Transcript
52-302 .indd
*·**
Young Ho Shin* · Chan Woong Kim**
‘2014 ’ , BK21 4-Zero
. 2016 · .
* BK21 4-Zero BK(BK Assistance Professor, BK21 Plus for Geography Depart-
ment (4-Zero Land Space Creation group), Seoul National University), [email protected]
** (Doctoral Student, Department of Geography, Seoul National University), [email protected]
?
?
? ?
?
?
?
? ?
?
?
?
?
?
: .
“ ” ·
, , .
,
. ‘ ·’ ,
.
· . , , pH, EC, Ca2+,
Mg2+, Na+ . pH , , EC, Ca2+, Mg2+, Na+
. EC(
>) Na+(>)
, (>), EC(>
), Ca2+(>), Mg2+(>), Na+(>)
.
, .
: , , , ,
Abstract : There are a lot of effort for understanding geomorphic processes and providing scientific valuation schemes of mountain wetlands. Geochemical properties of wetland sediments may be considered as signifi- cant indicators for environmental condition of mountain wetlands. However we have not fully understood these according to geomorphic setting. We intended to define geochemical differences between head hollow type wetland and valley type wetland based on geomorphic setting. Our study site, Cheonchuksan (Mt.) Wetland, is located in Wangpicheon basin ecology-landscape conservation area, eastern Korea and has four sub wetlands. We divided four sub wetlands to head hollow type and valley type by its geomorphic setting. There were significant differences in particle sorting, organic matter, pH, EC, Ca2+, Mg2+, and Na+ between two wetland types. Sorting in particle size and pH of sediments from valley type were higher than those from
- 288 -
(Mitsch and Gosselink,
2000). ,
,
(, 2006).

,
,
.

( , 2005).

(
, 2013; , 2013).

,
.

,
. 2014
2015 ‘
’ .

’ ()
.
(2001)
(2001), (2005), (2010a, b),
·(2010), ·(2012),
(2013), (2014), (2014),
(2015), ·(2016)
.
, ,
,

(e.g. , 2003; ,
2006). (2014) ,

. ·(2012) (2015)


.

, , ,

head hollow type. On the other hand, organic matter, EC, Ca2+, Mg2+, and Na+ from head hollow type were higher than those from valley type. We also compared to geochemical properties between wetland sediments and its adjacent soils. In valley type, there were a little geochemical difference, except EC and Na+, between sediment and soil. However, there were significantly differences between sediment and soil in head hollow type. Organic matter, EC, Ca2+, Mg2+, and Na+ of head hollow type wetland sediments were higher than those of adjacent slope soils. These results show that valley type wetland sediments are linked with its adja- cent slope soils, but head hollow type wetland sediments are transformed from its adjacent soils. This study suggest that geochemical properties of wetland sediments should be significant indicators for geomorphic condition of mountain wetlands. Furthermore, it gives useful idea for environmental management scheme based on geodiversity of wetlands.
Key Words : mountain wetland, abandoned paddy wetland, wetland sediment, exchangeable cation ratio, wetland classification
- 289 -
.
, ,

(, 2005;
, 2011). (2014)
· ·
,

. ·(2016)

, · ,
,

.

,

.
,
, ,

.
.


.
, ‘

.
2005 ‘ ·
’ .1)
, , , ,
, , ,


(, 2008).
( 1). 1
4
2 3
.
470~560m, 500~650m
.
(2008) ,
(2015)
,
.
(, 1963),

(coarse loamy, mixed, mesic family of
Typic Dystrudepts) . (
, http://soil.rda.go.kr)
2 3
, 1 4
(coarse loamy, mixed,
mesic family of Typic Dystrudepts)
2).
1971
, 2014 8 10
.
2
.

- 290 -
4~6 .
1
,
4
.

50 ( 36,
14) .
- 291 -
, , (pH),
3). 64

,
(LS230)
sion 8.0(Blott and Pye, 2001) Folk and
Ward(1957) , , ,
, Shepard(1954)
.
(LOI, loss on ignition) ,
pH EC 1:5
. 3g
1M 30ml
,
2.
1 2
3 4
SPSS 21 ANOVA
, Levene
Welch test
.
Scheffe ,
Dunnett
T3 .
.

( 3).
,
(
4)4). 1970
.
1990
( 5)
, 1970
.

(, 2005; , 2007). (2011)

,
, , ,

.
. 1 4

,
.

,
· (e.g. ·, 1999;
;2004, ·, 2009)
. ·(2009)

.

.
,

.

. ·
(1999) (2004)

,
() ,
. 2
3 (head hollow) ,


,
(Terajiama et al., 1997; ·, 2004).

,
. ,


( , 2005)
.

.
,
.


. 100cm
,

.
1 2
, 1, 4,
3, 2 ( 1).
10:1 ,
1
. 1 4

300m 200m
2 3 50m
80m . 1 4

, 2 3

.
,

.

. 1 4


. ,


. 1
4 2 3
.
1 2
1 1
3 4
‘ (valley type wetland)’
‘ (head hollow type)’
. 1
4 ‘ (valley type wetland)’
2 3 ‘ (head hollow type)’
5).

,


.


.
.
Muddy Sand Sandy Mud
( 2).
124.42~139.725 ,
1.



1

• V
• ,

,
• ,
*

,






2

4,211 6.25 S, SW •
• ,

• ,

34,942 16.24
• ,
• ,


• ,



4


• ,


• ,

• ,


- 296 -
. -0.23~-0.12
, 0.76~0.92
.
,
.
2 3 1 4
.

.
2) (LOI), (pH),
,
1 4 0.54, 0.42, 0.76,
0.95 .
(pH) 4.52~5.38
.
pH
,
. (EC)
245.50~425.67µS/cm
.
. 2 3 1 4
, pH , EC
. EC ,
pH
, (
, 2002; 2005; , 2013;
2.

(µS/cm)
Ca2+
(mg/L)6)
Mg2+
(mg/L)
Na+
(mg/L)
K+
(mg/L)

1

(n=12) 127.59 4.84 6.76 4.80 261.25 20.94 3.44 6.04 5.85
78.88 0.92 3.63 0.37 143.86 9.00 1.85 1.55 3.86

(n=4)
114.86 5.40 5.24 5.13 213.75 60.50 10.07 9.96 19.47
55.83 0.81 1.01 0.30 14.86 19.51 1.06 6.42 12.85

2

(n=6)
124.42 3.69 24.24 4.52 420.00 26.19 7.50 7.84 6.39 55.19 0.54 10.26 0.18 118.51 14.15 4.53 1.14 2.46

(n=3) 41.37 4.07 4.71 5.09 148.33 38.31 10.56 24.62 26.51
46.07 1.65 1.13 0.07 39.95 10.20 4.13 6.46 6.85

3

(n=6)
139.72 3.52 17.44 4.72 425.67 58.49 12.02 8.50 8.00 59.97 0.30 13.27 0.07 82.75 33.99 7.48 1.88 2.13

(n=3) 120.82 4.93 7.56 4.48 256.67 41.70 9.58 22.49 26.24
24.08 1.39 3.38 0.17 105.97 14.57 3.41 10.03 7.81

4

(n=12) 130.67 4.54 14.33 5.38 245.50 32.40 6.09 7.39 6.91
83.58 0.96 13.67 0.40 100.39 16.89 2.75 1.58 2.59

(n=4)
148.13 4.39 15.09 5.29 127.00 51.20 10.30 17.37 21.13
146.64 1.36 20.27 0.32 20.12 10.87 1.80 4.93 8.68


(n=36)
130.11 4.54 13.98 4.93 309.86 31.89 6.43 7.20 6.65 71.58 0.96 11.88 0.46 138.80 21.83 4.80 1.75 2.98

(n=14)
109.89 4.72 8.44 5.02 184.14 21.27 3.93 5.08 7.20 87.55 1.26 10.82 0.38 70.01 19.05 2.66 0.78 2.96
- 297 -
6.
7. ·pH·EC
- 298 -
3) (Ca2+, Mg2+, Na+, K+)

,
(Bourbonniere, 2009)

, pH
( , 2013).
Ca2+>Mg2+
Na+K+ , Ca2+
.

(e.g. , 2001;
·, 2012; , 2006; Bourbonniere,
2009; , 2014).
, Poor Fen Moderate
Rich Fen (Bourbonniere, 2009).
Ca2+, Na+, Mg2+
, K+
. Ca2+,
Na+, Mg2+ , 3

. ,
1
. Shotyk and
Steinmann(1994) Ca2+ Mg2+
.
3
,

8.
- 299 -

1 Ca2+ Mg2+ .
2 4
.
4)
,
. 3
.
, 1
4, pH
. 2 3 Ca2+
.
3 4 .
, 1 4
2 3 ,


.
,
( 9).
T-test
, , pH, EC, Ca2+, Mg2+, Na+
. K+
.
,
.
·

,
.

,


.
,


.


. pH
. pH
, pH

. EC .
EC ,

,

EC .
K+ (Ca2+,
Mg2+, Na+)
,


.
Ca2+ Mg2+
3.
1 2 3 4
1 - , , Ca2+, Na+ pH 2 , - Ca2+ , pH, EC 3 , Ca2+, Na+ Ca2+ - , pH, EC, Ca2+
4 pH , pH, EC , pH, EC, Ca2+ -
5%
- 300 -
.
·
,
.
5)

.
,

.
,

(t-test ),

.
EC(>) Na+(>
)
.
, (>),






- 301 -
EC(>), Ca2+(>
), Mg2+(>), Na+(
>)
. EC Na+
, ,
Ca2+, Mg2+
.


, Ca2+ Mg2+

. ,
, Ca2+, Mg2+


. ,

, · ,

.


.
.

.
,

.
,
.
·

.
,
(, , EC, Ca2+,
Mg2+, Na+) . pH
, , EC, Ca2+, Mg2+, Na+
.

.

EC, Na+, Ca2+, Mg2+,
.
EC Na+
.
,

.

,

.
10. -
- 302 -
,

.

.

,

.

,

.

, ‘

,

.

1) 36°55′20″~36°55′41″, 129°16′48″~129°18′18″
2) 2 3


.
3) ‘ ’(
, 2011) .
,
.
5) (2005) ‘ ’ ‘ ’
,
,
.
‘ ’ ‘ ’
3

.
6) Ca2+1mg/L 1/20cmol(+)/kg , Mg2+1mg/L
1/12cmol(+)/kg , Na+1mg/L 1/23cmol(+)/kg
, K+1mg/L 1/39cmol(+)/kg

,” , 37, 1-18.
, 1963, : .
, 13(1), 25-34.
409 -418.
,” ,
24(4), 139-151.
,” ,
3(1), 61-73.
, 57, 1-19.
.
,” , 12(4), 55-67.
,” , 39(1), 45-55.
·, 2012, “
: II. ,” ,
14(1), 101-120.
, ,” ,
26(3), 109-114.
, 10(1), 206-214.
,” , 5(2), 133-142.
, 23(1), 35-45.
, 15(2), 204-214.
.
“ ,”
, 20(4), 407-414.
:
,” , 40, 119-
150.
,” , 49(2),
221-244.
,” , 12(1), 133-
149.
, 13(2), 129-142.
,” , 27(4), 498-506.
,” , 24(11), 1473
-1483.
, 19(11), 1363-1374.
“ ,”
, 12(2), 1-12.
,” , 17(2), 63-76.
, 2011, .
Blott, S.J. and Pye, K., 2001, GRADISTAT: a grain size
distribution and statistics package for the analysis
of unconsolidated sediments, Earth Surface Processes
and Landforms, 26(11), 1237-1248.
dian Water Resources Journal, 34(4), 393-414.
Cohen, M.C.L., Lara, R.J., Ramos, J.D.F., and Dittmar, T.,
1999, Factors influencing the variability of Mg, Ca
and K in waters of a mangrove creek in Bragança,
North Brazil, Mangroves and Salt Marshes, 3(1),
9-15.
Folk, R.L. and Ward W.C., 1957, Brazos river bar: a study in
the significance of grain size parameters, Journal of
Sedimentary Petrology, 27(1), 3-26.
John Wiley & Sons.
158.
of rainwater-dominated versus groundwater domi-
nated peat bog profiles (Jura Mountains, Switzer-
land), Chemical Geology, 116(1-2), 137-146.
Terajima, T., Sakamoto, T., Nakai, Y., and Kitamura, K.,
1997, Suspended sediment discharge in subsurface
f low from the head hollow of a small forested wa-
tershed, northern Japan, Earth Surface Processes and
Landforms, 22(11), 987-1000.
(: [email protected], : 02-880-
6444)
+82-2-880-6444)

Recommended