38
Facultad de Contaduría y Administración. UNAM Hipérbola Autor: Dr. José Manuel Becerra Espinosa 1 MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Una hipérbola es el lugar geométrico de todos los puntos P del plano, tales que la diferencia de sus distancias a dos puntos fijos en el plano es constante. Los puntos fijos Gráficamente esto es: F 1 y F 2 se llaman focos. y B 1 P d 1 d 2 F 2 V 2 V 1 F 1 x B 2 d 1 -d 2 = constante Con relación a la figura, el segmento de recta V 2 V 1 que pasa por los focos es el eje real. La mediatriz B 2 B 1 del eje real es el eje imaginario. Cada extremo del eje real V 1 y V 2 se llama vértice. El punto medio del segment o F 2 F 1 se llama centro de la hipérbola. La distancia del centro a cada vértice se llama semieje real y la distancia del centro a cada extremo del eje imaginario se conoce como semieje imaginario 1 .

hiperbola

Embed Size (px)

Citation preview

Page 1: hiperbola

Facultad de Contaduría y Administración. UNAM Hipérbola Autor: Dr. José Manuel Becerra Espinosa

1

MATEMÁTICAS BÁSICAS

HIPÉRBOLA

DEFINICIÓN DE HIPÉRBOLA

Una hipérbola es el lugar geométrico de todos los puntos P del plano, tales que la diferencia de sus

distancias a dos puntos fijos en el plano es constante. Los puntos fijos

Gráficamente esto es:F1 y F2 se llaman focos.

y

B1P

d1 d2

F2 V2 V1 F1 x

B2

d1-d2= constante

Con relación a la figura, el segmento de recta V2V1que pasa por los focos es el eje real. La mediatriz B2 B1

del eje real es el eje imaginario. Cada extremo del eje real V1y V2 se llama vértice. El punto medio del

segmento F2

F1

se llama centro de la hipérbola. La distancia del centro a cada vértice se llama semieje real y

la distancia del centro a cada extremo del eje imaginario se conoce como semieje imaginario1.

ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

A partir de la definición de la hipérbola y de la expresión para calcular la distancia entre dos puntos, se puede deducir la ecuación de una hipérbola en un sistema de coordenadas rectangulares.

Page 2: hiperbola

Facultad de Contaduría y Administración. UNAM Hipérbola Autor: Dr. José Manuel Becerra Espinosa

2

1

Algunos textos, definen al eje real como eje transverso y al eje imaginario como eje conjugado.

Page 3: hiperbola

Si los vértices se ubican en las coordenadas V1

a,0y V2 a,0 , los focos están en F1 c,0 y

F2 c,0 , el eje real de la hipérbola es coincidente al eje x , y si su centro se ubica en el origen, tiene

la siguiente forma:

y

P

d1B1(0,b)

d2

F2(-c,0) V2(-a,0) V1(a,0) F1(c,0) x

B2(0,-b)

Si el punto P está en cualquiera de los vértices, la diferencia de distancias d1 d 2 da como resultado

a c c a , por lo que la suma constante se establece en 2a, a 0 .

El punto P x, y pertenecerá a la hipérbola si y sólo si: d1 d 2 2a ,por lo tanto:

x c 2 y 02 que equivale a:

x c 2 y 02

2a

x c2 y 2

2a

x c2 y 2

elevando ambos miembros al cuadrado:2 2 x c2 y 2

2a

x c2 y 2

desarrollando:

Page 4: hiperbola

x c2 y 2 4a 2

4a x c2 y 2 x c2 y 2

x 2 2 xc c 2 y 2 4a 2 4a

eliminando términos iguales:

x c2 y 2 x 2 2 xc c 2 y 2

Page 5: hiperbola

2

2 xc 4a 2 4a

que equivale a:

x c2 y 2 2 xc

4a x c2 y 2 4 xc 4a 2

dividiendo todo por 4 :

a x c2 y 2 xc a 2

elevando nuevamente al cuadrado ambos miembros:2

a x c 2 y 2

xc a 2 2

a 2 x c2 y

2 xc a 2 2

a 2 x 2 2xc c 2 y 2 xc a 2 2

a 2 x 2 2a 2 xc a 2c 2 a 2 y 2 x 2c 2 2a 2 xc a 4

reduciendo términos semejantes:

a 2 x 2 a 2c 2 a 2 y 2 x 2 c 2 a 4

invirtiendo nuevamente los miembros:

x 2 c 2 a 4 a 2 x 2 a 2 c 2 a 2 y 2

acomodando convenientemente:

x 2 c 2 x 2 a 2 a 2 y 2 a 2 c 2 a 4

factorizando x 2 en el primer miembro y a 2

en el segundo miembro:

x 2 c 2 a 2 a 2 y 2 a 2 c 2 a 2 si se denota como b 2

x 2b 2 a 2 y 2 a 2b 2

a la expresión c 2 b 2 , y se sustituye se tiene que:

dividiendo por a 2b2

toda la expresión:

x 2b 2

a 2b 2

a 2 y 2

a 2b 2

a 2b 2a 2b 2

finalmente queda como:

x y 2 1a 2 b 2

ecuación conocida como ecuación ordinaria o canónica de la hipérbola horizontal con centro en el origen,de semieje real a y de semieje imaginario b .

Page 6: hiperbola

Una de las asíntotas pasa por el origen y el punto a,b , por lo que su ecuación está dada por:

y 0

0 b

b . La otra asíntota pasa por el origen y el punto a ,b , por lo que su ecuación está

x 0 0 a ay 0

0 b

b

. Esto significa que las ecuaciones de las asíntotas para este caso son:dada por:

y b

x

.a

x 0 0 a a

Page 7: hiperbola

b ba a

LONGITUD DE LOS LADOS RECTOS DE UNA HIPÉRBOLA HORIZONTAL

Para cualquier hipérbola, los segmentos perpendiculares al eje real que pasan por sus focos y que incluyen a los extremos de la curva se denominan lados rectos LR . Gráficamente es:

y

P3 P1

LR LR

F2(-c,0) V2 V1 F1(c,0) x

P4 P2

Para encontrar las coordenadas de los extremos del lado recto, que pasa por el foco

por c en la ecuación despejada para y :F1 , se sustituye x

y b

a

c 2 a 2

pero como b 2 c 2 a 2 , se tiene:2

y b

b 2 b

b b

a a apor lo cual, las coordenadas de los extremos P1 y P2del lado recto asociado a F1 son:

2 P c, 2

y P c, 1 2

Similarmente, para encontrar las coordenadas de los extremos del lado recto que pasa por el foco F2 , el

procedimiento es idéntico al tomar en cuenta que los puntos P3 y P4

son simétricos a los puntos P1 y

Page 8: hiperbola

b ba a

P2 con respecto al eje x , con lo que se tienen la mismas ordenadas respectivas, por lo que las

coordenadas de los extremos P3 y P4

del lado recto asociado a F2 son:

2 P c, 2

P c, 3 y 4

Page 9: hiperbola

2 2

La longitud, medida en unidades lineales u , de cada lado recto viene dado por la diferencia de sus

ordenadas. Por lo tanto:

LR

2b 2

a

EXCENTRICIDAD DE UNA HIPÉRBOLA

Para cualquier hipérbola, a la relación que existe entre c y a , se le conoce como su excentricidad y se denota con la letra e :

e c

a

Como el valor de c (foco) es más grande que el a (vértice), siempre se cumple que

e 1 .

Ejemplos.Calcular las longitudes de los semiejes real e imaginario, las coordenadas de los vértices, focos, la longitud del lado recto, la excentricidad y las ecuaciones de las asíntotas de las siguientes hipérbolas:

1) x

y

125 9

Solución.

El eje real es x . a 2 25 , b 2 9

a 5 , b 3

los vértices se encuentran en: V1 5,0 y

los extremos del eje imaginario están en:

obteniendo c :

V2 5,0B1 0,3 y B2 0, 3

c a 2 b 2

25 9 34

los focos se ubican en: F1 34 ,0 y

F2 34 ,0

La excentricidad es: e 34 1 . El lado recto es:5

LR

232

5

29

5

18

u.5

las ecuaciones de las asíntotas son:

2) 8x 2 12 y

2 96

Solución.Dividiendo todo por 96 :

y 3

x

, es decir:5

y 3

x y5

Page 10: hiperbola

2 2

y 3

x5

x

y 1

12 8

De la ecuación se deduce que: a obteniendo c :

12 y b 8 .

Page 11: hiperbola

2

c 12 2

8 2

20

los vértices se ubican en V1 12 ,0 y V2 12 ,0los extremos del eje imaginario están en: B1

0,

8 y

B2 0, 8

los focos se encuentran en: F1 20 ,0 y F2 20 ,0la excentricidad es: e 20

2 5

12 2 3

5 1 . El lado recto es:

3LR

2 8

2

12

28

12

16 u.

12

las ecuaciones de las asíntotas son: y

8x , es decir: y

12

2 x y y

2 x

3 3

Ejemplo.

Si se sabe que se tiene un foco en V1 10,0hipérbola.

y un vértice en F2 8,0 , obtener las características de la

Solución.

Por simetría se deduce que el otro vértice está en V2 10,0 y el otro foco en:

obteniendo b :

F1 8,0

b c 2 a 2 b

10 2 8 2

100 64 36 6

la ecuación buscada es:x y 2 164 36

la excentricidad es: e 10

5 1 . El lado recto esLR

262236

72

9 u.

8 4 8 8 8

las ecuaciones de las asíntotas son: y 6

x , es

decir:8

y 3

x4

y y 3

x4

ECUACIÓN ORDINARIA DE LA HIPÉRBOLA VERTICAL CON CENTRO EN ELORIGEN

El procedimiento para obtener la ecuación de la hipérbola vertical es muy similar al que se hizo con la

Page 12: hiperbola

hipérbola horizontal.

En este caso, los vértices y focos están sobre el eje y en las coordenadasV1 0,a ,

V2 0, a ,

F1 0,c y

que:

F2 0, c , respectivamente, y aplicando la expresión de distancia entre dos puntos se tiene

x 02 y c2 que equivale a:

x 02 y c2 2a

x 2 ( y c )2

2a

x 2 y c2

después de desarrollar, eliminar radicales y simplificar, se llega a:

Page 13: hiperbola

2y x 2 1

a 2 b 2

ecuación conocida como ecuación ordinaria o canónica de la hipérbola vertical con centro en el origen, de

semieje real a y de semieje imaginario b . La hipérbola en este caso tendría la siguiente forma:

y

F1(0,c)

P(x,y)

d2

V1(0,a)

B2(-b,0) B1(b,0)

xV2(0,-a)

d1

F2(0,-c)

Una de las asíntotas pasa por el origen y el punto b,a , por lo que su ecuación está dada por:

y 0

0 a

a . La otra asíntota pasa por el origen y el punto b,a , por lo que su ecuación está

x 0 0 b by 0

0 a

a

. Esto significa que las ecuaciones de las asíntotas para este caso son:dada por:

y a

x

.b

x 0 0 b b

LONGITUD DE LOS LADOS RECTOS DE UNA HIPÉRBOLA VERTICAL

Para encontrar las coordenadas de los extremos del lado recto de una hipérbola vertical, que pasa por el

foco F1 , se sustituye el valor de y por c en la ecuación despejada para x :

Page 14: hiperbola

x b

a

c 2 a 2

pero como b 2 c 2 a 2 , se tiene:

Page 15: hiperbola

2

a a

a a

2

x b

b 2 b

b b

a a apor lo cual, las coordenadas de los extremos P1 y P2del lado recto asociado a F1 son:

b 2

P

,c b 2

P

,c 1 y 2

Similarmente, para encontrar las coordenadas de los extremos del lado recto que pasa por el foco F2 , el

procedimiento es idéntico al tomar en cuenta que los puntos P3 y P4

son simétricos a los puntos P1 y

P2 con respecto al eje y , con lo que se tienen la mismas ordenadas respectivas, por lo que las

coordenadas de los extremos P3 y P4

del lado recto asociado a F2 son:

b 2

P

,c b 2

P

,c 1 y 2

y LR

F1(0,c)P3 P1

V1

xV2

P4 P2F2(0,-c)

LR

La longitud, medida en unidades lineales u , de cada lado recto viene dado por la diferencia de sus

abscisas. Por lo tanto:

Page 16: hiperbola

2

LR

2b 2

a.

Ejemplos.

1) Obtener todas las características de la hipérbola de ecuación:y

x

19 16

Page 17: hiperbola

2

2 2 2

Solución.

De la ecuación se deduce que: a obteniendo c :

9 3

y b

16 4

c 32 4 2

25 5

los vértices se ubican en V1 0,3 y V2 0, 3los extremos del eje imaginario están en: B1 4,0 y B2 4,0los focos se encuentran en: F1 0,5

y

F2 0, 5

la excentricidad es: e 5

1 . El lado recto es: LR 24

216

32

u.

3

3

3 3

y 3

x

3

3

las ecuaciones de las asíntotas son: y x , es decir:4 y y x4 4

2) Obtener todas las características de la hipérbola con focos en

4

F 0,

6y que tiene asíntotas de

ecuaciones:

Solución.

y x .5

De los datos se deduce que: c 6 y que el eje real es yDe las ecuaciones de las asíntotas se despeja a :

y a

x

a

4 a

4 b

b b 5 5pero también se sabe que:

2

c a 2 b 2

6

4 b b 2

16 b2 b 2

41 b 2 6 b

6

30

a

5 25 25

41 41

25

4 30 24 5 41 41

por lo tanto, la ecuación buscada es:

y

x 1 41y 2

41x 1

2 24

2 30 576 900

Page 18: hiperbola

41

41

24 e 6

6 41

41

los vértices están en V 0,

, la excentricidad es:

41 1

24 24 4

412

2 30

2 900

1800

la longitud del lado recto es:

LR

41

24

41

41

24

41

41

24

41

75 u.

41

Page 19: hiperbola

ECUACIÓN DE LA HIPÉRBOLA HORIZONTAL CUANDO SU CENTRO ESCUALQUIER PUNTO DEL PLANO

Si el centro de la hipérbola horizontal es el punto

x' y' , su ecuación ordinaria viene dada por:

C h,k , que es el origen del sistema

coordenado

x2

a 2

y2

1b 2

pero teniendo en cuenta las fórmulas de traslación:

x' x h y y' y k

y sustituyendo en la ecuación anterior se tiene que:

x h2 y k 2

1

a 2 b 2

que es la ecuación ordinaria de la hipérbola horizontal con centro en

semieje imaginario b .

La siguiente figura muestra este caso:

C h,k , de semieje real a y

de

yy’

V2(h-a,k)k

V1(h+a,k)

F2(h-c,k) F1(h+c,k) x’C(h,k)

Page 20: hiperbola

h x

Page 21: hiperbola

aa

De la figura se puede apreciar que los vértices están en: V1 h a,k y V2 h a,k , los extremos del eje

imaginario están en: B1 h,k b y B2 h,k b , por su parte, los focos se ubican enF1 h c,k y

F2 h c,k . La longitud del lado recto sigue siendo LR

2b 2

a

, los extremos de los lados rectos son:

h c, k

b 2 y las ecuaciones de las asíntotas son: y k

b x h .

Ejemplo.

Encontrar todos los elementos de la hipérbola cuya ecuación es:x

12

9

y 52

136

Solución.

De la ecuación se aprecia que h 1 y k 5

por lo tanto, el centro se ubica en C 1,5 .Por otra parte, se tiene:

a 2 9,

b 2 36 a 3,

b 6

los vértices están en: V 1 3,5 que equivale a:

V1 2,5 y V2 4,5obteniendo c :

c a 2 b 2

9 36

45 3 5

los focos se ubican en: F 1

3

5 ,5 que equivale a:

F1 1

3

5 ,5 y

F2 1 3 5 ,5

la excentricidad es: e 3 5

2

5 1 .

el lado recto es: LR

262

3

236

3 24 u.

las ecuaciones de las asíntotas son: y 5 6 x 1 , que equivale a:

Page 22: hiperbola

3y 5 2x 1

desarrollando y reduciendo se obtienen las rectas: 2x y 7 0 y 2x y 3 0 .

ECUACIÓN DE LA HIPÉRBOLA VERTICAL CUANDO SU CENTRO ES CUALQUIERPUNTO DEL PLANO

Si el centro de la hipérbola vertical es el punto C h,k , que es el origen del sistema coordenado

su ecuación ordinaria viene dada por:

x' y' ,

y'

2

a 2

x' 2

1b 2

Page 23: hiperbola

pero teniendo en cuenta las fórmulas de traslación:

x' x h y y' y k

y sustituyendo en la ecuación anterior se tiene que:

y k 2 x h2

1

a 2 b 2

que es la ecuación ordinaria de la hipérbola vertical con centro en

semieje imaginario b . La siguiente figura muestra este caso:

C h,k , de semieje real a y

de

yy’

F1(h,k+c)

V1(h,k+a)

kC(h,k) x’

V2(h,k-a)

F2(h,k-c)

h x

De la figura se puede apreciar que los vértices están en: V1 h,k a y V2 h,k a y los focos se ubican

en F1 h,k c y F2 h,k c . La longitud del lado recto sigue siendo LR

2b 2

a

, los extremos de los

b 2lados rectos son: h

a

, k c y las ecuaciones de las asíntotas son:

y k

a x h .b

Page 24: hiperbola

Ejemplo.

Encontrar la ecuación de la hipérbola y sus características si tiene vértices en V1 5,1 y V2 5,7 y cuya

longitud de sus lados rectos es8

u.3

Page 25: hiperbola

2

Solución.Como las abscisas de los vértices no cambian, se trata de una hipérbola vertical.

1 7

el centro se ubica en C 5,

C 5,4 , esto es,h 5 y k 4

así que el semieje real es:

a 7 4 3

despejando b de la expresión del lado recto:

LR 8

3

2b 2 83 3

b 238

42 3

b 2

así que la ecuación buscada es:

y 42

32

x 52

1 22

y 42

9

x 52

14

obteniendo c :

c a 2 b 2

32 2 2

9 4 13

los focos se ubican en: F 5,4

13 que equivale a:F1 5,4

13 y

F2 5,4 13

las ecuaciones de las asíntotas son: y 4 3 x 5 , que equivale a:

22y 4 3x 5

desarrollando y reduciendo se obtienen las rectas: 3x 2 y 7 0 y 3x 2 y 23 0 .

ECUACIÓN GENERAL DE LA HIPÉRBOLA HORIZONTAL

Sea la ecuación ordinaria trasladada de la hipérbola horizontal:

x h 2

a 2y k 2

1b 2

desarrollando se tiene:

x 2 2xh h 2

a 2

y 2 2 yk k 2 1b 2

multiplicando por a 2b 2 :

a 2b2x

2

2 xh h2

a 2a 2b2

y

2

2 yk k 2 b

2a 2b2 1

Page 26: hiperbola

b 2 x

2 2xh h 2 a

2 y 2 2 yk k

2 a 2b

2

b2 x 2 2b2 xh b2 h2 a 2 y 2 2a 2 yk a 2 k 2 a 2b2

acomodando:

b 2 x 2 a 2 y 2 2b 2 hx 2a 2 ky b 2 h 2 a 2 k 2 a 2b 2 0realizando los siguientes cambios de variable:

A b 2

,C a 2

,D 2b 2

h,E 2a 2 k ,

F b 2 h 2 a 2 k 2 a 2 b 2

la expresión queda como:

Ax 2 Cy 2 Dx Ey F 0

Page 27: hiperbola

que es la ecuación general de la hipérbola horizontal. Nótese como A C , tanto en signo como en magnitud.Ejemplo.Obtener la ecuación general de la hipérbola horizontal y sus características si el semieje real igual a seis,el semieje imaginario es cinco y su centro está en C 3, 4 .

Solución.a 6,

b 5

los vértices están en: V 3 6,4 obteniendo c :

V1 9, 4, V2 3, 4

c 6 2 52 c

36 25 61

los focos se ubican en: F 3

61

61 , 4 F1 3

61 , 4, F2 3

252

61 , 4225 50 25

la excentricidad es: e 6

1 , la longitud del lado recto es: LR 6

6 6

u. .3

Las ecuaciones de las asíntotas son: y 4 5 x 3 , que equivale a: 6y 4 5x 3

6desarrollando y reduciendo se obtienen las rectas: 5x 6 y 39 0La ecuación ordinaria trasladada queda:

y 5x 6 y 9 0 .

x 32

6 2y 42

1 5 2

x 32

36

y 42

125

multiplicando por 900 :desarrollando:

25x 32 36y 42 900

25x 2 6 x 9 36y 2 8 y 16 900

25x 2 150 x 225 36 y 2 288 y 576 900

acomodando se llega a la ecuación general pedida:

25 x 2 36 y 2 150 x 288 y 1251 0

ECUACIÓN GENERAL DE LA HIPÉRBOLA VERTICAL

Sea la ecuación ordinaria trasladada de la hipérbola vertical:

y k 2

a 2

x h2

1b 2

desarrollando se tiene:

y 2 2 yk k 2

a 2

Page 28: hiperbola

x 2 2xh h 2

1b 2

multiplicando por a 2b 2 :

a 2b 2

y

2

2 yk k 2 a 2

a 2b2x

2

2xh h2

b2

a 2b

2 1

b 2 y

2 2 yk k 2 a

2 x 2 2xh h

2 a 2

b 2

b2 y 2 2b 2 yk b 2 k 2 a 2 x 2 2a 2 xh a 2 h2 a 2b 2

acomodando:

a 2 x 2 b 2 y 2 2a 2 hx 2b 2 ky a 2 h 2 b 2 k 2 a 2b 2 0

Page 29: hiperbola

2

realizando los siguientes cambios de variable:

A a 2

,C b 2

,D 2a 2

h,E 2b 2 k ,

F a 2 h 2 b 2 k 2 a 2b 2

la expresión queda como:

Ax 2 Cy 2 Dx Ey F 0

que es la ecuación general de la hipérbola vertical. Adviértase que en este caso el signo negativo lo llevala variable x .

Ejemplo.

Obtener la ecuación general de la hipérbola con focos en

. Solución.

F1 1,6 y

F2 1,0 y con excentricidad e 3

2

Al no cambiar las abscisas de los focos, se trata de una hipérbola vertical con centro en

C 1,

6 0

2 C 1,3 , esto

es,

h 1 y k 3

obteniendo c :c 6 3 3despejando a de la excentricidad:

e c

3

a 2

2c 3a

a 2c

3

23 2

3

obteniendo b :

b c 2 a 2

32 2 2

9 4 5

así que la ecuación buscada es:

y 32 x 12

1 y 32 x 12

122 5 2 4 5

multiplicando por 20 :20y 32

4

20x 15

20 5y 32 4x 12 20

5y 2 6 y 9 4x 2 2x 1 20 5 y 2 30 y 45 4x 2 8x 4 20acomodando se llega a la ecuación general pedida:

4 x 2 5 y 2 8x 30 y 21 0

CARACTERÍSTICAS DE LA HIPÉRBOLA A PARTIR DE SU ECUACIÓN GENERAL

Page 30: hiperbola

Para transformar la ecuación general de la hipérbola horizontal: Ax 2 Cy

2 Dx Ey F 0

a su

ecuación ordinaria:x h2

a 2

y k 2

b 2

1 , o para pasar de la ecuación general de la hipérbola vertical:

Ax 2 Cy 2 Dx Ey F 0

a su respectiva ecuación ordinaria: 1

lograr realizando los siguientes pasos: y k 2

a 2x h 2

b 2

, se puede

Page 31: hiperbola

1. Se reordenan los términos en x y en y2. Se extrae como factor común al coeficiente de la variable elevada al cuadrado3. Se completan los cuadrados perfectos(TCP)4. Se factoriza5. Se divide entre el término independiente.

Ejemplos.Obtener todas las características de las siguientes hipérbolas:

1) 5x2 7 y 2 40x 84 y 207 0

Solución.Siguiendo la metodología sugerida, se tiene:

5x 2 40 x 7 y

2 84 y 207 0

5x2 8x 7y 2 12 y 207 0

5x 2 8x 16 7y 2 12 y 36 207 516 736 0

5x 42 7y 62 207 80 252 35

5x 42

357y 62

1 35

x 42

7y 62

15

El eje real es x . Se aprecia que h 4, k 6 , por lo que el centro se ubica en: C 4, 6a 2 7 a 7 , b 2 5 b 5

la ubicación de los vértices es: V1 4 obteniendo c :

7 , 6 y V2 4 7 , 6

c a 2 b 2

7 5 12

los focos se ubican en: F1 4

12

12 , 6 y F2 4 12 , 62 5 2

10La excentricidad es: e 1. La longitud del lado recto es:

7

5

LR

u.7 7

las ecuaciones de las asíntotas son: y 6

x 47

desarrollando y reduciendo se obtienen las rectas:

5x 7 y 4 5 6 7 0 y

5x 7 y 4 5 6 7 0

2) 4 x 2 25 y

2 24 x 100 y 36 0

Solución.De acuerdo a la metodología mencionada, se tiene:

Page 32: hiperbola

4x 2 24 x 25 y

2 100 y 36 0

4x 2 6 x 25y 2 4 y 36 0

4x 2 6x 9 25y

2 4 y 4 36 49 254 0

Page 33: hiperbola

4x 32 25y 22 36 36 100 100

4x 32

10025y 22

1 100

que equivale a:y 22

4x 32

125

El eje real es y . Se aprecia que h 3, k 2 , por lo que el centro se ubica en C 3,2a 2 4 a 4

2,b 2 25 b 25 5

la ubicación de los vértices están en: V1 3,4 y V2 3,0obteniendo c :

c a 2 b 2

4 25 29

los focos se ubican en: F1 3,2

29

29 y

F2 3,2 29 252

la excentricidad es: e 1. La longitud del lado recto es:2

LR

25 u.2

las ecuaciones de las asíntotas son: y 2 2 x 3 , es decir: 5y 2 2x 3

5desarrollando y reduciendo se obtienen las rectas: 2x 5 y 16

0y 2x 5 y 4 0 .

3) 4 x 2 9 y

2 18 y 45 0

Solución.Conforme a la metodología expuesta, se tiene:

4x 2 9 y

2 18 y 45 0

4x 2 0x 9y 2 2 y 45 0

4x 2 0 x 0 9y 2 2 y 1 45 40 91 0

4x 02 9y 12 45 0 9 36

4x

02

36

9y 12

1 36

x 02

9y 12

14

El eje real es x . Se aprecia que h 0,

k 1 , por lo que el centro se ubica en C 0,1 .

a 2 9 a 9 3,

b 2 4 b 4 2

la ubicación de los vértices es: V1 3, 1 y V2 3, 1

Page 34: hiperbola

2

obteniendo c :

c a 2 b 2

9 4 13

los focos se ubican en: F1

13 , 1 y

F2 13 , 1

La excentricidad es: e 13 1. La longitud del lado recto es:

3LR

223

8

u.3

las ecuaciones de las asíntotas son: y 1 2 x 3 , esto es: 3y 1 2x 3

3desarrollando y reduciendo se obtienen las rectas:

Page 35: hiperbola

2x 3y 9 0 y 2x 3 y 3 0

CASO ESPECIAL O DEGENERADO DE UNA HIPÉRBOLA

Si en el proceso de transformación de la ecuación general a la ecuación ordinaria sucede que el término independiente es cero, el resultado no es una hipérbola sino dos rectas no paralelas que surgen de la factorización de la diferencia de dos cuadrados. Gráficamente esto es:

y A2x+B2y+C2=0 L1

A1x+B1y+C1=0 L2

x

Ejemplos.Obtener todas las características de las siguientes ecuaciones:

1) 9 x 2 25 y 2 0

Solución.

Se sabe que a 2 b 2 a b a b , por lo tanto si se aplica se tiene que:

3x 5 y3x 5 y 0 , y las rectas que se cruzan son: 3x 5 y 0

y 3x 5 y 0

2) 4 x 2 y 2 24 x 4 y 32 0

Solución.

Acomodando las variables: 4 x 2 24 x y 2 4 y 32 0Ahora, siguiendo el procedimiento planteado:

4x 2 6 x 1y 2 4 y 32 0

Page 36: hiperbola

4x 2 6 x 9 1y 2 4 y 4 32 4(9) 1(4) 0

4x 32 1y 22 32 36 4

Page 37: hiperbola

4x 32 1y 22 0

factorizando: 2x 3 1y 22x 3 1y 2 0separando las variables se tiene:2x 3 1y 2 0

2 x 6 y 2 0 2 x y 4 0

y 2x 3 1y 2

0

2 x 6 y 2 0 2 x y 8 0

3) 9 x 2 16 y

2 96 y 144 0

Solución.

Acomodando las variables: 9 x 2 16 y 2 96 y 144 0Ahora, siguiendo el procedimiento planteado:

9x 2 0 x 16y 2 6 y 144 0

9x 2 0x 0 16y 2 6 y 9 144 9(0) 16(9) 0

9x 02 16y 32 144 144

9x 02 16y 32 0

16y 32 9x 02 0

factorizando: 4y 3 3x 04y 3 3x 0 0separando las variables. Se tiene:4y 3 3x 0 0

4 y 12 3x 0 0 3x 4 y 12 0

y 4y 3 3x 0

0

4 y 12 3x 0 0 3x 4 y 12 0.

APLICACIONES

Algunas aplicaciones de la hipérbola se pueden encontrar en:

1. En la localización de epicentros de movimientos telúricos a través de sismógrafos.2. La naturaleza de la hipérbola se aprovecha en el diseño de telescopios reflectores.3. En la navegación se utiliza la definición de la hipérbola: un barco se encuentra sobre una hipérbola

cuyos focos están en la posición de dos estaciones. La razón de esto es que la diferencia constantede tiempo entre las señales emitidas desde cada estación corresponde a una diferencia constante entre las distancias del barco a cada estación. Mediante la utilización de la hipérbola se puede saberla localización exacta del barco

2.

4. Investigaciones de física atómica han demostrado que las partículas alfa apuntadas hacia el núcleode un átomo son repelidas y siguen una trayectoria hiperbólica.

5. Las trayectorias de los algunos cometas externos del sistema solar que son atraídos por la gravedaddel Sol, describen una órbita hiperbólica, considerando que en uno de los focos está el Sol. Al describir este movimiento, estos cometas escaparán nuevamente de este sistema.

6. En el diseño de algunos arcos y cúpulas de construcciones modernas.

Page 38: hiperbola

7. Una relación hiperbólica determina que dos cantidades son inversamente proporcionales

2 Este sistema de navegación recibe el nombre de LORAN.