89
GESTIÓN FINANCIERA EMPRESARIAL Estadística Aplicada a las Finanzas Universidad de Medellín Medellín, 2010

Estadística curso completo2

Embed Size (px)

DESCRIPTION

ghhghg

Citation preview

Page 1: Estadística curso completo2

GESTIÓN FINANCIERA EMPRESARIAL

Estadística Aplicada a las Finanzas

Universidad de MedellínMedellín, 2010

Page 2: Estadística curso completo2

INTRODUCCIÓN

La estadística es un área del conocimiento que se encarga de describir matemáticamente las características de la población a partir del estudio de un subconjunto (muestra) de ella.

Page 3: Estadística curso completo2

La estadística descriptiva puede definirse como aquellos métodos que incluyen la organización, presentación y caracterización de un conjunto de datos, con el fin de describir apropiadamente las diversas características de ese conjunto de datos.

ESTADÍSTICA DESCRIPTIVA

Page 4: Estadística curso completo2

INFERENCIA ESTADÍSTICA

La inferencia estadística comprende los métodos que son usados para sacar conclusiones de la población con base en una muestra tomada de ella. Incluye los métodos de estimación de parámetros y las pruebas de hipótesis.

Page 5: Estadística curso completo2

Población: Es el conjunto completo de todos los objetos que interesan a un investigador.

Muestra: Es un subconjunto de la población. En este subconjunto se miden y analizan las características de interés y se concluye para la población.

Parámetro: Es una medida numérica que describe una característica de la población.

Estadístico: Es la medida numérica que describe alguna característica de la muestra.

Page 6: Estadística curso completo2

Variables: Son las características de los objetos o individuos.

Clasificación de las variables: Cuantitativas y cualitativas.

Page 7: Estadística curso completo2

VARIABLES

CUANTITATIVAS O

NUMÉRICAS

CONTINUAS

DISCRETAS

CUALITATIVAS O

CATEGÓRICAS

Page 8: Estadística curso completo2

VARIABLE ALEATORIA

Una variable aleatoria es una función que asocia un número real con cada elemento del espacio muestral.Las variables aleatorias se clasifican en, discretas y continuas.

Una variable aleatoria es discreta si su espacio muestral contiene un número finito o infinito contable de posibilidades.

Una variable aleatoria es continua si su espacio muestral puede tomar cualquier valor en un intervalo real dado.

Page 9: Estadística curso completo2

Ejemplos Número de mensajes de correo electrónico

enviados diariamente por un analista financiero. Estrato socioeconómico. Rentabilidad anual de los fondos de inversión de

grandes empresas. Precio de las acciones de una sociedad de

inversión al final de cada mes. Las categorías de profesores universitarios

(titular, asociado, asistente, auxiliar). Número de televisores vendidos en el último año. Ventas trimestrales de una empresa durante seis

años. Número de veces que la máquina de una fábrica

se daña en una semana.

Page 10: Estadística curso completo2

Distribuciones de probabilidad

En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria, la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los eventos o rango de valores de la variable aleatoria.

x

Page 11: Estadística curso completo2

Distribuciones de probabilidad

Distribución de probabilidad para una variable aleatoria discreta El conjunto de pares ordenados se llama una función de probabilidad o función de masa de probabilidad o distribución de probabilidad de una variable aleatoria discreta , si para cada resultado posible ,

0

1

f x

f x

P X x f x

,x f x

X x

Page 12: Estadística curso completo2

Función de Distribución Acumulada

La distribución de probabilidad acumulada de una variable aleatoria discreta ,denotada por se define como

t x

F x P X x

f t

X F x

Page 13: Estadística curso completo2

Distribuciones de probabilidad

Distribución de probabilidad para una variable aleatoria continua La función es una función de densidad de probabilidad de la variable aleatoria continua , definida en el conjunto de los números reales si,

0

1

b

a

f x

f x dx

P a x b f x dx

f x

X

Page 14: Estadística curso completo2

Función de Distribución Acumulada

La distribución de probabilidad acumulada de una variable aleatoria continua , denotada por se define como:

x

F x P X x

f t dt

X F x

Page 15: Estadística curso completo2

EJEMPLO 1

Una firma de inversiones ofrece a sus clientes bonos municipales que vencen después de varios años. Dado que la función de distribución acumulada de , el número de años de vencimiento para un bono que se elige al azar, es

a. ¿Cuál es la distribución de probabilidad de la variable aleatoria ?

b. Calcule

X

0 1

0.25 1 2

( ) 0.6 2 3

0.82 3 4

1 4

x

x

F x x

x

x

X 4 , (1 3) , ( 3) y ( 2)P X P X P X P X

Page 16: Estadística curso completo2

EJEMPLO 2

Un concesionario de automotores está seguro que la función de densidad de probabilidad de demanda por carburante mensual está dada por

donde corresponde a la cantidad de litros de carburante demandados en el mes.

a) Encuentre la función de distribución acumulada de la variable aleatoria

b) Encuentre la probabilidad de que el consumo en el mes sea de máximo 40000 litros.

c) Encuentre la probabilidad de que el consumo en el mes sea de mínimo 30000 litros.

d) Encuentre la probabilidad de que el consumo en el mes este entre 20000 y 35000 litros.

1para 10000 50000

( ) 400000 e.o.c

xf x

X

X

Page 17: Estadística curso completo2

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

La tabla de distribución de frecuencias es una tabla que resume la información en forma ordenada y coherente.

Agrupa un conjunto de datos en intervalos de clase, en una tabla que contiene filas y columnas.

Page 18: Estadística curso completo2

Intervalo de clase Frecuencia absoluta Frecuencia absoluta acumulada Frecuencia relativa Frecuencia relativa acumulada

Page 19: Estadística curso completo2

TABLA DE FRECUENCIAS PARA LOS RENDIMIENTOS ANUALES DE LAS ACCIONES ORDINARIAS DE UNA EMPRESA

Lower Upper Relative Cumulative Cum. Rel.

Class Limit Limit Midpoint Frequency Frequency Frequency Frequency

1 -30.0 -16.0 -23.0 2 0.1000 2 0.1000

2 -16.0 -2.0 -9.0 4 0.2000 6 0.3000

3 -2.0 12.0 5.0 1 0.0500 7 0.3500

4 12.0 26.0 19.0 12 0.6000 19 0.9500

5 26.0 40.0 33.0 1 0.0500 20 1.0000

Page 20: Estadística curso completo2

Histogramas y polígonos de frecuencia como estimador de la función de densidad

Un histograma es un gráfico que representa la frecuencia con que ocurren las observaciones de una muestra en determinados intervalos.

Page 21: Estadística curso completo2

HISTOGRAMA

Histogram

-30 -10 10 30 50

Rendimientos

0

2

4

6

8

10

12fr

eque

ncy

Page 22: Estadística curso completo2

POLIGONO DE FRECUENCIAS

El polígono de frecuencias es un gráfico de líneas, que se construye uniendo los puntos medios de cada intervalo con segmentos de recta.

Page 23: Estadística curso completo2

POLÍGONO

Histogram

-30 -10 10 30 50

Rendimientos

0

2

4

6

8

10

12fre

quen

cy

Page 24: Estadística curso completo2

GRÁFICO DE BARRAS

Es un conjunto de barras paralelas colocadas en forma vertical u horizontal y es uno de los gráficos más simples para su elaboración; se utiliza principalmente en la presentación de datos cualitativos.

Page 25: Estadística curso completo2

GRÁFICO DE BARRAS

Por

cent

aje

0

10

20

30

40

Bogotá Cali Medellín Barranquilla

Page 26: Estadística curso completo2

GRÁFICO CIRCULAR O DE SECTORES

Es un circulo que se divide en tantas partes como categorías se tengan, de manera que el área sea proporcional a la importancia relativa de cada categoría.

Page 27: Estadística curso completo2

GRÁFICO CIRCULAR O DE SECTORES

20.00%

10.00%

Gráfico Circular para canasta IGBCCanasta IGBC

EcopetrolBancolombiaGruposuraCemargos

55.00%

15.00%

Page 28: Estadística curso completo2

DESCRIPCIÓN NUMÉRICA DE LOS DATOS

Medidas de tendencia central

Medidas de variabilidad

Medidas de posición

Medidas de forma

Medidas de las relaciones entre variables

Page 29: Estadística curso completo2

MEDIDAS DE TENDENCIA CENTRALUna medida de tendencia central ubica e identifica el punto alrededor del cual se centran los datos Media muestral: Promedio de los datos

Media ponderada: Es el resultado de multiplicar cada uno de los números por un valor particular para cada uno de ellos, llamado su peso, obteniendo a continuación la suma de estos productos, y dividiendo el resultado de esta suma de productos entre la suma de los pesos más la masa según la característica de cada número inicial

Mediana: Es la observación que ocupa el lugar central de un conjunto de observaciones ordenadas en sentido ascendente (o descendente).

Moda: La moda, si existe, es el valor que aparece con más frecuencia.

Page 30: Estadística curso completo2

ESPERANZA MATEMÁTICA

Media de una variable aleatoriaSea X una variable aleatoria con distribución de probabilidad f(x), la media o valor esperado de X se define como,

-

, si es discreta.

, si es continua.

x

x f x XE X

x f x dx X

Page 31: Estadística curso completo2

MEDIDAS DE VARIABILIDAD O DISPERSIÓN

Rango

Rango intercuartílico

Varianza

Desviación típica

Coeficiente de variación

Las medidas de variabilidad o dispersión sirven para estudiar la representatividad del valor central; es decir, permiten determinar que tan dispersos se encuentran las posibles realizaciones.

Page 32: Estadística curso completo2

Medidas de Variabilidad

Rango o recorrido: es la diferencia entre el máximo y el mínimo valor del conjunto de datos.

Varianza y desviación estándar: la varianza corresponde al valor promedio de las desviaciones de la variable aleatoria con respecto a su media.

El indicador más común del riesgo de un activo es la desviación estándar. Mide la dispersión de los rendimientos en torno al rendimiento promedio o esperado de un activo.

max minR X X

2

2 21 ;1

n

ii

x xS S S

n

Page 33: Estadística curso completo2

EJEMPLO 3

Considere dos inversiones alternativas A y B, que se describen en la tabla adjunta. Obtener el rendimiento promedio y el riesgo asociado a cada activo. ¿Cuál inversión es más riesgosa?

Tasa de rendimiento

(%)

Año Inversión A Inversión B

2005 15.6 8.42006 12.7 12.92007 15.3 19.62008 16.2 17.52009 16.5 10.32010 13.7 21.3

Page 34: Estadística curso completo2

Medidas de VariabilidadCoeficiente de variación: El coeficiente de variación es una medida de la dispersión relativa de los rendimientos de un activo. Es útil para comparar el riesgo de activos con diferentes rendimientos promedio o esperados.

Cuanto mayor sea el coeficiente de variación, mayor será el riesgo. Entre más pequeño sea este coeficiente existirá un mejor compromiso entre riesgo y retorno. En otras palabras, menor será la volatilidad como proporción del retorno esperado.

SCV

x

Page 35: Estadística curso completo2

EJEMPLO 4

Suponga que desea seleccionar la menos riesgosa de dos inversiones alternativas X y Y. El rendimiento promedio y la desviación estándar de cada una de estas inversiones son los siguientes,

Estadística Inversión X Inversión Y

Rendimiento promedio

12% 20%

Desviación estándar 9% 10%

Page 36: Estadística curso completo2

ESPERANZA MATEMÁTICA

Varianza de una variable aleatoriaSea X una variable aleatoria con distribución de probabilidad f(x) y media , la varianza de X se define como,

A la raíz cuadrada positiva de la varianza, se le llama desviación estándar o desviación típica.

22

2

2

-

si es discreta

si es continua

x

V X E X

x f x X

x f x dx X

22 2E X E X

Page 37: Estadística curso completo2

EJEMPLO 5

La tasa de retorno anual de un proyecto de inversión es una variable aleatoria con función de densidad de probabilidad,

Halle el valor de . Si una persona invierte $50000000, calcule la utilidad esperada y su

desviación estándar. La tasa de colocación (tasa a la que prestan los bancos) es del 17.5%. Un

inversionista recurrirá al apalancamiento (pedir prestado para invertir) si la tasa de retorno supera en 15 puntos porcentuales a la tasa de colocación con una probabilidad de 0.6 o superior. ¿Qué decisión debe tomar el inversionista?

k

3 2(1 ) para 0 1( )

0 e.o.p

k x x xf x

Page 38: Estadística curso completo2

EJEMPLO 6

Un contratista está interesado en conocer el costo total de un proyecto sobre el que intenta hacer una oferta. Estima que los materiales costaran 25 000 dólares y su trabajo 900 dólares diarios. Si se necesitan días para terminar el proyecto, el costo total del trabajo será de dólares. El contratista construye unas probabilidades subjetivas sobre la duración del proyecto como se indica en la tabla,

Calcule la media y la desviación estándar del costo total del proyecto.

X900X

Duración días

10 11 12 13 14

Probabilidad 0.1 0.3 0.3 0.2 0.1

X

Page 39: Estadística curso completo2

MEDIDAS DE POSICIÓN

Cuartiles

Deciles

Percentiles

Asimetría

Curtosis

MEDIDAS DE FORMA

Page 40: Estadística curso completo2

MEDIDAS DE FORMA

Frecuentemente la forma de la distribución es importante pues permite tomar decisiones de inversión entre diferentes activos o portafolios o implicará emplear modelos más o menos sofisticados para la medición del riesgo.

Coeficiente de asimetría: Las medidas de asimetría son indicadores que permiten establecer el grado de simetría (o asimetría) que presenta una distribución de probabilidad de una variable aleatoria sin tener que hacer su representación gráfica.

Page 41: Estadística curso completo2

MEDIDAS DE FORMA

Coeficiente de asimetría

Si A = 0, la distribución es simétrica.Si A > 0, la distribución es asimétrica hacia la derecha.Si A < 0, la distribución es asimétrica hacia la izquierda.

3

3

E XA

Page 42: Estadística curso completo2

MEDIDAS DE FORMA

Coeficiente de curtosis: Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).

Page 43: Estadística curso completo2

MEDIDAS DE FORMA

Coeficiente de Curtosis

4

4

E Xk

Si k = 3, la distribución es MesocúrticaSi k > 3, la distribución es LeptocúrticaSi k < 3, la distribución es Platicúrtica

Page 44: Estadística curso completo2

MEDIDAS DE LAS RELACIONES ENTRE VARIABLES

Covarianza: Es una medida de la relación lineal entre dos variables. Un valor positivo indica una relación lineal directa o creciente y un valor negativo indica una relación lineal decreciente. La covarianza muestral se define como,

1( , )

1

n

i ii

x x y yCov x y

n

Page 45: Estadística curso completo2

Covarianza entre dos variables aleatorias

cov(x,y) = 0 cov(x,y) > 0 cov(x,y) < 0

Page 46: Estadística curso completo2

Covarianza entre dos variables aleatorias

Sean X y Y variables aleatorias con distribución de probabilidad conjunta f(x,y) y medias , respectivamente. La covarianza de X y Y es,

x y

( )( ) ( , ),

[( )( )]( )( ) ( , ) ,

x yx y

xy x y

x y

x y f x y discretas

E X Yx y f x y dxdy continuas

( )xy x yE XY

Page 47: Estadística curso completo2

MEDIDAS DE LAS RELACIONES ENTRE VARIABLES

Coeficiente de Correlación: Es una medida estandarizada de la relación lineal entre dos variables. Generalmente es una medida más útil, ya que indica tanto el sentido como el grado de relación. El coeficiente de correlación se calcula como,

,, 1 1x y x y

x y

Cov x yr r

S S

Page 48: Estadística curso completo2

MEDIDAS DE LAS RELACIONES ENTRE VARIABLES

La diversificación implica la inclusión de distintos instrumentos de inversión en un portafolio. Para construir un portafolio de manera eficaz, se necesitan comprender los conceptos de correlación y diversificación, su relación con el riesgo y el rendimiento total del portafolio. Para reducir el riesgo general de un portafolio, es mejor combinar activos que tengan una correlación negativa (o positiva baja).

La correlación es importante para reducir el riesgo, pero sólo hasta cierto punto. Un portafolio de dos activos que tienen rendimientos perfectamente correlacionados positivamente no puede reducir su riesgo general por debajo del activo menos riesgoso.

Sin embargo, un portafolio que combina dos activos con una correlación positiva baja puede reducir el riesgo total a un nivel inferior al de cualquiera de sus componentes; en ciertas situaciones, puede ser igual a cero.

Page 49: Estadística curso completo2

Correlación entre dos variables aleatorias

Coeficiente de correlación poblacional: Es el grado de dependencia lineal entre dos variables aleatorias. Se define como,

x y

x yV X V Y

• Si hay relación lineal positiva, ρ > 0 y próximo a 1.• Si hay relación lineal negativa ρ < 0 y próximo a –1.• Si no hay relación lineal ρ será próximo a 0.

1 1x y

Page 50: Estadística curso completo2

Rendimiento de un Portafolio

El rendimiento de un portafolio de n activos se define como la suma ponderada de los retornos de cada activo, es decir,

donde es la proporción del valor total en dólares del portafolio representada por el activo i.

1

n

p i ii

R W R

iW

1

1n

ii

W

Page 51: Estadística curso completo2

Riesgo de un Portafolio

La varianza de los rendimientos de un portafolio de n activos se define como

donde es el vector de las participaciones relativas de cada uno de los activos dentro del portafolio, es la matriz de varianzas y covarianzas de los retornos de los activos en el portafolio.La desviación estándar del portafolio es la volatilidad o riesgo del portafolio.

2 Tp W W

W

Page 52: Estadística curso completo2

EJEMPLO 7

Considere los precios de cierre diarios de las acciones de, Grupo

nacional de chocolates, Inversiones Argos e ISA, las cuales transan

en la Bolsa de Valores de Colombia, en el periodo muestral que va

desde el 27 de noviembre de 2007 hasta el 20 de agosto de 2010.

Suponga que le piden seleccionar un portafolio de activos. Para ello,

debe crear cuatro portafolios, el primero integrado por los activos

de Grupo nacional de chocolates y Inversiones Argos , el segundo

por Inversiones Argos y ISA, el tercero por Grupo nacional de

chocolates e ISA y el cuarto compuesto por los tres activos,

invirtiendo proporciones iguales de cada uno de los activos que

componen los portafolios de dos acciones. Para el portafolio de tres

acciones considere las proporciones que usted considere

adecuadas, justificando claramente su elección.

Page 53: Estadística curso completo2

EJEMPLO 8

Una firma comisionista tiene 5 acciones de la empresa A y 10 de la empresa B; las variaciones de sus precios siguen el modelo de distribución de probabilidad de la tabla dada. Hallar la media, la varianza y la covarianza del portafolio W=5 X+10 Y.

La firma sabe que una elevada varianza implica un elevado riesgo. Cree que el riesgo de la anterior cartera es demasiado alto, por lo que considera una cartera con menos riesgo. Por lo tanto toma dos acciones diferentes cuyos precios siguen el modelo de distribución de probabilidad dado en la tabla.Hallar la media, la varianza y la covarianza del portafolio Z=5 X+10 Y.

Precios de las acciones de B

Precio de las acciones de A

40 50 60 70

45 0.24 0.003333 0.003333 0.00333350 0.003333 0.24 0.003333 0.00333355 0.003333 0.003333 0.24 0.00333360 0.003333 0.003333 0.003333 0.24

Page 54: Estadística curso completo2

EJEMPLO 8

Precios de las acciones de D

Precio de las acciones de C

40 50 60 70

45 0.003333 0.003333 0.003333 0.2450 0.003333 0.003333 0.24 0.00333355 0.003333 0.24 0.003333 0.00333360 0.24 0.003333 0.003333 0.003333

Page 55: Estadística curso completo2

EJEMPLO 9

Suponga que debe decidir entre dos inversiones alternativas para el año venidero. La primera es un fondo mutuo cuya cartera consiste en una combinación de acciones que forman parte del promedio industrial Dow Jones (X ). La segunda consiste en fondos de crecimiento (Y). Suponga que estima las ganancias siguientes (por cada 1000 dólares de inversión) con tres condiciones económicas, cada una con una probabilidad de ocurrencia dada.

a) Calcular el valor esperado y la desviación estándar para cada inversión y la covarianza de las dos inversiones.

b) Calcule e interprete la correlación entre X y Y .c) Hallar la media y la volatilidad del portafolio Z=0.5X+0.5Y.

InversiónCondición Económica

Fondo Dow JonesFondos de

crecimiento0.2 Recesión - $100 - $2000.5 Economía Estable + $100 + $50

0.3Economía en

expansión+ $250 + $350

,f x y

Page 56: Estadística curso completo2

Distribución Normal

La función de densidad de la variable aleatoria normal X, con media μ y desviación estándar σ, es,

21

21

( ) - , - , 02

x

f x xe

Page 57: Estadística curso completo2

Distribución Normal

La función de densidad, en el caso de la distribución Normal, tiene forma de campana :

Mean,Std. Dev.0,1

Normal Distribution

-5 -3 -1 1 3 5x

0

0,1

0,2

0,3

0,4

de

nsi

ty

Page 58: Estadística curso completo2

Distribución Normal

La mayor parte de la masa de probabilidad (área comprendida entre la curva y el eje de abcisas) se encuentra concentrado alrededor de la media, y las ramas de la curva se extienden asintóticamente a los ejes, de modo que cualquier valor “muy alejado” de la media es posible (aunque poco probable).

Page 59: Estadística curso completo2

Distribución Normal

La forma de la campana de Gauss depende de los parámetros u y s . u indica la posición de la campana (parámetro de centralización)

Page 60: Estadística curso completo2

Distribución Normal

s es el parámetro de dispersión. Cuanto menor sea, mayor cantidad de masa de probabilidad habrá concentrada alrededor de la media

Page 61: Estadística curso completo2

Distribución Normal

dxebXapb

a

x

2

2 2

2

1)(

Page 62: Estadística curso completo2

Distribución Normal

Como el cálculo de esta integral es laborioso, para calcular el área se realiza el siguiente cambio de variable:

X

Z

Page 63: Estadística curso completo2

Distribución Normal

Este cambio origina una distribución normal estándar de media μ = 0 y desviación típica σ = 1 cuya función de densidad es :

eZ

zf 2

2

2

1)(

Page 64: Estadística curso completo2

Distribución Normal

Los parámetros μ y σ se estiman:

1

ˆˆ

ˆ

1

2

2

1

n

x

n

x

n

ii

n

ii

Page 65: Estadística curso completo2

EJEMPLO 10

Dado que la variable aleatoria sigue una

distribución normal con , encuentre

a) , , y

b)¿10% de los valores son menores que cuál valor

de?

c)¿80% de los valores se encuentran entre cuáles

dos valores de (simétricos alrededor de la media)?

d)¿70% de los valores están arriba de cuál valor

de ?

100 y 10

X

X

X

X

112P X 80 o 110P X X 70P X 75 85P X

Page 66: Estadística curso completo2

EJEMPLO 11

Dado que la variable aleatoria sigue una distribución

normal con , encuentre

a) y

b) El valor de tal que

c) El valor de tal que

18 y 2.5

X

0.2236P X k k

0.1814P X k

15P X 17 21P X

k

Page 67: Estadística curso completo2

EJEMPLO 12

Dada una distribución normal estándar,

a) Cuál es la probabilidad de que

esté entre la media y +1.08?

esté entre -0.21 y la media?

sea menor que -0.21 o mayor que la media?

b)¿cuál es el valor de si sólo 15.87% de todos los valores

posibles son menores?

c)¿cuál es el valor de si sólo 15.87% de todos los valores

posibles son mayores?

Z

Z

Z

Z

Z

Page 68: Estadística curso completo2

EJEMPLO 13

Una cartera de inversión contiene acciones de un gran número de

empresas. El año pasado, las tasas de rendimiento de estas acciones

siguieron una distribución normal que tenía una media de 12.2% y una

desviación típica de 7.2%.

a) ¿De qué proporción de estas empresas fue la tasa de rendimiento

de más del 20 por ciento?

b) ¿De qué proporción de estas empresas fue la tasa de rendimiento

negativa?

c) ¿De qué proporción de estas empresas fue la tasa de rendimiento de

entre el 5 y el 15 por ciento?

d) Encuentre la tasa de rendimiento por arriba de la cual se encuentran el

15% de las tasas de rendimiento más altas.

Page 69: Estadística curso completo2

EJEMPLO 14

La demanda de consumo de un producto prevista para el próximo mes

puede representarse por medio de una variable aleatoria normal que tiene

una media de 1200 unidades y una desviación estándar de 100 unidades.

a) ¿Cuál es la probabilidad de que las ventas superen las 1000

unidades?

b) ¿Cuál es la probabilidad de que las ventas se encuentren entre

1100 y 1300 unidades?

c) Cuántas unidades k deben venderse para que la probabilidad de

vender más de k unidades sea de 0.10.

Page 70: Estadística curso completo2

EJEMPLO 15

El rendimiento anual promedio (en forma porcentual) de un activo

se puede asociar a una variable aleatoria continua normalmente

distribuida. Se ha determinado que el 75.8% de las veces, el

rendimiento anual promedio es mayor que 43% y el 57.93% de

las veces, el rendimiento anual promedio es menor que 52%.

a) Determinar los parámetros de la distribución.

b) Determinar la probabilidad de que en determinado año, el

rendimiento anual promedio supere el 50%.

Page 71: Estadística curso completo2

EJEMPLO 16

Un servicio de reparto de pizzas a domicilio distribuye en una

residencia de estudiantes. Los tiempos de entrega siguen una

distribución normal con media 20 minutos y desviación estándar 4

minutos.

a) ¿Cuál es la probabilidad de que se tarde entre 15 y 25

minutos en entregar una pizza?

b) La pizza no tiene costo si no es entregada en menos de 30

minutos, ¿cuál es la probabilidad de comerse una pizza gratis si se

hace un único pedido?

c) Encuentre la longitud de tiempo por arriba de la cual

encontramos el 25% de las entregas de pizzas más lentas.

Page 72: Estadística curso completo2

Distribución LognormalLa variable aleatoria continua X tiene una distribución Lognormal, si la variable aleatoria Y=lnX tiene distribución normal con media μ y desviación estándar σ. La función de densidad de probabilidad de X que resulta es,

La variable aleatoria X puede tomar valores que aumentan sin límites pero no puede tomar valores negativos.

0 ,- ,0

2

1)(

2ln

2

1

xx

xf ex

Page 73: Estadística curso completo2

Distribución Lognormal

Los valores de la media y la varianza de la distribución, se calculan:

2

2 2

2

2 2 2

E X

Var X

ee e

Page 74: Estadística curso completo2

Distribución Lognormal

Los valores de los parámetros estimados de μ y σ son respectivamente,

1

2

2 1

lnˆ

ˆlnˆ

1

n

ii

n

ii

x

n

x

n

Page 75: Estadística curso completo2

EJEMPLO 17

Los precios de cierre diarios de las acciones de una compañía (en

cientos de pesos) siguen una distribución lognormal con una

media de 4 y desviación estándar de 2.

a) ¿Cuál es la probabilidad de que el precio de cierre de las

acciones de la compañía sea superior a 27000 pesos en

cualquier día particular?.

b) ¿Cuál es el precio promedio de cierre diario de las

acciones de la compañía? ¿Cuál es la desviación estándar?

c) ¿Cuál es la probabilidad de que el precio de cierre de las

acciones de la compañía sea inferior a su promedio de cierre

diario?

Page 76: Estadística curso completo2

Teorema del límite central

Sea una muestra aleatoria de una población

cualquiera con media y varianza . Si la

distribución muestral de es una normal con media

igual a y varianza .

Por lo tanto,

1 2 3, , , , nX X X X

2 n

X

2 n

0,1 cuandoX

Z N nn

Page 77: Estadística curso completo2

Estimación puntual de los parámetros

Un estimador puntual de un parámetro poblacional es una función de los datos muestrales, también llamado estadístico. En pocas palabras, es una fórmula que depende de los valores obtenidos de una muestra, para realizar estimaciones.

Page 78: Estadística curso completo2

Intervalos de confianza y Pruebas de hipótesis

Estimación por intervalosConsiste en la obtención de un intervalo dentro del cual estará el valor del parámetro estimado con una cierta probabilidad. Para aquellos estimadores que siguen una distribución simétrica, la estructura del intervalo de confianza es la siguiente,

Prueba de hipótesisIntentan determinar si el valor poblacional de un parámetro se diferencia o no lo suficiente de un determinado valor como para afirmar que el parámetro poblacional podría tomar dicho valor o no.

( )Estimador valor de la distribucion del estimador Var Estimador

Page 79: Estadística curso completo2

Estructura de una pruebas de hipótesis

1. Ho: Hipótesis nula (hipótesis que se quiere refutar)

2. Ha: Hipótesis alternativa (hipótesis que se quiere aceptar)

3. Cálculo de un estadístico (depende de la distribución del

estimador)

4. Decisión (comparar el estadístico calculado con un valor

crítico de la correspondiente función de distribución)

Page 80: Estadística curso completo2

Intervalo de confianza para la media poblacional

Intervalo de confianza para μ cuando se muestrea una distribución normal con varianza poblacional conocida.

2 2

1P x Z x Zn n

Page 81: Estadística curso completo2

Intervalo de confianza para la media poblacional

Intervalos de confianza para μ cuando se muestrea una distribución normal con varianza desconocida y muestra pequeña.

2, 1 2, 1 1n n

S SP x t x t

n n

Page 82: Estadística curso completo2

Intervalo de confianza para la varianza de una poblacional normal

Intervalo de confianza para varianza cuando se muestrea una distribución normal.

2 22

2 22 , 1

1- , 12

1 11

nn

n S n SP

Page 83: Estadística curso completo2

Intervalo de confianza para la razón de varianzas

Intervalo de confianza para la razón de varianzas de dos poblaciones normales independientes.

2 2 21 1 1

2 2 22 2 22 , 1, 1

1- , 1, 12

1n m

n m

S SP

S f S f

Page 84: Estadística curso completo2

Prueba de hipótesis para la media poblacional

0 0 0 0 0: : , : , :a a aH vs H H H

Prueba de hipótesis para μ cuando se muestrea una distribución normal con varianza poblacional conocida.

El estadístico de prueba es

0

/

XZ

n

0 0 0 0 0: : , : , :a a aH vs H H H

Page 85: Estadística curso completo2

EJEMPLO 18

1) Se toma una muestra aleatoria de quince predicciones de analistas financieros correspondientes a las ganancias por acción de la General Motors para el próximo año. La desviación típica muestral es de 0.88 dólares. Calcule un intervalo de confianza de 95% para la varianza poblacional de las predicciones.

2) Una muestra aleatoria de los balances de fin de año de 22 empresas pequeñas (con ventas anuales inferiores a 500 000 dólares) arroja una media muestral de los beneficios brutos de las ventas del 5. 2 % y una desviación estándar de 3.3 %. Utilice estos resultados para calcular un intervalo de confianza de 90% de la media poblacional, donde la población está constituida por los varios miles de empresas pequeñas de la ciudad.

Page 86: Estadística curso completo2

EJEMPLO 193) Suponga que en una muestra aleatoria de 21 empresas que

revaluaron sus activos fijos, el cociente medio entre la deuda y los activos

tangibles era de 0.517 y la desviación típica de 0.148. En una muestra

aleatoria independiente de 11 empresas que no revaluaron sus activos

fijos, el cociente medio entre la deuda y los activos tangibles era de 0.489

y la desviación típica de 0.159.

Suponga que los dos conjuntos de datos son muestras aleatorias

independientes de poblaciones normales con varianzas iguales.

a) Calcular e interpretar un intervalo de confianza del 95% para la

diferencia entre los cocientes medios de las empresas que revaluaron sus

activos fijos y las empresas que no revaluaron sus activos fijos.

b) Calcular e interpretar un intervalo de confianza del 90% para la

razón de varianzas. ¿Es válido el supuesto de varianzas iguales que se

considero en el inciso (a)?

Page 87: Estadística curso completo2

EJEMPLO 204)Las ganancias por acción para 9 acciones industriales cotizadas en el

Dow Jones fueron US$2.15, US$2.01, US$0.89, US$1.53, US$1.89,

US$2.12, US$2.05, US$1.75 y US$2.22. Calcule un intervalo de confianza

del 90% para el precio promedio de las acciones ¿qué supuestos debe

hacer?

5)La política crediticia de un banco exige que las empresas que solicitan

créditos al banco tengan un promedio de deudas morosas por cliente

moroso menor de US$500. Para determinar si una empresa cumple con el

requisito, se selecciona una muestra aleatoria de 25 clientes morosos. La

media de la muestra fue de US$510, con una desviación estándar de

US$45. ¿Cree Ud., que la empresa cumple con el requisito? Use un nivel

de significancia del 5%.

Page 88: Estadística curso completo2

EJEMPLO 216) La acción de la compañía A reportó precio de cierre superior al

precio de apertura 60 días de 90 que fue observada. Durante el mismo

lapso de tiempo, la acción de la compañía B sólo reportó incremento 48

veces. ¿Explican los datos la existencia de una diferencia entre las

proporciones de veces de incremento de las acciones A y B? Asuma un

nivel de significancia del 5 %.

7) Se recolectan datos para determinar si hay diferencia

significativa en las varianzas de los ingresos diarios en dos tiendas. Dados

los siguientes datos, ¿cuál es su conclusión con base en una prueba de

hipótesis, considerando un nivel de significancia del 1 %?

Tienda 1(US) 45.78 34.66 65.89 54.78 98.66 12.55 37.77 21.87 23.45 56.98

Tienda 2(US) 67.89 76.45 87.12 98.65 65.87 34.91 56.88 45.99

Page 89: Estadística curso completo2

Gracias