li-air cells have still a long way to go either at the research or applied levels: Be careful …

Pote

ntia

l

Capacity

Anodes + Cathode +

Electrolyte problems

High fading + poor rate capability

Page 40: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Worldwide Estimated Global installedCapacity energy storage:

Source : www.storagealliance.org

TOTAL: 125,520MW

98%

Batteries:

98%

Pumpedhydro 451 MW

1.5% of the consumption

1980 1990 2000 2010

VehicleVehicleLiLi--ion (Niion (Ni--Co, Co, MnMn, Ni, Ni--MnMn ・・)・・)

Billions of $Billions of $

S tationaryS tationaryNaSNaS , Zn, Zn--Br, ZnBr, Zn--C lC l, R F Ni, R F Ni--MH, LiMH, Li--ion ion

billions of $billions of $S tationaryS tationaryNaSNaS , Zn, Zn--Br, ZnBr, Zn--C lC l, R F Ni, R F Ni--MH, LiMH, Li--ion ion

billions of $billions of $

Stationary market will expand

● Great opportunities for innovative Redox-Flow chemistries

● NaS is stellar

● Li-ion is entering

Mass storage energy (MW) :Could Li-ion play a role ?

Page 41: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Sony

Sony

1990 2005

Conversion

Cathodes (nano)

20151995

Ener

gy d

ensi

ty

Sony

250 Wh/kg, 800Wh/l

A123

2007

??????

2004

LiM

nOmiEV / C0 / Lion

2 MW Li-ion battery

Cathodes

organiques

Futur Futur

Li-air

Futur

x 2 ou 3

Na-ion

chemistry

Li-S

FuturSus

taina

ble de

velop

ment

e

Outlook for Li-ion batteries over the next 20-30 years

Page 42: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Conclusions: Beyond scientific challenges ..

Research funding worldwide (EVs + Batteries)

Is it really a problem of money ?More a problem of managing/structuring for efficient integrationbetween science and technology

Solving energy issues is a worldwide problemFind means/tools to foster worldwide cross-sharing information on pre-competitive topics between each national scientific program

Countries/continentscreate their own programs,

set-up new federative infrastructures

Energy Frontiers Research Centers (US) European Network of Excellence

(ALISTORE-ERI) French Hub (RS2E) in 2010 reuniting

(researchers, engineers, users)

US:US:9,17b€

EU:EU: 1,2b€

ASIA:ASIA:>3,3b€

Page 43: Key challenges and new trends in battery research · Key challenges and new trends in battery research. ... LiFePO4 19491949 19601960 19701970 19801980 19901990 ... EV’s pack Different

Thank you for your attention

ALISTORE_ERI

LiLi

LRCSRS2E


Recommended