35
Master APE September 2014 Longterm contracts and entry deterrence in the French electricity market Author: REID, Christopher Supervisor: SPECTOR, David Referee: TROPEANO, JeanPhilippe JEL codes: D43, L94 Keywords: Electricity, contracts, market entry, simulation

Economics Masters Thesis

Embed Size (px)

Citation preview

Master  APE     September  2014    

       

       

         

   

       

     

     

Long-­‐term  contracts  and  entry  deterrence  in  the  French  electricity  market  

Author:     REID,  Christopher    Supervisor:     SPECTOR,  David      Referee:     TROPEANO,  Jean-­‐Philippe  

JEL  codes:     D43,  L94    Keywords:   Electricity,  contracts,  market  entry,  simulation  

  1  

 

Abstract  

 Motivated  by  recent  EU  case  law,  we  investigate  how  long-­‐term  contracts  may  be  used  as  a  

means  of  entry  deterrence  in  the  French  electricity  market.  In  our  model  this  market  consists  of  

two  segments:  a  conventional  (e.g.  gas,  coal)  segment  in  which  there  is  perfect  competition,  and  

a  nuclear  segment  dominated  by  one  producer.  Our  analysis  is  focused  on  market  entry  in  the  

nuclear  segment.  The  nuclear  capacity  that  maximises  the  monopoly  profit  also  minimizes  the  

total  cost  of  electricity  production.  Thus,  the  monopoly  capacity  is  efficient.    When  there  is  

market  entry,  firms  compete  via  a  discriminatory  auction  mechanism.  We  simulate  the  model,  

calibrated  to  the  French  electricity  market.  In  the  absence  of  contracts,  market  entry  leads  to  

excess  capacity:  the  total  cost  of  electricity  production  increases,  while  total  profit  and  the  price  

of  electricity  decrease.  Long-­‐term  contracts  lead  to  reduced  entry,  but  cannot  eliminate  entry  

unless  the  rival  has  large  fixed  costs.  Using  contracts,  the  incumbent  can  increase  its  profit  

compared  to  free  entry,  but  cannot  recover  the  monopoly  profit.  The  price  of  electricity  on  the  

spot  market  is  not  significantly  affected  by  long-­‐term  contracts.  Overall,  the  welfare  effect  of  

long-­‐term  contracts  is  ambiguous.  

 

  2  

 

Table  of  Contents  

Abstract  ..............................................................................................................................................  1  

Introduction  .....................................................................................................................................  3  

1.   Literature  review  ....................................................................................................................  5  

2.   Monopoly:  optimal  capacity  ................................................................................................  8  

2.1.   Electricity  demand  .......................................................................................................................  8  

2.2.   Efficient  capacity  level  .............................................................................................................  10  

2.3.   Nuclear  capacity  under  monopoly  .......................................................................................  12  

3.   Duopoly:  optimal  capacity  and  contracts  ....................................................................  14  

3.1.   Auction  mechanism  ...................................................................................................................  14  

3.2.   Large  firm  profit  and  optimal  capacity  ...............................................................................  17  

3.3.   Small  firm  profit  and  optimal  capacity  ...............................................................................  18  

3.4.   Long-­‐term  contracts  ..................................................................................................................  19  

4.   Numerical  simulation  .........................................................................................................  22  

4.1.   Calibration  ....................................................................................................................................  22  

4.2.   Monopoly  ......................................................................................................................................  22  

4.3.   Duopoly  .........................................................................................................................................  23  

4.4.   Long-­‐term  contracts  ..................................................................................................................  25  

Conclusion  ......................................................................................................................................  29  

References  .....................................................................................................................................  31  

Appendix  –  selected  MATLAB  code  ........................................................................................  32  

 

  3  

 

Introduction    

On  17  March  2010,  the  European  Commission  (EC)  adopted  a  decision1  concerning  the  

French  market  for  the  supply  of  electricity  to  large  industrial  customers.  The  Commission  was  

concerned   that   EDF   (the   incumbent   operator)   may   have   abused   its   dominant   position   by  

concluding   long-­‐term   supply   contracts   which   had   the   effect   of   foreclosing   the   market.  

Aaccording   to   the   Commission,   the   volume   and   duration   of   EDF’s   contracts   did   not   provide  

sufficient  opportunities  for  alternative  suppliers  to  compete  “for  the  contracts”.  In  addition,  the  

exclusionary  nature  of  the  contracts  (whether  through  explicit  provisions  in  the  contract  or  de  

facto  exclusivity)   may   have   restricted   competition   “during   the   contracts”.   The   contracts   also  

prohibited   clients   from   reselling   electricity,   limiting   customers’   ability   to   manage   their  

consumption.  

In   response   to   these   objections,   EDF   proposed   a   set   of   commitments,   which   the  

Commission   made   legally   binding   in   its   March   2010   decision.   Firstly,   65%   of   the   electricity  

supplied   to   large   industrial   customers   would   return   to   the   market   each   year.   Secondly,   the  

duration   of   contracts  without   free   opt-­‐out  would   be   limited   to   five   years.   Finally,   EDF  would  

allow   competition   during   the   contract   period   by   systematically   proposing   an   alternative  

supplier,  enabling  customers  to  source  electricity  simultaneously  from  two  suppliers.  EDF  also  

made  a  commitment  to  end  restrictions  on  the  resale  of  electricity  by  clients  under  contract.  

This  decision  by  the  EC  forms  the  motivation  for  our  research.  We  investigate  the  impact  

of  long-­‐term  supply  contracts  in  a  simple  model  of  the  French  electricity  market.  This  market  is  

characterized  by  the  fact  that  nuclear  power  stations  constitute  a   large  proportion  of   installed  

generating   capacity.   Although   in   practice  EDF  must   guarantee   competitors   access   to   low-­‐cost  

nuclear   electricity,   the   nuclear   capacity   remains   under   the   control   of   EDF,   the   incumbent  

operator.  We  consider  here  that  EDF  has  exclusive  rights  over  its  nuclear  capacity,  and  we  focus  

our  analysis  on  competition  in  this  segment  of  the  market.  

Compared  to  coal  and  gas  power  stations  where  fuel  costs  are  high,  nuclear  power  has  

low  operating   costs.  However,   the   investment   costs   for  nuclear  are  much  higher  and  must  be  

accounted   for   throughout   the   lifetime   of   the   power   station.   This   feature   of   nuclear   energy  

makes   market   entry   particularly   difficult.   We   model   the   French   electricity   market   as   two  

segments:   a   conventional   (coal   and   gas)   segment   with   high   operating   costs,   and   a   nuclear  

                                                                                                               1  see  press  release  IP/10/290  of  17  March  2010  and  Bessot  et  al.  (2010)    

  4  

segment   dominated   by   EDF.   We   consider   that   the   conventional   segment   is   perfectly  

competitive:  as  a  result  of  market  entry,  firms  make  zero  profit  in  this  segment.  By  contrast,  the  

nuclear  segment  is  a  monopoly:  all  installed  capacity  is  controlled  by  EDF.  In  addition,  EDF  may  

sign  long-­‐term  supply  contracts  with  large  industrial  customers.  We  study  market  entry  in  the  

nuclear  segment  first  in  the  absence  of  contracts,  and  then  we  introduce  contracts  to  determine  

whether  they  may  be  used  to  dissuade  entry.    

Our   findings   provide   a   theoretical   basis   for   the   EC’s   decision:   long-­‐term   contracts   do  

indeed  have  a  foreclosure  effect  on  the  market,  leading  to  reduced  entry  by  potential  rivals.  In  

the  presence  of  large  fixed  costs  or  a  minimum  efficient  scale,  a  sufficient  volume  of  long-­‐term  

contracts   may   even   exclude   rivals.   However,   the   welfare   effect   is   ambiguous.   The   capacity  

installed   by   the  monopoly   is   optimal   from   the   point   of   view   of   production   efficiency.   Hence,  

market   entry   leads   to   excess   capacity,   increasing   the   cost   of   producing   electricity.   However,  

market  entry  also   leads  to   lower  total  profits   for  electricity  suppliers  and  reduces  the  average  

price  of  electricity.  This  decrease  in  price  may  be  viewed  as  beneficial  from  the  point  of  view  of  

consumers,  although   lower  profits  may   lead  to   insufficient   investment   in   the   future  (this   time  

dimension  is  absent  from  our  model).    

By   decreasing   excess   entry,   long-­‐term   contracts   help   to   minimize   the   total   cost   of  

producing  electricity.  Furthermore,  their  effect  on  spot  market  price  is  very  limited  (compared  

to   the  spot  market  price  after  market  entry,   in   the  absence  of  contracts).  However,  customers  

who  have  signed  a   long-­‐term  contract  are  committed  to  paying  a  high  price  for  electricity  and  

cannot  benefit  from  the  reduced  spot  market  price.  

The  paper  is  structured  as  follows:  we  begin  by  reviewing  the  literature  on  contracts  as  

a  means  of  entry  deterrence.  In  section  two,  we  calculate  the  capacity  that  minimizes  the  total  

cost  of  electricity  production,  and  the  capacity  that  maximizes  monopoly  profit.  In  section  three,  

we  introduce  a  second  producer  and  derive  analytical  expressions  for  the  two  firms’  profits  and  

capacity  choices,  with  and  without  contracts.  In  section  four,  we  simulate  the  model  (calibrated  

to  the  French  electricity  market)  and  discuss  the  results.    

 

 

 

 

 

  5  

 

1. Literature  review    

Historically,   exclusionary  contracts  have  been  a   contentious   issue   in  antitrust   law  and  

scholarship.  Rasmusen,  Ramseyer  and  Wiley  (1991)  cite  several  cases  in  which  US  judges  found  

such   contracts   to   be   anticompetitive   and   illegal 1 .   However,   Chicago   School   academics  

responded   to   such   cases   with   scepticism.   Director   and   Levi   (1956)   argued   that   customers  

would   not   agree   to   sign   exclusionary   contracts   with   a   company   unless   it   offered   them  

compensation   for   lost   customer   surplus.   Such   compensation  would   exceed  monopoly   profits,  

making  exclusion  too  costly  for  the  incumbent  firm.      

In  a  seminal  paper,  Aghion  and  Bolton  (1987)  show  that  exclusionary  contracts  may  in  

fact   be   used   profitably   for   entry   deterrence.   In   their   model,   two   buyers   agree   to   sign   an  

exclusionary   agreement   despite   jointly   preferring   to   refuse.   The   model   depends   on   three  

assumptions:  first,  the  excluding  firm  can  commit  to  a  future  price  level,  and  each  customer  can  

escape   the   contract   by   paying   liquidated   damages.   Second,   the   entrant’s   marginal   cost   is  

unknown   and   may   be   different   from   the   incumbent   firm’s   marginal   cost,   which   is   constant.  

Third,  active  producers  incur  a  fixed  cost,  leading  to  economies  of  scale.  Aghion  and  Bolton  also  

allow   the   incumbent   to   make   an   offer   to   one   buyer   that   is   conditional   on   the   other   buyer’s  

decision  to  accept  the  offer.  

Rasmusen,  Ramseyer,  and  Wiley  (1991  –  we  refer  to  this  paper  as  “RRW”)  show  that  the  

incumbent  may  exclude  rivals  by  exploiting  buyers’  lack  of  coordination,  without  requiring  the  

previous   assumptions.   Specifically,   if   there   is   a  minimum  efficient   scale2,   the   incumbent   need  

only  lock  up  a  proportion  of  the  customers  to  forestall  entry.  “If  each  customer  believes  that  the  

others   will   sign,   each   also   believes   that   no   rival   seller   will   enter.   Hence,   a   customer   loses  

nothing  by  signing  the  exclusionary  agreement  and  will  indeed  sign.”    

Segal  and  Whinston  (2000)  correct  some  errors  in  RRW  and  refine  the  analysis,  focusing  

on   how   an   incumbent   can   use   discriminatory   offers   to   exploit   externalities   that   exist   among  

buyers.   The   model   has   three   periods,   featuring   three   sets   of   agents:   an   incumbent   firm,   a  

potential   rival,  and  a  set  of    buyers.   In  period  one,   the   incumbent  offers  buyers  exclusionary  

contracts.   In   period   two,   the   rival   decides  whether   to   enter,   and   in   period   three,   active   firms  

compete   à   la   Bertrand.     The   authors   examine   two   different   settings   for   period   one:  

                                                                                                               1  Examples  include:  U.S.  v.  Aluminum  Co.  of  America  (1945),  Lorain  Journal  Co.  v.  U.S.  (1951),  and  United  Shoe  Machinery  Corp.  v.  U.S.  (1922).  2  RRW  assume  a  minimum  efficient  scale,  but  no  economies  of  scale  beyond  that.  Hence,  exclusion  is  not  simply  the  result  of  a  natural  monopoly.  

  6  

simultaneous   offers   and   sequential   offers.   When   the   incumbent   deals   with   buyers  

simultaneously   without   the   ability   to   discriminate,   profitable   exclusion   relies   on   a   lack   of  

coordination  among  buyers.  This  is  not  the  case  when  the  incumbent  can  discriminate  between  

buyers:   discrimination   allows   the   incumbent   to   exclude   rivals   profitably   by   exploiting  

externalities   across   buyers.  When   the   incumbent  deals  with  buyers   sequentially,   its   ability   to  

exclude  is  strengthened.  Segal  and  Whinston  show  that  when  the  number  of  buyers  is  large,  the  

incumbent  is  able  to  exclude  for  free.  

  A   related   literature   deals   with   financial   forward   contracts.   Unlike   exclusionary  

contracts,   forward   contracts   do   not   forbid   consumers   from  dealing  with   entrants   and   do   not  

directly   restrict   a   producer’s   choice   of   output   and   price.   Instead   of  making   legal   restrictions,  

they  influence  behaviour  on  the  spot  market  by  altering  incentives  for  firms.  Provided  they  are  

observable,   forward   contracts   may   be   used   as   a   signal   of   commitment   to   future   aggressive  

behaviour  on  the  spot  market.  In  this  way,  they  may  have  an  entry  deterrence  effect  similar  to  

that   of   exclusionary   contracts.   However,   the   effect   is   strongly   dependent   on   whether   firms  

compete  in  quantity  (Cournot  competition)  or  price  (Bertrand)  on  the  spot  market.  

Allaz   and   Vila   (1993)   show   that   forward   markets   can   improve   the   efficiency   of  

production  decisions   in   a  Cournot  duopoly.   They  begin  by  noting   that   “usually   appearance  of  

forward  markets   is   justified  by  agents’  desire   to  hedge  risk”,   requiring  uncertainty  over  some  

variable.   Allaz   and   Vila   show   that   this   is   not   necessary:   forward  markets   can   be   used   under  

certainty  and  perfect   foresight.  Producers  use   forward  transactions  as  strategic  variables.  The  

authors   first   consider   a   two-­‐period   model   of   duopoly   with   linear   costs   and   demand,   under  

perfect   foresight   and   certainty.   Firms   choose   forward  positions   in  period  one  and  produce   in  

period  two.  The  firm  with  access  to  the  forward  market  gains  first-­‐mover  advantage  (becomes  

Stackelberg  leader  on  the  spot  market).  However,  a  prisoner’s  dilemma  arises  when  both  firms  

have  access  to  the  forward  market:  a  firm  greatly  benefits  from  being  the  only  producer  to  trade  

forward,  but   if   both   firms   trade   forward,   they  end  up  worse  off.  The  authors   then  extend   the  

model   to    trading   periods,   and   show   that   when   tends   to   infinity,   the   competitive  

outcome  is  obtained.    

Mahenc   and   Salanié   (2004)   investigate   a   model   in   which   duopolists   producing   two  

differentiated   goods   can   trade   forward   before   competing   à   la   Bertrand   on   spot   markets.  

Similarly  to  Allaz-­‐Vila,  the  model  features  two  periods:  in  period  one  each  firm  takes  a  position  

on   the   forward   market,   and   in   period   two   they   compete   on   the   spot   market.   However,   the  

crucial  difference   is   that  competition  on  the  spot  market   is  à   la  Bertrand:   firms  choose  prices,  

not  quantities,  and  the  goods  are  not  perfect  substitutes.  Mahenc  and  Salanié  reach  a  conclusion  

that  is  opposite  to  that  of  Allaz  and  Vila:  in  equilibrium  firms  buy  forward  their  own  production,  

leading   to   higher   spot   prices   than   in   the   static   case   (no   forward   market).   Hence,   forward  

  7  

markets  have  a  softening  effect  on  competition  in  this  case.  This  competition-­‐softening  effect  is  

stronger  when  competition  increases,  that  is  when  goods  are  more  substitutable.    

Lien  (2000)  analyses  the  role  of   forward  contracts   in  the  electricity  market.  He  argues  

that  there  is  a  “curse  of  market  power”:  in  the  short  term,  large  firms  have  an  incentive  to  hold  

back  output  in  order  to  push  up  prices.  However,  this  leads  to  excess  entry  by  small  producers,  

who  benefit  from  high  prices  without  incurring  the  costs  of  restricted  output.  As  a  result,  long-­‐

term  profits  of  large  firms  are  reduced.  Lien  shows  that  forward  sales  can  eliminate  this  curse  

by  deterring  excess  entry.  

Our  analysis  differs  from  that  of  Lien  in  two  important  ways:  firstly,  we  concentrate  on  

the  French  electricity  market  and  in  particular  the  nuclear  segment  of  this  market.  The  French  

market  is  characterised  by  the  high  proportion  of  electricity  that  is  provided  by  nuclear  power  

stations.  Given   the  high   investment  costs  associated  with  nuclear  energy,  entry   is  particularly  

difficult  in  this  segment  of  the  market.  Nuclear  power  stations  typically  provide  baseload  power  

and   are   operational   most   of   the   time,   which   makes   the   use   of   long-­‐term   supply   contracts  

particularly  convenient.    

Secondly,  we  model  competition   in   the  electricity  market  using  an  auction  mechanism  

studied  by  Fabra,   von  der  Fehr,   and  Harbord   (2006).  There   are   two  producers   in   this  model.  

Each  producer  submits  a  bid  (offer  price)  to  a  central  auctioneer,  who  then  allocates  production  

in  order   to  meet  demand.  Fabra  et   al.   study   two  mechanisms:   a  uniform  auction,   in  which  all  

active  producers  (those  whose  bid  is  wholly  or  partly  accepted)  are  paid  the  same  price,  and  a  

discriminatory   auction,   in  which   active   producers   are   paid   their   offer   price.   The   authors   find  

that  uniform  auctions   result   in  higher  prices   than  discriminatory  auctions.   In  a   related  paper,  

Fabra,  von  der  Fehr,  and  de  Frutos  (2011)  study  the  impact  of  the  auction  format  on  investment  

incentives.   They   find   that   investment   incentives   are   (weakly)   stronger   under   discriminatory  

auctions  than  under  uniform  auctions.  For  this  reason,  we  focus  on  discriminatory  auctions.  

  8  

 

2. Monopoly:  optimal  capacity    

In   our   model,   the   French   electricity   market   consists   of   two   segments:   a   perfectly  

competitive   conventional   segment,   and   a   nuclear   segment   dominated   by   one   firm.   Marginal  

costs   are   constant:   conventional   electricity   costs    to   produce,   and   nuclear   electricity   costs   .  

Operating  costs  for  conventional  generation  are  higher  than  for  nuclear  generation,  so   .  

The   conventional   sector   is   perfectly   competitive,   so   firms  make   zero   profit.   However,  

the   nuclear   sector   is   run   by   a   monopoly.   Before   considering   entry   by   potential   rivals   in   the  

nuclear   sector,   we   determine   the   optimal   nuclear   capacity   from   the   point   of   view   of   social  

welfare  and  from  the  monopoly’s  point  of  view.  

2.1.  Electricity  demand    

In   order   to   calculate   optimal   capacity,   we   need   to   characterise   electricity   demand.  

Compared  to  demand  in  markets  for  goods,  electricity  demand  is  unusual.  Firstly,  demand  is  not  

in  terms  of  quantity  but  in  terms  of  rate.  Indeed,  quantity  is  expressed  in  terms  of  energy,  with  

units  of  GWh  (gigawatt-­‐hour)  for  example,  whereas  demand  and  supply  are  expressed  in  terms  

of   power,   with   units   of   GW   (gigawatt).   This   is   because   of   a   physical   property   of   the   system:  

unlike  goods,  electricity  cannot  be  stored.  Hence,  the  rate  at  which  electricity  is  provided  to  the  

network   must   equal   the   rate   at   which   it   is   consumed   by   customers.   Secondly,   it   is   almost  

perfectly  inelastic.  That  is,  demand  does  not  change  in  response  to  price.  

The   costs    and    given   above   are   expressed   in   monetary   units   per   quantity   of  

electricity,  for  example  million  euros  per  GWh  (€m/GWh).  However,  this  is  equivalent  to  paying  

for  capacity  for  a  certain  time:  if  a  firm  supplies  10  GW  for  2  hours  at  a  cost  of  0.03  €m/GWh,  it  

will  incur  a  cost  of  €  600,000.    

We   use   data   on   electricity   consumption   in   2012   obtained   from   RTE,   the   electricity  

transmission  system  operator  of  France1.  The  data  describes  electricity  consumption  in  MW  for  

every  half  hour  period  of  the  year  (the  data  is  described  in  greater  depth  in  Appendix  A).  Figure  

1  shows  the  distribution  of  electricity  demand  as  a  histogram.  

                                                                                                               1  Source:  http://clients.rte-­‐france.com/lang/fr/clients_producteurs/vie/vie_stats_conso_inst.jsp,  last  accessed  on  21/08/2014.  

  9  

30 40 50 60 70 80 90 100 1100

10

20

30

40

50

60

70

Electricity demand (GW)

Freq

uenc

y (d

ays)

 Figure  1  –  Distribution  of  electricity  demand  in  2012:  histogram  

     

In  order  to  proceed  with  the  analysis,  we  need  to  fit  a  known  distribution  function  to  the  

data.  It  is  important  to  note  that  electricity  demand  is  not  random;  indeed,  it  can  be  accurately  

forecast.  However,  we  use  a  probability  distribution  function  (pdf)   in  our  analysis  because  we  

want  to  calculate  quantities  such  as  profit  analytically.  In  what  follows,  we  normalize  everything  

by   time:   quantities   are   expressed   per   year,   and   we   consider   2012   as   a   typical   year.   For  

convenience,  we  use  a  uniform  probability  distribution.    

Figure   2   shows   a   kernel   estimate   of   the   pdf   as  well   as   the   “best   fit”   uniform  pdf.   The  

parameters  of  the  uniform  pdf  are    and   .  We  choose  these  in  order  to  match  the  mean  

and  standard  deviation  of  observed  demand,  as  given  in  table  1  (rounded  to  the  nearest  GW).  

 

Name   Value  (GW)  

    33  

  78  

Mean     55.5  

Standard  deviation   13  

Table  1  -­‐  Electricity  demand  parameters  

  10  

 Figure  2  –  Distribution  of  electricity  demand  in  2012:  kernel  density  and  “best  fit”  uniform  pdf  

2.2. Efficient  capacity  level    

We  begin  by  determining  the  level  of  nuclear  capacity  that  is  optimal  from  the  point  of  

view  of  social  welfare.  We  call  this  the  efficient  capacity  level,  and  it  maximizes  total  surplus:  

 

   

Roughly   speaking,   consumer   surplus   is   the  difference  between   indirect   utility   derived  

from  consumption  of  electricity  and  the  cost  of  purchasing  electricity.  Usually,  we  would  have  to  

integrate  over  price  or  capacity  (since  capacity  has  an  impact  on  price).  However,  demand  for  

electricity   is   perfectly   inelastic,   and  we   assume   that   conventional   producers   have   an   infinite  

capacity,  meaning  that  it  is  large  enough  to  supply  any  level  of  consumer  demand.  Hence,  there  

is   no   need   for   demand   rationing.   As   a   result,   the   indirect   utility   does   not   vary  with   price   or  

nuclear  capacity.    

Producer   surplus   is   equal   to   the   sum   of   profits   of   electricity   producers   (conventional  

and  nuclear):   the  difference  between   total   revenue  and   the   total   cost  of  producing  electricity.  

Total  revenue  of  firms  is  equal  to  total  expenditure  by  consumers,  so  we  have:  

 

 

  11  

 

As  noted  above,  the  indirect  utility  is  constant,  so  maximizing  total  surplus  is  equivalent  

to   minimizing   the   total   cost   of   producing   electricity.   We   denote   nuclear   capacity   by   ,   and  

electricity  demand  by   .  When  demand   is   less   than  nuclear  capacity  ( ,   then  demand   is  

met   entirely   by   electricity   from   nuclear   power   stations,   which   have   operating   cost   .   When  

demand  exceeds  nuclear  capacity  ( ),  conventional  power  stations  are  required  to  supply  

the  excess  ( ),  with  an  operating  cost  of   .  

In   addition,  nuclear   capacity  has  a  yearly   investment   cost  of    per  GW.  Nuclear  power  

stations  require  significant  capital  to  build.  This  capital  usually  takes  the  form  of  a  loan,  which  is  

reimbursed   in   instalments   during   the   lifetime   of   the   power   station.   The   investment   cost    

represents  capital  cost  repayments,  and  also  includes  yearly  maintenance  and  fuel  costs.  Capital  

costs   for   conventional  power   stations  are   less   significant   than   for  nuclear,  whereas  operating  

costs  are  higher.  For  this  reason,  we  ignore  investment  costs  for  conventional  power.  

The   total   cost   of   producing   electricity   includes   operating   costs   for   nuclear   and  

conventional  power,  and  investment  costs  for  nuclear  power.  We  use  the  uniform  distribution  

for   electricity   demand   described   above   to   calculate   the   total   cost   over   the   year,   which   we  

denote  by   :  

   

Where    denotes  the  pdf  of  electricity  demand,  setting   :  

   

Evaluating  the  integrals  and  setting   ,  we  have:  

   

The  efficient  capacity,   ,  minimizes  this  cost.  Differentiating  with  respect  to   ,  we  have:  

   

Setting   ,  we  find  the  efficient  nuclear  capacity  level:  

 

  12  

 

The   efficient   capacity   depends   on   the   ratio   .   The   denominator   is   the   difference  

between  conventional  and  nuclear  operating  costs;  as  we  will  see  in  the  next  section,   it   is  also  

the   difference   between   the   electricity   price   under   monopoly   (in   the   nuclear   sector)   and   the  

nuclear   operating   cost.   If   ,   then    and   :   in   the   absence   of  

investment  costs,  the  least  costly  option  is  for  all  electricity  to  be  produced  from  nuclear  energy.  

On  the  other  hand,  if   ,  then    and   :  nuclear  capacity  is  always  in  

use   providing   baseload   power,   while   conventional   capacity   is   used   to   supply   ,   the  

variable  part  of  demand.    

2.3. Nuclear  capacity  under  monopoly  

 

We  now  calculate   the   capacity   that  maximizes   the  profit   of   a  nuclear  producer  with   a  

monopoly.  The  conventional  sector  remains  perfectly  competitive,  but  there  is  a  single  producer  

of  nuclear  electricity.  

The   profit   of   a   nuclear   monopolist,   which   we   denote   ,   is   given   by   the   following  

expression,  taking  into  account  both  operating  costs  and  investment  costs:  

   

When   ,   nuclear   capacity   can   cover   consumer   demand   entirely.   When   demand  

exceeds  nuclear  capacity    ( ),  nuclear  capacity  is  saturated.  Since  the  conventional  sector  is  

perfectly   competitive,   the   price   of   electricity   produced   by   conventional   means   equals   its  

marginal   cost,   .   Hence,   the   nuclear   monopolist   can   charge   up   to    for   its   electricity,   and   to  

maximize   profit,   it   will   charge   exactly   .   In   theory,   consumers  would   be   indifferent   between  

purchasing  nuclear  and  purchasing  conventional  electricity   if   their  prices  are  equal.  However,  

the  network  operator  prioritizes  electricity  produced  with  least  marginal  cost,  so  conventional  

power  stations  produce  only  when  nuclear  capacity  is  saturated.  

 

Evaluating  the  integrals,  we  find  the  following  expression  for  monopoly  profit:  

   

Differentiating,  we  have:  

  13  

   

Setting  the  derivative  to  zero,  we  find  the  monopoly  profit-­‐maximizing  nuclear  capacity:  

   

  We  notice  that  the  nuclear  capacity  chosen  by  a  profit-­‐maximizing  monopolist   is  equal  

to   the   efficient   generating   capacity.   In   other  words,   the  monopoly   chooses   a   nuclear   capacity  

that  minimizes  the  total  cost  of  producing  electricity  (including  both  nuclear  and  conventional).  

The   profits   earned   by   the   nuclear   monopolist   and   the   total   cost   of   producing   electricity   are  

related  by:  

   

The  sum  of  monopoly  profit  and   the   total  cost  of  producing  electricity   is   ,  a  constant.  Hence,  

maximizing    is   equivalent   to   minimizing   .    is   the   total   payment   from  

electricity  consumers  to  electricity  producers.  Since  the  nuclear  producer  charges   ,  the  price  of  

power  is    whether  its  source  is  nuclear  or  conventional.  The  payment    covers  the  total  cost  of  

production  plus  a  monopoly  rent  for  the  nuclear  generator  (conventional  generators  make  zero  

profit).    

 

We   evaluate  monopoly   profit  when   ,   and   let   .  We   call   this   “optimal  

profit”.  Normalizing  by   ,  we  have:  

   

Setting   ,  one  can  see  that  maximal  profit  is  a  quadratic  function  of  the  ratio   ,  which  

we   call   “cost   ratio”   and  denote   by   .   Figure   4   displays   this   function.   As   discussed  previously,  

optimal  capacity    is  a  linear  decreasing  function  of   .  When  investment  costs  are  nil  ( ,  

then   ,   and   optimal   profit   is   maximized   (optimal   cost    is   minimized).    is   the  

cost  of  adding  a  marginal  unit  of  capacity,  and    is  the  maximum  profit  that  may  be  derived  

from   it   (i.e.   if   the   unit   operates   permanently).   Optimal   profit   is   zero   when   these   are   equal  

  14  

( ),   and   .   Optimal   nuclear   capacity   is   zero   ( )   when   .  

Then  optimal  cost  is  maximal1.  

3. Duopoly:  optimal  capacity  and  contracts  

3.1.  Auction  mechanism  

 

We   now   introduce   two   firms   in   the   nuclear   sector.   Unlike   typical   markets   (e.g.   for  

goods),  they  do  not  compete  directly,  whether  by  price  or  by  quantity.  Instead,  they  compete  via  

a  centralized  auction  mechanism.  Fabra,  von  der  Fehr,  and  Harbord  (2006)  study  two  auction  

mechanisms  for  the  electricity  market:  uniform  and  discriminatory  auctions.  

The   duopoly   comprises   a   large   supplier,   with   capacity   ,   and   a   small   supplier,   with  

capacity    ( ).  We  assume  capacity  is  perfectly  divisible.  The  two  suppliers  compete  by  

submitting  bids,  or  offer  prices,  to  the  auctioneer.  The  suppliers  incur  the  same  marginal  cost    

for   production   below   capacity,   and   cannot   produce   above   capacity.  We   denote   their   bids   by  

.  As  before,  there  is  a  perfectly  competitive  conventional  sector  with  marginal  cost  

,  so  prices   in  the  nuclear  sector  cannot  exceed   .  The   level  of  demand  is   ,  and  total  nuclear  

                                                                                                               1  Optimal  profit  is  negative  when    and  jumps  to  zero  when      ( .  

Figure  3  -­‐  Optimal  profit  as  a  function  of  the  cost  ratio    

  15  

capacity   is   .   We   let   .   The   auctioneer   allocates    between   the   two  

nuclear   producers.   If   demand   exceeds   the   total   nuclear   capacity   ( )   then   ,   and   the  

excess   ( )   is   dispatched   to   conventional   power   stations.   Output   allocated   to   nuclear  

supplier   ,   ,  is  denoted  by   .  It  is  determined  as  follows:  

 

   

  If   firms   submit   different   bids,   the   lower-­‐bidding   firm’s   capacity   is   dispatched   first.   If  

demand   is   in   excess   of   this   capacity,   then   the   higher-­‐bidding   firm   serves   residual   demand.   If  

both  firms  submit  the  same  bid,  then  demand  is  split  between  them.  Fabra  et  al.  (2006)  study  

two  types  of  auction  mechanisms,  which  differ  in  the  payments  received  by  firms  but  not  in  the  

quantities  dispatched:  in  a  uniform  auction,  the  price  received  by  an  active  supplier  is  equal  to  

the   highest   accepted   bid   in   the   auction.   In   a   discriminatory   auction,   the   price   received   by   an  

active  supplier  is  equal  to  its  own  offer  price,  so  supplier   ’s  profit  is  given  by  

.  

 

  The  equilibrium  outcomes  of  the  auction  are  summarized  in  Proposition  3  of  Fabra,  von  

der  Fehr,  and  de  Frutos  (2011)1.  The  authors  distinguish  three  regions  of  demand:    

 

• Low  demand:   .   In   this   region,   either   producer   is   able   to   supply   the  market   fully.   In  

other  words,  there  is  no  residual  demand.  The  result  is  equivalent  to  Bertrand  competition  

with   perfectly   substitutable   goods   (indeed,   electricity   produced   by   supplier    is  

indistinguishable   from   that   produced   by   ).   The   suppliers   undercut   each   other   until   they  

reach   their   marginal   cost   of   production,   .   In   equilibrium,   both   suppliers   place   bids   at   .  

They  produce  a  quantity    each  and  earn  zero  profits.  

 

• High  demand:   .  In  this  region,  at  least  one  of  the  suppliers  is  unable  to  supply  the  

market   fully.  The  authors  distinguish   two  regions  within  high  demand:  when    

(region  I),  producer  1  can  supply  the  market  fully,  but  producer  2  cannot.  When    

(region   II),   neither   producer’s   capacity   is   sufficient   to   cover   demand   entirely,   so   there   is  

always  residual  demand  for  the  other.  When  demand  is  high  ( ),  there  is  no  pure-­‐

strategy  equilibrium.  Instead  there  is  a  unique  mixed-­‐strategy  equilibrium,  in  which  the  two  

                                                                                                               1  Proofs  and  equilibrium  strategies  are  given  in  Fabra,  von  der  Fehr,  and  Harbord  (2006)  

  16  

firms  mix  over  a  common  support  that  lies  above  marginal  costs  and  includes   .  The  firms  

mix  according  to  different  probability  distributions:  in  particular,  the  large  firm  has  a  mass  

point  at   ,  the  upper  bound.  The  small  firm  bids  below    with  probability  1,  so  profits  of  the  

large  firm  are  the  same  as  if  it  offered  to  sell  residual  demand  at   .    

 

• Very   high   demand:   .   Nuclear   capacity   is   insufficient   to   supply   the   market,   so  

conventional   producers  must   supply   residual   demand.   In   equilibrium,   both   nuclear   firms  

place  bids  at    and  produce  at  full  capacity.  

 

Intuitively,  it  is  easy  to  understand  why  there  is  no  pure-­‐strategy  equilibrium  in  the  high  

demand  region.  Consider  an  initial  situation  where  both  firms  bid   .  Then  either  of  the  suppliers  

can   increase   its   profit   by   placing   a   bid   just   below   :   the   increase   in   output   outweighs   the  

decrease   in  price.  Let   firm    place  a  bid   just  below   .  Then   the  other   supplier   (firm   ),   serving  

residual  demand  (which  may  be  zero),  would  benefit  by  placing  a  bid  just  below  that  of  firm   .  

The   firms  place   subsequently   lower  bids,  until   the   large   firm  would  profit  more   from  serving  

residual  demand  at    than  undercutting  the  small  firm.  But  if  the  large  firm  places  a  bid  at   ,  the  

small  firm  will  place  a  bid  just  below   ,  and  so  on.  

The   equilibrium   profits   are   summarized   in   table   2.  We   denote   firm   ’s   instantaneous  

profit   by   .   This   is   the   profit   obtained   for   a   given   realisation   of   demand,   per   unit   time,   not  

including  investment  costs.  Both  firms’  profit  functions  are  continuous  and  increasing  in   .  The  

large   firm’s   profit   is   linear   in    and   goes   from   zero   (when   )   to   ,  when   .  

The  small  firm’s  profit  is  always  less  than  firm  1  profit.  When  demand  is  high,  firm  2  is  concave  

hyperbolic  (region  I)  then  linear  (region  II).  

 

Region   Demand   Profits  

Low  demand      

 

High  demand  I      

 

High  demand  II      

 

Very  high  demand      

 

Table  2  -­‐  Instantaneous  profits  as  a  function  of  demand  

  17  

3.2. Large  firm  profit  and  optimal  capacity  

 Having   described   the   auction   mechanism   and   instantaneous   profits,   we   turn   our  

attention  to  each  firm’s  total  profit  and  optimal  capacity  choice  under  duopoly.  Both  firms  have  

constant  marginal  costs  of  investment  with  a  value  of   .  

 

• If   ,  firm  1’s  profit  over  the  year  is  given  by:  

 

   

 

• If   ,  the  expression  for  firm  1  profit  is  different:  

 

   

The  expression  is  different  in  that  the  lower  bound  of  the  first  integral  is    instead  of   .  This  

arises   because   firm   1   profit   is   zero   when   demand   is   in   the   low   region   ( ).   When  

,  demand  is  never  in  this  region  (we  always  have   ).  

 

To  summarize,  firm  1  profit  is  given  by  the  following  function:  

   

If  we  fix   ,  one  can  see  that    is  a  continuous  function  of    that  is  quadratic  when    

and  linear  when   .    

 

In  order  to  determine  firm  1’s  optimal  choice  of  capacity,  we  differentiate    with  respect  to   :  

   

  18  

Capacity   is  optimal   for   firm  1  when   its  marginal  benefit    equals   its  marginal   cost   .  

We  assume   ,  which  ensures   that   firm  1  makes  positive  profit  when   it  has  a  monopoly.  

Setting   ,  we  find:  

   

We   have   .   In   other   words,   when    we   recover   the   monopoly  

capacity,   which   we   denote   by   .   Interestingly,   it   is   optimal   for   firm   1   to   keep   aggregate  

capacity  at  the  efficient  level,   .  If  we  assume  that  firm  1  has  the  monopoly  capacity  (as  we  will  

do  when  we   introduce  contracts),  any  entry  by   firm  2  would   lead   to  excess  capacity,  which   is  

suboptimal  for  firm1.  So  firm  1  would  prefer  to  give  some  of  its  capacity  to  firm  2  (along  with  

the  associated  investment  costs)  rather  than  suffer  the  costs  of  excess  capacity.  

 

Indeed,   we   find   that   .   Evaluating   this   expression   when  

 and   ,  we  find:  

 

   

Since   ,   both   expressions   are   negative:   firm   1   profit   decreases   whenever   there   is  

entry  by   firm  2.  However,   firm  1  profit   decreases   faster  when   entry   leads   to   excess   capacity:  

when   ,   firm  1  gives  capacity   to   firm  2.  Total  capacity   is  constant,  and   firm  1  profit  

decreases  linearly.  In  contrast,  when   ,  total  capacity  increases  when  firm  2  enters,  and  

firm  1  profit  decreases  quadratically.  

3.3. Small  firm  profit  and  optimal  capacity    

In  order  to  analyse  market  entry  by  the  small   firm,  we  calculate  its  profit   function  and  

optimal  capacity  choice.  As  before,  we  distinguish  two  cases.  

 

• If   ,  firm  2’s  profit  over  the  year  is  given  by:  

 

  19  

   

If  we  fix   ,  firm  2  profit  is  a  cubic  function  of   .  Differentiating  with  respect  to   ,  we  find:  

   

Setting   ,   firm   2’s   optimal   capacity   choice   is   the   solution   to   the   following  

quadratic  equation:  

   

 

• If   ,  the  expression  for  firm  2  profit  is:  

   

As  before,  the  lower  bound  of  the  first  integral  is    instead  of   .  Evaluating  this  expression,  

we  find:  

   

This   expression   is   similar   to   the   one   found   previously,   but   the   term   multiplying    is    

instead  of   .  More   importantly,   the   term  multiplying    is  now  a   logarithmic   function  of   :  

.   This  makes   it   impossible   to   solve  analytically   for    such   that   .  This  

will  have  to  be  done  numerically.  

 

As  for  firm  1,  firm  2’s  profit  is  a  continuous  function  of    and   ,  which  we  denote  by:  

 

3.4. Long-­‐term  contracts    

We  now  introduce   long-­‐term  contracts  to  the  model.  We  assume  that   firm  1  has  had  a  

monopoly  in  the  nuclear  sector  for  a  long  time.  Hence,  it  has  had  time  to  build  capacity  up  to  a  

  20  

level  that  maximises  its  profit.  Hence,  we  let    from  now  on.  The  timing  of  the  model  is  as  

follows:  

1. Firm  1  has  a  monopoly  and  chooses  a  volume    of  long-­‐term  contracts.  

2. Firm  2  observes  these  contracts,  and  chooses  how  much  capacity  to  build.  

3. The   two   firms   compete   on   the   spot   market   using   the   discriminatory   auction  mechanism  

described  previously.  

The  contracts  are  “long  term”  in  the  sense  that  they  are  still  in  effect  at  the  time  of  entry.  

   

The   contracts   stipulate   that   firm   1   supplies   a   constant   level   of   power   to   customers  

throughout  the  year  at  a  price   .  The  total  capacity  supplied  to  customers  under  contract  

is    (we  call  this  the  “volume  of  contracts”).  Hence,  firm  1  has  a  capacity    available  to  

compete   on   the  market.   As   a   result,   total   nuclear   capacity   on   the   spot  market   is   reduced   to  

.  

As  before,  demand   is  uniformly  distributed  between    and   .  This   is  equivalent  

to  saying  that  demand  is  the  sum  of  two  components:  a  constant  component    and  a  variable  

part   ( )  uniformly  distributed  between    and   .  The  constant  component   represents  

baseload   power:   for   example,   industrial   consumers   who   use   electricity   at   a   constant   rate  

throughout  the  year.    

Long-­‐term  supply  contracts  are  signed  between  such   industrial  consumers  and   firm  1.  

This   removes   a   volume    of   capacity   from   the   spot   market,   so   spot   market   demand   is   now  

distributed   between    and   .   We   place   the   following  

restrictions   on   the   volume   of   contracts:    must   be   non-­‐negative   ( )   and   cannot   exceed  

baseload  power  ( ).  This  ensures,  respectively,  that  firm  1  always  supplies  electricity  to  

contract   customers   (never   the   other   way   round),   and   that   spot   market   demand   is   always  

positive.  

   

Firm  1’s  profit,  taking  into  account  long-­‐term  contracts  and  investment  costs,  is  given  by:  

   

The   function    represents   operating   profits   from   spot   market   competition.   Its  

expression  is  the  same  as  the  expression  for    given  previously,  except  that   ,   ,  

and    are  replaced  with   ,   ,  and   .  

   

Hence,  when   ,  we  have:  

 

  21  

Developing  this  expression,  we  find:  

   

We  note   that    when   .  One  can  see   that   if   firm  1  anticipates  

that    will   be   small   ( ),   then   firm   1’s   motive   to   sell   supply   contracts   is   purely  

strategic.   Indeed,   if   we   ignore   the   impact   of    on   firm   2’s   choice   of   capacity   (taking    as  

constant),   then   firm  1   cannot   increase   its   profit   by   selling   contracts.   In   fact,   its   profit  will   be  

reduced  if   .  However,  firm  1  may  have  an  incentive  to  sell  contracts  if  it  reduces  entry  by  

firm  2  –  this  is  what  we  seek  to  find  out.  

 

Similarly  to  firm  1,  firm  2’s  profit  function,  including  contracts  and  investment  costs,  is:  

 

The  expression  of    is  found  by  replacing   ,   ,  and    with   ,   ,  and    

in  the  expression  of   .  

 

We  define  firm  2’s  optimal  capacity  choice,  taking  into  account  contracts,  as  follows:  

   

Finally,  we  define    and   :  

 

 

  22  

 

4. Numerical  simulation  

4.1. Calibration  

 We  calibrate  the  model  using  data  for  the  French  electricity  market,  then  simulate  using  

MATLAB.  We  have  already  determined    and   ,  the  parameters  of  the  electricity  demand  

distribution.  The  total  nuclear  capacity  installed  in  France  is  63,130  MW  (source:  RTE1).  We  

assume  that  this  capacity  was  chosen  optimally  by  the  monopoly:  

 GW  

 

We  set   ,  using  the  investment  cost  as  a  numéraire,  and  solve  the  previous  equation  to  find  

.  These  numbers  are  summarized  in  table  3.  

 

Name   Value     33  GW     78  GW  

  63  GW     3  

  1  (numéraire)  

Table  3  –  Parameters  of  the  calibrated  model  

 

4.2. Monopoly  

 The  monopoly  profit  (after  investment  costs)  is  displayed  in  figure  4  as  a  function  of  

nuclear  capacity.  It  is  at  a  maximum  when  the  monopoly  has  a  capacity  of  63  GW.  Interestingly,  

monopoly  is  negative  when  capacity  is  less  than  9.5  GW.  This  suggests  that  there  is  a  minimum  

efficient  scale  for  nuclear  power.  When    GW,  the  value  of  monopoly  profit  is    GW.  

As  discussed  in  the  previous  section,  the  monopoly  capacity  is  efficient  in  that  it  minimizes  the  

total  cost  of  producing  electricity.    

                                                                                                               1  http://clients.rte-­‐france.com/lang/an/clients_producteurs/vie/prod/parc_reference.jsp,  last  accessed  on  21/08/2014  

  23  

 

4.3. Duopoly  

 Firm  1,  the  ex-­‐monopoly,  has  capacity    GW.  When  firm  2  enters  the  market,  the  

two  producers  compete  via  the  discriminatory  auction  mechanism  described  in  the  previous  

section.  Figure  5  displays  both  firms’  profit  as  a  function  of   ,  firm  2’s  capacity.  

 

 Figure  5  –  Firm  1  and  firm  2  profit  (after  investment  cost)  when   ,  as  a  function  of    

Figure  4  -­‐  Monopoly  profit  (after  investment  costs)  as  a  function  of  nuclear  capacity  

  24  

Firm  1  profit   is  strictly  decreasing   in   ,  and  becomes  negative  when    GW.   In  

the  absence  of  contracts,  firm  2  profit  is  maximum  when    GW,  so  we  have    GW.  

At  this  point,   firm  1  makes  a  profit  of  51,  about  half  of  monopoly  profit.  We  notice  that  firm  2  

makes   non-­‐negative   profit   as   long   as   ,   which   implies   that   there   is   no   minimum  

efficient  scale  for  firm  2.  This  is  because  we  have  not  given  firm  2  any  fixed  costs  –  investment  

costs   are  proportional   to   capacity.  However,   if   firm  2  had   fixed   costs  of   say  10,   then   capacity  

below  5  GW  would  not  be  profitable.    

Figure   6   shows   the   total   profit    of   nuclear   firms   and   the   total  

cost   of   electricity   production.   It   also   displays   total   revenue   earned   by   both   nuclear   and  

conventional  power  producers,  given  by  the  following  expression:  

 We  denote  total  revenue   .  As  conventional  power  producers  make  zero  profit,  we  have:  

   

 Figure  6  –  Total  profit,  cost,  and  revenue  for  electricity  producers  (both  nuclear  and  conventional)  when  

,  as  a  function  of  firm  2  capacity  ( )  

 Total  profit  begins  at  96  (monopoly  profit)  and  decreases  with   .  When    GW,  

total  profit  is  70.  In  layman  terms,  the  two  producers  must  share  a  pie  that  decreases  in  size  as  

firm   2   enters   the   market.   Total   cost   increases   with   .   Since   the   monopoly   capacity   also  

minimises  total  cost,  entry  by  firm  2  leads  to  excess  capacity  and  higher  total  cost.    

  25  

Total   revenue  decreases  with   ,  which   implies   that   the  decrease   in   total   profit   is   not  

only   associated  with   increased   cost   of   electricity   production.   There   is   also   a   price   effect.  We  

define  a  price  index    by  the  following  expression:   .  

This   index   of   the   wholesale   price   of   electricity   is   proportional   to   total   revenue.    

when   ,  and    when    GW.    Hence,  market  entry  by  firm  2  

leads   to   higher   total   cost   of   electricity,   and   lower   total   profit   and   revenue.   The   price   of  

electricity  decreases  by  approximately  10%.  

4.4. Long-­‐term  contracts  

 We   now   allow   firm   1   to   hold   a   volume    of   long-­‐term   supply   contracts,   according   to  

which   firm  1  supplies  electricity  at  a  price   .  At   the   time  of  signing   the  contracts,   firm  1  

has   a   monopoly   and   the   price   of   electricity   is   ,   so   customers   are   indifferent   between  

purchasing  electricity  on  the  market  and  a  contract  where   .  We  set    and  calculate  

,  firm  2’s  optimal  choice  of  capacity  as  a  function  of  the  volume  of  contracts  held  by  firm  1.  

In  order  to  do  so,  we  use  the  following  program  for  every  value  of   :  

1. We  calculate   )  for  a  range  of  values  of    taken  in  the  interval   .  

2. We  find   ,  the  value  of    corresponding  to  the  maximum   .  

3. If   ,   we   return   the   analytical   solution.   If   not,   we   return   the   numerical   solution,  

.  

 

 Figure  7  –  Capacity  chosen  by  firm  2  as  a  function  of  the  volume  of  contracts  held  by  firm  1  

  26  

Figure   7   displays    for   .   The   capacity   chosen   by   firm   2   is   strictly  

decreasing  in   .  There  is  a  change  in  slope  when    GW.  Beyond  this  point,   .  

As  discussed  in  the  previous  section,   the  profit   functions  of   the  firms  change  when   .  

As  a  result,  the  slope  of      changes.  

We  note  that  the  reduction  in  firm  2’s  capacity  is  approximately  proportional  to   ,  

the   volume   of   contracts   expressed   as   a   proportion   of   firm   1   capacity.   Indeed,   when  

,  firm  2’s  capacity  is  reduced  by  58%.  

 

 Figure  8  –  Profit  of  each  firm  as  a  function  of  the  volume  of  contracts  held  by  firm  1  

 

Figure   8   displays    and   .   Firm   2   profit   is   decreasing   in   ,   but   it   remains  

positive,   so   although   contracts  decrease  entry,   firm  1   cannot   exclude   firm  2   completely  using  

contracts.   However,   if   firm   2   had   large   fixed   costs,   total   exclusion   would   be   possible.   For  

example,  if  firm  2  had  fixed  costs  of  10,  then  it  would  not  enter  the  market  if    GW.  Firm  1  

profit,   including   income   from   contracts,   is   increasing   in   ,   but   remains   less   than   monopoly  

profit.   In   order   to   maximize   its   profit,   firm   1   should   choose   a   volume   of   contracts  

 GW.  At  this  point,  firm  1  makes  a  profit  of  82,  just  14  less  than  monopoly  profit.  

   

Figure   9   displays   total   profit    and   total   cost   as   a   function   of   .   Because  

contracts   lead   to   decreased   entry   by   firm   2   (hence,   less   excess   capacity),   the   total   cost   of  

electricity   production   decreases   with   .   Total   profit   increases   with   :   the   increase   in   firm   1  

profit  outweighs  the  decrease  in  firm  2  profit.  

  27  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure   10   displays   total   revenue,   with   and   without   income   from   contracts.     The  

difference  is  striking.  Total  revenue,  excluding  contracts,  is  sharply  decreasing.  This  represents  

revenue  from  the  spot  market,  whose  size  is  being  reduced  as  the  volume  of  contracts  increases  

(peak   demand   in   the   spot   market   decreases   from    to   ).   However,   total   revenue   from  

electricity  production,  including  contract  income,  is  increasing.  

 

 Figure  10  –  Total  revenue,  including  and  excluding  contract  income,  as  a  function  of   .  

Figure  9  –  Total  profit  and  total  cost  as  a  function  of  the  volume  of  contracts  held  by  firm  1  

  28  

Finally,  we  define  a  spot  market  price  index  by  the  following  expression:  

   

We   are   interested   in   the   impact   of   contracts   on   the   average   price   of   electricity   in   the   spot  

market.  Spot  market  revenue  is  given  by  total  revenue  minus  contract  income,  and  market  size  

is   ,  the  average  demand  for  electricity  in  the  spot  market.  Figure  11  displays    as  

a  function  of   .  

 

 Figure  11  –  Spot  market  price  index    as  a  function  of   .  

 The  evolution  of  the  price  index  is  unusual:  it  begins  at  2.71  and  decreases  until  it  

reaches  a  local  minimum  of  2.70  when    GW.  Then  it  increases,  reaching  a  maximum  of  

2.72  when    GW  (at  this  point,   ).  Then  it  decreases  again,  reaching  a  global  

minimum  of  2.865  when    Finally  the  price  index  increases  a  little,  reaching  2.695  when  

 GW.  

  If  we  look  at  the  expression  of  the  price  index,  its  behaviour  can  be  explained  partly  by  

the  fact  that  total  spot  market  revenue  (the  numerator)  as  well  as  the  size  of  the  spot  market  

(the  denominator)  are  decreasing.  The  rest  is  explained  by  the  change  in  slope  of  total  revenue  

when    exceeds  23.7  GW.  However,  it  should  be  noted  that  these  changes  in  spot  market  price  

are  small:  the  price  index  always  remains  within  1%  of  its  original  value.  In  conclusion,  the  

contracts  have  little  effect  on  the  average  price  of  electricity  on  the  spot  market.

  29  

 

Conclusion    

 In   our   model,   the   French   electricity   market   is   made   up   of   two   sectors:   a   perfectly  

competitive   conventional   sector   and   a   nuclear   sector.   Electricity   demand   is   uniformly  

distributed.   We   focus   our   analysis   on   market   entry   in   the   nuclear   sector.   We   begin   by  

determining  the  nuclear  capacity  that  a  monopoly  would  choose  in  order  to  maximize  its  profit.  

This  capacity  also  minimizes  the  total  cost  of  producing  electricity  (from  both  conventional  and  

nuclear  sources)  to  meet  consumer  demand.  

We  then  consider  what  happens  when  there  are  two  nuclear  producers:  a  large  firm,  the  

incumbent,  and  a  small   firm,   the  entrant.  The   two   firms  compete  via  a  discriminatory  auction  

mechanism  described  in  Fabra  et  al.  (2006).  When  demand  is  less  than  the  small  firm  capacity,  

both   firms   sell   capacity   at  marginal   cost   and  make   zero   profit.  When   demand   exceeds   total  

nuclear   capacity,   each   firm   supplies   its  whole   capacity   at   the  marginal   cost    of   conventional  

producers.  When  demand  is  between  these  two  regions,  there  is  a  mixed  strategy  equilibrium.  

We  find  expressions  for  each  firm’s  yearly  profit  by  integrating  over  the  distribution  of  

demand.  We  then  calibrate  the  model  to  the  French  market,  assuming  that  the  nuclear  capacity  

installed  on  the  market  (63  GW)  is  the  monopoly  profit-­‐maximizing  capacity.  In  the  absence  of  

contracts,   the   small   firm   maximizes   its   profit   by   installing   a   capacity   of   17.5   GW.   Since   the  

monopoly  capacity  is  efficient,  market  entry  leads  to  excess  capacity:  the  total  cost  of  producing  

electricity   increases.   Total   profit   and   revenue   decrease,   and   the   average   price   of   electricity  

drops  by  10%.  

We   then   allow   the   incumbent   to   sign   long-­‐term   contracts   with   industrial   consumers  

before  the  small  firm  enters  the  market.  According  to  these  contracts,  the  incumbent  supplies  a  

constant  capacity  at  a  price   .  We  assume  that    –  the  contract  price  is  equal  to  the  price  

of  electricity  at  the  time  the  contracts  are  signed  (when  the  incumbent  has  a  monopoly).    As  the  

volume  of  contracts   increases,  market  entry  by   the  small   firm   is   reduced.   Its  profit  decreases,  

while   the   incumbent’s   profit   increases.   However,   the   incumbent   cannot   recover   monopoly  

profit   entirely.   Furthermore,   contracts   reduce   market   entry,   but   they   cannot   exclude   rivals  

entirely  unless  the  entrant  has  large  fixed  costs.    

From  a  welfare  point  of  view,  the  effect  of  long-­‐term  contracts  is  ambiguous.  On  the  one  

hand,  market  entry  leads  to  excess  capacity,  so  by  limiting  entry  the  contracts  help  to  minimize  

the  cost  of  electricity  production.  However,  market  entry  reduces  the  price  of  electricity,  which  

may   be   viewed   as   beneficial   for   consumers.   Interestingly,   long-­‐term   contracts   do   not   have   a  

significant  effect  on  the  price  of  electricity  on  the  spot  market:  it  remains  near  the  level  it  would  

  30  

have   had   with   unrestricted   market   entry.   However,   customers   who   have   signed   long-­‐term  

contracts  continue  to  pay  the  monopoly  price  for  electricity.  As  a  result,  they  have  an  incentive  

to  escape  the  contract  in  order  to  purchase  electricity  on  the  spot  market  instead.  

 An  important  extension  of  this  work  would  be  to  consider  customers’  incentives  to  sign  

contracts.  We  have  assumed  that  at  the  time  of  signing,  customers  do  not  anticipate  that  there  

will  be  market  entry,  or  they  do  not  internalize  the  consequences  that  the  contracts  will  have  on  

a   rival  producer’s  decision   to   enter   the  market.   If   they  were   to   anticipate   this,   how  could   the  

incumbent  producer  incentivise  them  to  sign  the  contract?  A  possible  answer  would  be  to  look  

at  the  contract  price   .  Perhaps  the  incumbent  could  offer  customers  a  discount  at  the  time  of  

signing   (setting   ),   but   in   that   case   would   the   incumbent   still   benefit   from   having   the  

contracts?   Similarly,   one   could   look   at   how   the   contracts   should   be   structured   in   order   to  

dissuade  customers  from  ending  them  after  they  observe  market  entry  and  the  resulting  lower  

prices.  A  first  step  would  be  to  examine  the  penalty  that  firms  would  be  required  to  pay  in  the  

event  of  a  premature  termination  of  the  contract.  

  31  

 

References    

Aghion,  Philippe,  and  Patrick  Bolton.  "Contracts  as  a  Barrier  to  Entry."  American  Economic  

Review  (1987):  388-­‐401.  

 

Allaz,  Blaise,  and  Jean-­‐Luc  Vila.  "Cournot  competition,  forward  markets  and  efficiency."  Journal  

of  Economic  Theory  59,  no.  1  (1993):  1-­‐16.  

 

Bessot,  Nicolas,  Maciej  Ciszewski,  and  Augustijn  Van  Haasteren.  "The  EDF  long  term  contracts  

case:  addressing  foreclosure  for  the  long  term  benefit  of  industrial  customers."  Competition  

Policy  Newsletter  2  (2010):  10-­‐13.  

 

Director,  Aaron,  and  Edward  H.  Levi.  "Law  and  the  future:  Trade  regulation."  Northwestern  

University  Law  Review  51  (1956):  281.  

 

Lien,  J.  “Forward  Contracts  and  the  Curse  of  Market  Power”,  University  of  Maryland  Working  

Paper  (2000)  

 

Mahenc,  Philippe,  and  François  Salanié.  "Softening  competition  through  forward  trading."  

Journal  of  Economic  Theory  116,  no.  2  (2004):  282-­‐293.  

 

Fabra,  Natalia,  Nils-­‐Henrik  von  der  Fehr,  and  David  Harbord.  "Designing  electricity  auctions."  

RAND  Journal  of  Economics  37,  no.  1  (2006):  23-­‐46.  

 

Fabra,  Natalia,  Nils-­‐Henrik  von  der  Fehr,  and  María-­‐Ángeles  de  Frutos.  "Market  Design  and  

Investment  Incentives."  Economic  Journal  121,  no.  557  (2011):  1340-­‐1360.  

 

Rasmusen,  Eric  B.,  J.  Mark  Ramseyer,  and  John  S.  Wiley  Jr.  "Naked  Exclusion."  American  

Economic  Review  (1991):  1137-­‐1145.  

 

Segal,  Ilya  R.,  and  Michael  D.  Whinston.  "Naked  Exclusion:  Comment."  American  Economic  

Review  (2000):  296-­‐309.  

 

  32  

 

Appendix  –  selected  MATLAB  code    Function  function [k2opt,profit2] = maxprofit2(f) %MAXPROFIT2 Returns the level of capacity that maximizes firm 2's profit, %when firm 1 has capacity k1m and holds a volume of contract f Dmin = 33 - f; Dmax = 78 - f; DeltaD = Dmax - Dmin; % k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c) k1 = 63 - f; % investment cost (numeraire price) b = 1; % NetPrice = P - c NetPrice = b*DeltaD/(Dmax - k1); % maximum capacity of firm 2 - we do not want k2 to exceed k1 k2max = Dmax; % step size (number of data points = k2max/step + 1) step = 0.01; % capacity of firm 2 k2vector = 0:step:k2max; % initializing Profit2 = zeros(size(k2vector)); NetProfit2 = zeros(size(k2vector)); for i = 1:length(k2vector) k2 = k2vector(i); K = k1 + k2; % parameters for firm 2 profit A = 3/(2*k1); B1 = 2*log(k1/Dmin); % B1 and B2 are minus infty if f = 63 B2 = 1 + log(k1/k2); C = -(1-b/NetPrice)*DeltaD; if k2 <= Dmin % profit of firm 2, before and after fixed costs Profit2(i) = NetPrice/DeltaD*(DeltaD*k2 - B1/2*k2^2 - A/3*k2^3); NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost else % profit of firm 2, before and after fixed costs Profit2(i) = NetPrice/DeltaD*(Dmax*k2 - B2*k2^2 - A/3*k2^3); NetProfit2(i) = Profit2(i) - b*k2; % net of fixed cost end end profit2 = max(NetProfit2); k2opt = k2vector(NetProfit2 == profit2);

  33  

if k2opt <= Dmin % overwrite k2opt and profit2 with analytical solution (more precise) k2opt = (-B1 + sqrt(B1^2-4*A*C))/(2*A); profit2 = NetPrice/DeltaD*(DeltaD*k2opt - B1/2*k2opt^2 - A/3*k2opt^3)... - b*k2opt; end end

 Main  script  (calls  the  previous  function)  % calculates the optimal capacity chosen by firm 2 as a function of the % volume of contracts held by firm 1, where firm 1 has the monopoly % capacity. Also calculates resulting profit of both firms. Dmin = 33; Dmax = 78; DeltaD = Dmax - Dmin; Davg = (Dmax + Dmin)/2; % k1 is the monopoly capacity, given by k1 = Dmax - b*DeltaD/(P-c) k1 = 63; % Investment cost (numeraire price) b = 1; % NetPrice = P - c NetPrice = b*DeltaD/(Dmax - k1); % Discount = (pf - c)/(P - c) Discount = 1; ContractPrice = Discount*NetPrice; % maximum volume of contracts (must be < 63) fmax = 33; % step size (number of data points = fmax/step + 1) step = 0.2; % volume of contracts fvector = 0:step:fmax; % initializing k2vector = zeros(size(fvector)); Profit1 = zeros(size(fvector)); NetProfit1 = zeros(size(fvector)); Profit2 = zeros(size(fvector)); NetProfit2 = zeros(size(fvector)); TotalCost = zeros(size(fvector)); for i = 1:length(fvector) % volume of contracts f = fvector(i); % updated quantities Dmaxp = Dmax - f; Dminp = Dmin - f; k1p = k1 - f;

  34  

% firm 2 capacity and profits [k2,NetProfit2(i)] = maxprofit2(f); k2vector(i) = k2; Profit2(i) = NetProfit2(i) + b*k2; % total capacity K = k1 + k2; Kp = K - f; % profit of firm 1, before and after fixed costs if k2 < Dminp Profit1(i) = NetPrice/DeltaD*(k1p*Dmaxp + k2*Dminp... - 1/2*Kp^2 -1/2*Dminp^2) + ContractPrice*f; else Profit1(i) = NetPrice/DeltaD*(k1p*(Dmaxp-k2) - 1/2*k1p^2)... + ContractPrice*f; end NetProfit1(i) = Profit1(i) - b*k1; % net of fixed cost % total production cost minus c*Davg TotalCost(i) = b*K + NetPrice/DeltaD*0.5*(Dmax-K)^2; end % total profit = firm 1 + firm 2 + coal (zero profit) TotalProfit = NetProfit1 + NetProfit2; % after investment costs % PriceAvg = Pavg - c (retail price index net of operating cost) PriceAvg = (TotalProfit + TotalCost - ContractPrice*fvector)./(Davg - fvector);