42
A bioengineered implant for a predetermined bone cellular response to loading forces. A literature review and case report. Misch CE. Bidez MW, Sharawy M J Periodontol 2001;72:1276-1286

植牙表面回顧

Embed Size (px)

DESCRIPTION

長庚醫師的報告

Citation preview

  • 1. A bioengineered implant for a predetermined bone cellular response to loading forces.A literature review and case report. Misch CE. Bidez MW, Sharawy M J Periodontol 2001;72:1276-1286

2. 3.

  • Bone , systemic change, local mechanical factors.
  • Wolff 1982 bone adaptive properties mechanic stimuli :
    • bone
    • ( ) bone volume remaining bone
  • Cortical, trabecular bone modeling, remodeling
    • Modeling formation resorption bone
    • Remodeling formation resorption previous bone bone quality
  • Bone modeling and remodeling strain mechanical environment

4.

  • Bone ( )
    • lamellar bone
    • woven bone
    • composite bone
    • bundle bone
  • bone type osseointegrated implant
    • Lamellar bone bone type most organized, highly mineralized, strongest load bearing bone
    • Woven bone bone type unorganized, less mineralized, less strength immature bone
    • Composite bone lamellar, woven bone cortical bone endosteal, periosteal surfaces

5. 6.

  • Cortical bone fractures 10,000 20,000 microstrain (1~2% deformation) bone
  • Microstrain levels remodeling rate
    • bone cell membrane mechanosensory system
    • bone cellular behavior bone cells strain deformation mechanical environment
  • microstrain bone cell membrane ion membrane channel load

7. Frost 1989 (strain) 4 microstrain zone

  • pathologic overload zone acute disuse window bone volume
    • Pathologic overload microfracture repair net bone resorption
    • Disuse zone remodeling bone mass
    • Mild overload zone higher bone turnover rates more woven bone
    • Adapted window organized, mineralized lamellar bone
  • pathologic overload zone
  • mild overload zone
  • adapted window
  • acute disuse window

8.

  • Remodeling rate(bone turnover) (new bone) existing bone bone
    • Bone remodeling rate (BRR) (volume) (percentage)
    • woven bone 60microns ( 10 -6 m) Lamellar bone 1~5microns
    • higher BBR woven bone
  • create maintain mechanical challenge bone mass adaptive window zone more reactive woven bone Mild overload zone higher BRR

9.

  • Adapted window zone organized, highly mineralized lamellar bone
    • adapted window dental implant bone more mature periodic changes more resistant
    • adaptive window zone Implant-bone interface adjacent to away from implant BRR
  • BRR implant interface strength Implant-bone interface risk degree
  • Higher risk higher turnover rates bone interface less mineralized, less organized, weaker

10. Implant interface remodeling 11.

  • implant Interface remodeling dental implant original bone bone interface
    • healing implant interface bone 4 mature vital bone osteoblasts deposit 70% mineral
    • 30 mineral deposition 8 secondary mineralization
  • mineral density bone age
    • Bone mineralization bone implant interface
  • implant load interface remodeling
    • Implant long-term maintenance interface continuous remodeling
  • new bone sustained microfractures fatigue bone cyclic loading
  • Frost 1960 microdamage elevated remodeling activity

12.

  • rib long bone shaft diaphysis cortical bone 2~10% remodel (Parfitt 1983 )
  • jaw bone BRR rib long bone shaft diaphysis cortical bone 40 (Tricker 1977 )
    • BRR
  • Verborgt 2000 (ulna) fatigue loading microcracks TUNEL-positive osteocytes
    • Intracortical resorption 300
    • microdamage osteocyte apoptosis subsequent bone remodeling
  • Screw-type implant cortical bone microdamage insertion pullout forces microdamage implant thread design

13. bioengineering of an implant design

  • implant design bioengineering loading adapted window zone microstrain loading interface lamellar bone implant interface BRR
  • implant interface strain implant lamellar bone remodeling rate

14.

  • 3
    • anatomical dimension limitation, macrodesign criteria
    • mechanical properties.
  • Engineering strain-controlled bone turnover.

15.

  • shear loading square thread design axial loading body
    • microstrain square thread 4 thread pitch

16.

  • 1994 University of Alabama at Birmingham(UAB) research team load bioengineered implant .
  • UAB BioHorizons implant system Maestro implants Lekholm,Zerb,Misch
  • 1995 bioengineering thread design.
  • 1996 6 5
    • bioengineered implant
  • loaded BRR

17. 18.

  • 35 ,1996
    • Skeletal Class II, /
  • 1996 June, symphysis donor graft alloplast allograft sinus graft.
  • 1997 January 4 bioengineered implants(Maestro, BioHorizons implant system) 3 bioengineered implants ( 4mm; 11~13mm)
  • 1997 August

19. 20.

  • 11

21.

  • bone labeling protocol
    • BRR 2 bone labels (tetracycline 500mg)
  • trephine bur
    • tetracycline
    • ( m / time period)

22.

  • remodeling site
    • tetracycline
  • 2 BRR 4.866 m 0.16/
  • 1 2mm threads
  • woven bone remodeling rate

23. 24.

  • Frost 1983 bone repair modeling remodeling trauma( ) regional acceleratory phenomenon(RAP)
  • unloaded control implants
  • 1.5 RAP BRR.

25.

  • Isidor 1996,1997
    • loading occlusal overload rigid fixation
      • 8 screw-shaped implants 4 8 supra-occlusal contacts 10
      • 5/8 with supra-occlusal loads mobile
      • rigid fixation failure fatigue microfracture repair potential
  • Rangert 1995 prosthetic load implant component implant body fracture.
  • crestal bone loss excessive load overload .(Hoshaw 1994 ,Misch 1995 ,Quirynen 1992 )

26.

  • Excessive stress microfracture microstrain interface pathologic mild overload zone
  • Microstrain environment prosthodontic loading turnover rate
  • Overload zones(Frost 1989 ) lamellar bone woven bone reactive woven bone weaker more flexible biomechanical mismatch.(Misch 1999 )
    • biomechanical mismatch strain
  • rigid fixation interface bone prosthodontic load microdamage

27. 28.

  • functionary unit elevated BRR (Garetto 1995 )
    • mild overload zone.
  • BRR implant body design surface condition
    • Cooper 1991 ( ) Roberts 1997 macrosphere surface(Endopore, Innova) elevated turnover rate
    • smooth collar designs crestal bone loss disuse atrophy overload (Vaillancourt 1995 )
    • more stress crestal regions Cooper greater strain condition BRR

29.

  • Roberts 1997 asymmetric implant thread design(Steri-Oss, Nobel Biocare) symmetrical threaded surface(Branemark, Nobel Biocare)
    • (Steri-Oss, Nobel Biocare) reverse buttress thread shape(680%BRR) symmetrical threaded surface(Br nemark, Nobel Biocare) V-shaped thread higher bone contact reduced bone turnover rate(500%).

30.

  • Barbier 1997 implant-supported prostheses non-axial load axial load
    • axially loaded implants non-axially loaded implant greater BRR
  • Non-axial loads axial loads stress (Misch 1994 )
    • higher cellular response( osteoblasts inflammatory cells) under non-axial shear loading condition

31.

  • Burr 1993 tibial metaphyseal bone HA/TCP-coated uncoated titanium implants cylinder implants remodeling activity
    • titanium surface implants greater bone turnover rates
    • Cook 1987 Thomas 1987 HA coatings greater interface strength greater bone mineralization remodeling rate
  • HA-coated implants functional loading 9~10 morphological changes(Baltag 2000 )
    • HA stress values
  • Hoshaw 1992 titanium-threaded implants axial tensile loading higher remodeling rates less mineralized bone( loading )

32.

  • Baumgarder 2000 bone quality-based implant system
    • 6 8 implants quantitative histomorphometric analysis 53.7 4.2 bone contact
    • woven bone formation, threads mature formed osteons
    • threads mm bone turnover rate
    • Loading 6 2 remodeling cycle lamellae compaction
    • vertical chewer, bruxism clenching
    • bone turnover rate.

33.

  • Loading BRR.
  • Roberts 1990 3
    • Bone-implant 30 remodeling
    • 40 remodeling adapted window zone
    • (