33
Titration Redox Titration Acid Base Titration Primary standard acids - Potassium hydrogen phthalate Primary standard bases - Anhydrous sodium carbonate 10.6 g Na 2 CO 3 Standard 0.1M Na 2 CO 3 10.6g in 1 L Volumetric Burette Accurate known conc Unable to prepare accurate conc of NaOH/HCI due to Hygroscopic nature NaOH – Absorb water vapour HCI in vapour state – Difficult to measure amt Volumetric Burette Standard 0.1M KHP 20.4 g KHP 20.4 g in 1L Unknown Conc NaOH Unknown Conc HCI ? ? Accurate known conc Acid/Base Titration Redox Titration Neutralization bet acid/base Redox bet oxidizing/reducing agent Transfer proton/H + from acid to base Transfer elec from reducing to oxidizing agent Indicator for colour change No indicator needed Acid Base Titration - One reactant – must be standard (known conc) or capable being standardised - Equivalent point – equal amt neutralize each other - End point measurable/detectable by colour change (indicator), pH change /conductivity

IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Embed Size (px)

Citation preview

Page 1: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Titration

Redox Titration Acid Base Titration

Primary standard acids - Potassium hydrogen phthalate

Primary standard bases - Anhydrous sodium carbonate

10.6 g Na2CO3

Standard 0.1M Na2CO3

10.6g in 1 L

Volumetric Burette

Accurate known conc

Unable to prepare accurate conc of NaOH/HCI due to • Hygroscopic nature NaOH – Absorb water vapour • HCI in vapour state – Difficult to measure amt

Volumetric Burette

Standard 0.1M KHP

20.4 g KHP 20.4 g in 1L

Unknown Conc NaOH

Unknown Conc HCI

? ?

Accurate known conc

Acid/Base Titration Redox Titration

Neutralization bet acid/base Redox bet oxidizing/reducing agent

Transfer proton/H+ from acid to base Transfer elec from reducing to oxidizing agent

Indicator for colour change No indicator needed

Acid Base Titration

- One reactant – must be standard (known conc) or capable being standardised - Equivalent point – equal amt neutralize each other - End point measurable/detectable by colour change (indicator), pH change /conductivity

Page 2: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Oxidizing Agent

Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO32-

KIO3 Vitamin C

OCI-/Cu2+ Oxalate/ C2O4

2-

Titration

Redox Titration Acid Base Titration

Burette/Titrant Oxidizing agent

?

Acid/Base Titration Redox Titration

Neutralization bet acid/base Redox bet oxidizing/reducing agent

Transfer proton/H+ from acid to base Transfer elec from reducing to oxidizing agent

Indicator for colour change No indicator needed

Redox Titration

- One reactant – must be standard (known conc) or capable being standardised - Reaction bet Oxidizing agent/Titrant with Reducing agent/Analyte - Titrant of known concentration - Stoichiometrically equivalent amt titrant/titrand added - No indicator needed. Detectable by colour change of Oxidizing/Reducing agent

Analyte/reducing agent Titrand Redox Titration used to determine:

- Amount of copper in brass - Amount Fe/iron in iron pill/food

- Amount H2O2 commercial peroxide solution

- Amount OCI - /hypochlorite/CI2 in bleach - Amount Vitamin C

- Amount Dissolve oxygen content/BOD

- Amount ethanol in beer/wine - Amount oxalate acid

?

MnO4- + 5Fe2+ + 8H+ → Mn2+ + 5Fe3+ + 4H2O Cr2O7

2- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ 7H2O

Iron determination using MnO4- / Cr2O7

2-

purple colourless orange green

add MnO4- till endpoint

↓ turn purple (excess MnO4

- )

add Cr2O72- till endpoint

↓ turn orange (excess Cr2O7

2-)

Page 3: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox Titration Calculation- % Iron in iron tablet

Iron tablet contain hydrated iron (II) sulphate (FeSO4.7H2O). One tablet weighing 1.863g crushed, dissolved in water and solution made up to total vol of 250ml. 10ml of this solution added to 20ml of H2SO4 and titrated with 0.002M KMnO4. Average 24.5ml need to reach end point. Cal % iron(II) sulphate in iron tablet.

1

1.863 g

250ml

KMnO4 M = 0.002M V = 24.5 ml

Fe2+

M = ? V = 30ml

MnO4- + 5Fe2+ + 8H+ → Mn2+ + 5Fe2+ + 4H2O M = 0.002M M = ?

V = 24.5ml Mole ratio – 1: 5

Using mole ratio

Mole KMO4- = MV

= (0.002 x 0.0245) = 4.90 x 10-5 Mole ratio (1 : 5) • 1 mole KMO4

- react 5 mole Fe2+

• 4.90 x 10-5 KMO4-react 2.45 x 10-4 Fe2+

M V = 1 M V 5 0.002 x 0.0245 = 1 Moles Fe2+ 5

Moles = 2.45 x 10-4 Fe2+

Mass of (expt yield) = 1.703g Mass of (Actual tablet) = 1.863g % Fe in iron tablet = 1.703 x 100% 1.863 = 91.4%

Mole Mass Mole x RMM = Mass FeSO4

6.125 x 10-3 x 278.05 = 1.703g FeSO4

Using formula

10ml sol contain - 2.45 x 10-4 Fe2+ 250ml sol contain - 250 x 2.45 x 10-4 Fe2+ 10 = 6.125 x 10-3 mole Fe2+ FeSO4.7H2O FeSO4 + 7H2O 1 mol 1 mol + 7 mol FeSO4 Fe2+ + SO4 2-

1 mol 1mol + 1mol 6.125 x 10-3 mol 6.125 x 10-3 mole Fe2+

1

2

3

4

Video on % Iron in iron tablet

Video on Fe2+/KMnO4 titration calculation

Page 4: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox Titration Calculation- % Iron in iron tablet

One iron tablet weighing 2.00g crushed, dissolved in water/acid to convert it to Fe2+ and solution titrated with 0.100M KMnO4. Average 27.5ml KMnO4 needed to reach end point. Cal mass of iron and % iron in iron tablet. How equivalent point is detected ?

2

2.000 g

KMnO4 M = 0.100M V = 27.5 ml

Fe2+

M = ?

1MnO4- + 5Fe2+ + 8H+ → Mn2+ + 5Fe2+ + 4H2O

M = 0.100M M = ?

V = 27.5ml Mole ratio – 1: 5

Using mole ratio

Mole KMO4- = MV

= (0.100 x 0.0275) = 0.00275 Mole ratio (1 : 5) • 1 mole KMO4

- react 5 mole Fe2+

• 0.00275 KMO4-react 0.01375 Fe2+

M aVa = 1 Mb Vb 5 0.100 x 0.0275 = 1 Moles Fe2+ 5

Moles = 0.01375 mol Fe2+

Mass of (expt yield) = 0.7679g Mass of (Actual tablet) = 2.000g % Fe in iron tablet = 0.7679 x 100% 2.000

= 38.4 %

Mole Mass Mole x RMM = Mass Fe

0.01375 x 55.85 = 0.7679g Fe

Using formula

1

2

3

Video on % Iron in iron tablet

Video on Fe2+/KMnO4 titration calculation

MnO4- – In burette is purple – Turns colourless react with Fe2+

All Fe2+ used up at equivalence point – excess KMnO4- turn purple

4

Page 5: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

1 mol 1 mol 1OCI- + 2I- + 2H+ → I2 + 1CI- + H2O I2 + 2S2O3

2- → S4O62- + 2I-

1 mol 2 mol

10.0ml bleach (OCI -) diluted to total vol of 250ml. 20.0ml is added to 1g of KI (excess) and iodine produced is titrated with 0.0206M Na2S2O3.Using starch indicator, end point was 17.3ml. Cal molarity of OCI - in bleach.

Redox Titration Calculation – OCI- in Bleach

3

Na2S2O3

M = 0.0206M V = 17.3ml

I2

M = ?

2S2O32- + I2 → S4O6

2- + 2I- M = 0.0206 Mole = ?

V = 17.3ml V = 0.02

Mole ratio (1 : 2) 1 mole OCI- : 1 mole I2 : 2 mole S2O3

2-

1 mole OCI- 2 mole S2O32-

10.0ml OCI- transfer

V = 250ml

M = 8.9 x 10-3 M

20ml transfer

1g KI excess

added

Mole S2O32- = MV

= (0.0206 x 0.0173) = 3.56 x 10-4 Mole ratio (2 : 1) • 2 mole S2O3

2- react 1 mole I2

• 3.56 x 10-4 S2O32-- react 1.78 x 10-4 I2

Mole ratio – 2: 1

1OCI- + 2I- + 2H+ → I2 + 1CI- + H2O 1CIO- I2 Mole = ? Mole = 1.78 x 10-4

Mole ratio – 2: 1

Mole ratio (1 : 1) • 1 mole OCI- 1 mole I2

• 1.78 x 10-4 OCI- 1.78 x 10-4 I2

Moles of OCI- = M x V

M x V = 1.78 x 10-4 M x 0.02 = 1.78 x 10-4 M = 1.78 x 10-4 002 M = 8.9 x 10-3 M diluted 25x

Mole bef dilution = Mole aft dilution M1 V1 = M2V2

M1 = Ini molarity M2= Final molarity V1 = Initial vol V2 = Final vol M1 V1 = M2 V2

M1 x 10 = 8.9 x 10-3 x 250 M1 = 8.9 x 10-3 x 250 10 M1 = 0.222M

Diuted 25x

V = 10

M = ?

titrated

Water added

till 250ml

1

Using direct formula

M V (OCI+) = 1 = 1 M V (S203

2-) 2 2 Moles of OCI+ = 1

0.0206 x 0.0173 2

Moles of OCI- = 1.78 x 10-4

2

3

4

5

6

Hypochlorous acid = bleach Oxidizing agent = OCI-

Iodometric titration I2/thiosulphate/starch

↓ I - oxidized by OA to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

I2 used up – blue black disappear

2I- + OCI- ↔ I2 + CI-

2S2O32- + I2 ↔S4O6

2- + 2I-

Page 6: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

1 mol 1 mol 1OCI- + 2I- + 2H+ → I2 + CI- + H2O I2 + 2S2O3

2- → S4O62- + 2I-

1 mol 2 mol

10.0ml bleach (OCI-) react with KI (excess), iodine produced is titrated with 0.020M Na2S2O3.Using starch indicator, end point was 38.65 ml. Cal molarity of OCI- in bleach.

Redox Titration Calculation – OCI- in Bleach

4

Na2S2O3

M = 0.020M V = 38.5 ml

I2

M = ?

2S2O32- + I2 → S4O6

2- + 2I- M = 0.020 Mole = ?

V = 38.55ml

Mole ratio ( 1 : 2) 1 mole OCI- : 1 mole I2 : 2 mole S2O3

2-

1 mole OCI- 2 mole S2O32-

10ml bleach

transfer

1g KI excess

added

Mole S2O32- = MV

= (0.020 x 0.03865) = 7.73 x 10-4 Mole ratio (2 : 1) • 2 mole S2O3

2- react 1 mole I2

• 7.73 x 10-4 S2O32-- react 3.865 x 10-4 I2

Mole ratio – 2: 1

1 OCI- + 2I- + 2H+ → I2 + 2CI- + H2O 1 OCI- I2 Mole = ? Mole = 3.865 x 10-4

Mole ratio – 1: 1

Mole ratio (1 : 1) • 1 mole OCI- 1 mole I2

• 3.865 x 10-4 OCI- 3.865 x 10-4 I2

M x V = Moles OCI- M x 10 = 3.865 x 10 -4

1000

M = 0.0387M

titrated

1

Using direct formula

M V (OCI+) = 1 = 1 M V (S203

2-) 2 2 Moles of OCI+ = 1

0.020 x 0.03865 2

Moles of OCI- = 3.5865 x 10-4

2

3

4

5

Video on OCI- in bleach

Sample OCI- calculation. Click here to view

Conc OCI-

Hypochlorous acid = bleach

Active oxidizing agent = OCI-

Iodometric titration I2/thiosulphate/starch

↓ I - oxidized by OA to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

I2 used up – blue black disappear

2I- + OCI- ↔ I2 + CI-

2S2O32- + I2 ↔S4O6

2- + 2I-

Page 7: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

2 mol 1 mol 2Cu2+ + 4I- → I2 + 2CuI I2 + 2S2O3

2- → S4O62- + 2I-

1 mol 2 mol

2.5g brass react with 10ml conc HNO3 producing Cu2+ ions. Solution made up to 250ml using water in a volumetric flask. Pipette 25ml of solution into conical flask. Na2CO3 added to neutralize excess acid. 1g KI (excess) and few drops of starch added to flask. Titrate with 0.1M S2O3

2- and end point, reached when 28.2ml added. Find molarity copper ions and % copper found in brass.

Redox Titration Calculation - % Cu in Brass

5

Na2S2O3

M = 0.1M V = 28.2ml

I2

M = ?

2S2O32- + I2 → S4O6

2- + 2I- M = 0.1M Mole = ?

V = 28.2ml

Mole ratio ( 1 : 1) 2 mole Cu2+ : 1 mole I2 : 2 mole S2O3

2-

2 mole Cu2+ 2 mole S2O32-

Pour into

Volumetric flask

V = 250ml

M = ?

25ml transfer

1g KI excess + starch

added

Mole S2O32- = MV

= (0.1 x 0.0282) = 2.82 x 10-3 Mole ratio (2 : 1) • 2 mole S2O3

2- react 1 mole I2

• 2.82 x 10-3 S2O32-- react 1.41 x 10-3 I2

Mole ratio – 2: 1

2Cu2+ + 4I- → I2 + 2CuI Mole = ? 1.41 x 10-3 I2

Mole ratio – 2: 1

Mole ratio (2 : 1) • 2 mole Cu2+ 1 mole I2

• 2.82 x 10-3 Cu2+ 1.41 x 10-3 I2

Mole of Cu2+ = M x V

M x V = 2.82 x 10-3 M x 0.025 = 2.82 x 10-3 M = 2.82 x 10-3 0.025 M = 1.13 x 10-1 M Mass Cu = Molarity Cu x RAM Mass Cu = (0.113 x 63.5)g Cu in 1000ml = 7.18g Cu in 1000ml = 1.79g Cu in 250ml

10 ml HNO3

titrated

Water added

till 250ml

2.5g brass

% Cu in brass = mass Cu x 100% mass brass = 1.79 x 100% 2.5 = 71.8%

Using formula Using mole ratio

Using formula

M V (Cu2+) = 2 = 1 M V (S203

2-) 2 1 Moles of Cu2+ = 1

0.1 x 0.0282 1

Moles of Cu2+ = 2.82 x 10-3

1

2

3

4 5

6

Iodometric titration I2/thiosulphate/starch

↓ I - oxidized by OA to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

I2 used up – blue black disappear

4I- + 2Cu+ ↔ I2 + 2CuI

2S2O32- + I2 ↔S4O6

2- + 2I-

Click here here for copper determination

Page 8: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

2 mol 1 mol 2Cu2+ + 4I- → I2 + 2CuI I2 + 2S2O3

2- → S4O62- + 2I-

1 mol 2 mol

Brass is a copper alloy. Analysis carried out to determine copper. Iodometric titration was performed. Step 1 : Cu + 2HNO3 + 2H+ → Cu2+ + 2NO2 + 2H2O Step 2 : 4I- + 2Cu2+ → 2CuI + I2

Step 3 : I2 + 2S2O32- → 2I- + S4O6

2-

Average vol S2O3 2- was 28.50ml.

Redox Titration Calculation - % Cu in Brass

6

Na2S2O3

M = 0.1M V = 28.5ml

I2

M = ? V = 100ml

2S2O32- + I2 → S4O6

2- + 2I- M = 0.1M Mole = ?

V = 28.5ml

Mole ratio ( 1 : 1) 2 mole Cu2+ : 1 mole I2 : 2 mole S2O3

2-

2 mole Cu2+ 2 mole S2O32-

V = 100ml

M = ?

1g KI excess/starch

added

Mole S2O32- = MV

= (0.1 x 0.0285) = 2.85 x 10-3 Mole ratio (2 : 1) • 2 mole S2O3

2- react 1 mole I2

• 2.85 x 10-3 S2O32-- react 1.41 x 10-3 I2

Mole ratio – 2: 1

2Cu2+ + 4I- → I2 + 2CuI Mole = ? 1.41 x 10-3 I2

Mole ratio – 2: 1

Mole ratio (2 : 1) • 2 mole Cu2+ 1 mole I2

• 2.82 x 10-3 Cu2+ 1.41 x 10-3 I2

Mass Cu = Mole Cu x RAM Mass Cu = (2.85 x 10-3 x 63.5) g Cu = 0.181 g

titrated

HNO3 and water

added till 100ml

0.456g

brass

% Cu in brass = mass Cu x 100% mass brass = 0.181 x 100% 0.468 = 39.7%

Using formula Using mole ratio

Using formula

M V (Cu2+) = 2 = 1 M V (S203

2-) 2 1 Moles of Cu2+ = 1

0.1 x 0.0285 1

Mole of Cu 2+ = 2.85 x 10-3 M V (Cu2+) = 2 = 1 M V (S203

2-) 2 1 M x 0.100 = 1

0.1 x 0.0285 1 Conc Cu2+

= 2.85 x 10-2

1

2

3

4 5

6

Iodometric titration I2/thiosulphate/starch

↓ I - oxidized by OA to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

I2 used up – blue black disappear

4I- + 2Cu+ ↔ I2 + 2CuI

2S2O32- + I2 ↔S4O6

2- + 2I-

Click here here for copper determination expt

Cal Amt S2O32-

Cal Conc/Mole/Mass Cu Cal % Cu by mass in brass Cal % error (Lit value = 44.2 % Cu)

% error = Expt value x 100% Lit value = (44.2 – 39.7) x 100% 44.2 = 10.2%

Page 9: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox Titration Calculation- % purity of oxalate ion

Purity of sodium oxalate Na2C2O4 is determine by redox titration with standard 0.040M KMnO4. 35.62 ml KMnO4 needed to reach end point. Cal % w/w Na2C2O4 in sample. How equivalent point is detected ?

7

oxalate solution titrated

0.5116 g

KMnO4 M = 0.040M V = 35.62 ml

C2O4 2-

M = ?

2MnO4- + 5C2O4

2- + 16H+ → 2Mn2+ + 10CO2 + 8H2O M = 0.040M M = ?

V = 35.62 ml Mole ratio – 2: 5

Using mole ratio

Mole KMO4- = MV

= (0.040 x 0.03562) = 1.42 x 10-3

Mole ratio (2 : 5) • 2 mol KMO4

- react 5 mol C2O4 2-

• 1.42 x 10-3 KMO4 -react 3.55 x 10-3 C2O4

2-

M aVa = 2 Mb Vb 5 0.04 x 0.03562 = 2 Mole C2O4

2- 5

Mol C2O42- = 3.55 x 10 -3

Mass of (expt yield) = 0.476 g Mass of (Actual tablet) = 0.5116 g % w/w in Na2C2O4 = 0.476 x 100 % 0.5116

= 93 %

Mole Mass Mole x RMM = Mass Na2C2O4

3.55 x 10-3 x 134 = 0.476 g Fe

Using formula

1

2

3

MnO4- – In burette is purple – Turns colourless react with C2O4

2-

All C2O42- used up at equivalence point – excess KMnO4

- turn purple

?

Oxidizing Agent

Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO32-

KIO3 Vitamin C

CIO-/Cu2+ Oxalate/ C2O4

2-

MnO4– reduced to Mn2+

C2O4

2- oxidized to CO2

(+7) ON decrease ↓ (+2)

(+3) ON increase ↑ (+4)

4

Page 10: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

M V (KIO3) = 1 M V (C6H8O6) 3 0.002 x 0.0255 = 1 Mole C6H8O6 3

Mole C6H8O6 = 1.53 x 10-4

Mole C6H8O6 = M x V

M x V = 1.53 x 10-4 M x 0.025 = 1.53 x 10-4 M = 1.53 x 10-4 0025 M = 6.12 x 10-3 M

1 mol 3 mol KIO3 + 5KI + 6H+ → 3I2 + 6K+ + 3H2O 3C6H8O6 + 3I2

→ 3C6H6O6 + 6I- + 6H+

3 mol 3 mol

Iodometric titration was performed on Vit C, (C6H8O6). 25ml Vit C is titrated with 0.002M KIO3 from burette, using excess KI and starch. Average vol KIO3 is 25.5ml. Cal molarity of Vit C.

Redox Titration Calculation – Vitamin C quantification

8

KIO3

M = 0.002M V = 25.5ml

Vit C

M = ? V = 25ml

KIO3 + 5KI + 6H+ → 3I2

+ 3H2O + 6K= M = 0.002M Mole = ? V = 25.5ml

Mole ratio (1 :3) 1 mol KIO3 : 3 mol I2 : 3 mol C6H8O6

1 mol KIO3 3 mol C6H8O6

V = 25ml M = ?

25ml transfer

1g KI excess + starch added

Mole KIO3 = MV = (0.002 x 0.0255) = 5.10 x 10-5 Mole ratio (1 : 3) • 1 mole KIO3 produce 3 mole I2

• 5.10 x 10-5 KIO3 produce 1.53 x 10-4 I2

Mole ratio – 1: 3

3C6H8O6 + 3I2 → 3C6H6O6 + 6I- + 6H+

Mole = ? 1.53 x 10-4

Mole ratio – 3: 3

Mole ratio (1 : 3) • 1 mol KIO3 react 3 mol C6H8O6

• 5.10 x 10-5 KIO3 react 1.53 x 10-4 C6H8O6

Mole C6H8O6 = M x V

M x V = 1.53 x 10-4 M x 0.025 = 1.53 x 10-4 M = 1.53 x 10-4 0025 M = 6.12 x 10-3 M

titrated

Using mole ratio Using formula

Using formula

Vitamin C

1

2

3

4

Click here here to view sample Vitamin C expt

?

Oxidizing Agent

Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO32-

KIO3 Vitamin C

CIO-/Cu2+ Oxalate/ C2O4

2-

Page 11: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

25ml of undiluted H2O2 is transfer to 250ml volumetric flask. (Diluted 10x ). 25ml diluted sample was titrated with standard 0.02114M KMnO4. 28.64 ml KMnO4 needed to reach end point. Cal conc in M H2O2 sample. Assuming density is 1g/ml, calculate % H2O2 by weight. (Theoretical value H2O2 = 3%)

9

25ml pipette solution

KMnO4 M = 0.02114M V = 28.64 ml

H2O2

M = ?

2MnO4- + 5H2O2

+ 6H+ → 2Mn2+ + 5O2 + 8H2O M = 0.02114M M = ? V = 28.64 ml Mole ratio – 2: 5

Using mole ratio

Mole KMO4- = MV

= (0.02114 x 0.02864) = 6.054 x 10-4

Mole ratio (2 : 5) • 2 mol KMO4

- react 5 mol H2O2

• 6.054 x 10-4 KMO4- react 1.513 x 10-3 H2O2

M V = 2 M V 5 0.02114 x 0.02864 = 2 Mole H2O2

5

Mol H2O2 = 1.5135 x 10 -3

Using formula

1

2

?

Oxidizing Agent

Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO32-

KIO3 Vitamin C

CIO-/Cu2+ Oxalate/ C2O4

2-

MnO4– reduced to Mn2+

H2O2 oxidized to O2

(+7) ON decrease ↓ (+2)

(-1) ON increase ↑ (0)

Redox Titration H2O2 Calculation

Pour into

Volumetric flask

25 ml H2O2

Water added

till 250ml

Mol H2O2 = M x V

M x V = 1.513 x 10-3 M x 0.025 = 1.513 x 10-3 M = 1.513 x 10-3 0.025 M = 0.06052 M (Diluted sample) Original sample = 0.06052 x 10 = 0.6052 M

Conc H2O2 = 0.6052M RMM H2O2 = 34 Mass H2O2 = 0.6052 x 34 = 20.60g in 1000 ml = 2.06g in 100ml

= 2.06%

3

Stronger oxidizing agent

reduce weaker oxidizing agent

Page 12: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Cr2O72- reduced to Cr3+

C2H5OH oxidized CH3COOH3

% C2H5OH by mass = mass C2H5OH x 100% mass blood = 0.351 x 100% 10.0 = 3.51 %

Alcohol in blood can be determined by redox titration with K2Cr2O7 3C2H5OH + 2Cr2O7

2- + 16H+ → 3CH3COOH3 + 4Cr 3+ + 11H2O Calculate % by mass of ethanol. Explain how end point is determined?

10

Cr2O72-

M = 0.055M V = 9.25 ml

C2H5 OH

M = ?

2Cr2O72- + 3C2H5OH + 16H+ → 3CH3COOH3 + 4Cr 3+ + 11H2O

M = 0.0550 M = ? V = 9.25ml Mole ratio – 3: 2

Using mole ratio

Mole Cr2O7-2- = MV

= (0.055 x 0.00925) = 5.08 x 10-4

Mole ratio (2 : 3) • 2 mol Cr2O7

2- react 3 mol C2H5OH

• 5.08 x 10-4 Cr2O72- react 7.63 x 10-3 C2H5OH

M V = 2 M V 3 0.055 x 0.0925 = 2 MV 3

Mol C2H5OH = 7.63 x 10 -3

Using formula

1

2

(+7) ON decrease ↓ (+3)

(-2) ON increase ↑ (0)

Redox Titration Alcohol Calculation C2H5OH

10g of blood sample

Mass C2H5OH = Mol x RAM

Mass = 7.63 x 10-3 x 46 Mass = 0.351 g

3

Click here practical breath analyzer using dichromate

Alcohol

C2H5OH

Ethanoic acid

CH3COOH

Cr2O72- – In burette is orange– Turns green react with C2H5OH

All C2H5OH used up at equivalence point – excess Cr2O72- turn orange

oxidized

Dichromate Cr2O7

2- Chromate

Cr3+

reduced

Oxidizing Agent

Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO32-

KIO3 Vitamin C

CIO-/Cu2+ Ethanol/ C2H4OH

?

4

Page 13: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Biological Oxygen Demand

Measure amt dissolve oxygen needed by aerobic organism to break down • Organic matter in water sample over 5 day period • BOD polluted water – Amt dissolve oxygen need for biological decomposition • Measure amt O2 used for biochemical decomposition of organic matter • Measure amt O2 used to oxidize organic to produce energy for microbes Lots of organic decomposition (uses O2)

↓ Dissolve oxygen Low ↓ used up

↓ Biological Oxygen Demand High ↑

↓ Level Pollution is HIGH ↑

↓ Aquatic life die /Toxic

Low Dissolve Oxygen, signify high O2 demand from microbes (organic waste contamination)

Breakdown organic matter in water consumes oxygen by aerobic micro-organisms.

BOD High ↑

Dissolve O2 Low ↓ (O2 used up) Level Pollution HIGH ↑

Organic waste decomposition ↑ Aquatic life die/Toxic

BOD Low ↓

Dissolve O2 High ↑ (O2 high) Level Pollution LOW ↓

Organic waste decomposition ↓ Aquatic life thrive

BOD ↑ – No good

BOD ↓ - Good

Dissolve oxygen Level -

• Indicator of clean water

• Level of pollution

BOD ↓

Dissolve Oxygen ↑

Click here carolina Winkler method BOD

Click here dissolve oxygen video

Page 14: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Water Quality Clean Lightly polluted

Moderate polluted

Severely polluted

Dissolve O2, mg/ml

DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0

BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15

Explosive growth algae/bloom Block sunlight for photosynthesis

Eutrophication on BOD

Excessive use fertilisers like phosphates/nitrates

Wash into river/water

Eutrophication

Explosive growth algae/bloom ↓

When die - organic decomposition by bacteria

↓ Uses up dissolve oxygen

↓ BOD demand HIGH ↑

↓ Water polluted

Algae bloom

Dissolve oxygen Low ↓

BOD High ↑

Nutrient leach

Biological Oxygen Demand

Redox titration (Winkler Method) measure dissolve O2

BOD index

Click here on Winkler titration method

Iodometric titration I2/thiosulphate/starch

↓ Mn2+ oxidized by O2 to Mn4+

↓ Mn4+ oxidized I- to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

↓ I2 used up – blue black disappear

Measure BOD

Iodometric titration

Page 15: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Biological Oxygen Demand Redox titration (Winkler Method) measure dissolve O2

BOD index

1 mol 2 mol 2Mn2+ + O2 + 4OH- → 2MnO2 + 2H2O 2MnO2 + 4I- + 4H+ → 4I2 + 2Mn2- + 4H2O

4I2 + 4S2O3

2- → 4I- + 2S4O6 2-

Click here on Winkler titration method

Water Quality Clean Lightly polluted

Moderately polluted

Severely polluted

Dissolve O2, mg/ml

DO > 6.5 4.5 – 6.5 2.0 – 4.5 < 2.0

BOD, mg/ml < 3 3 – 4.9 5 – 15 > 15

Dissolve O2 reacts with alkaline manganese (Mn2+) to form (Mn4+)

4Mn2+ + 4OH- → 2Mn(OH)2 1 mol 2 mol

2Mn(OH)2 + O2 → 2MnO(OH)2

2MnO(OH)2 + 8H+ + 6I- → 2I3

- + 6H2O 2 mol 2 mol

2I3

- + 4S2O3 2- → 6I- + 2S4O6 2-

2 mol 4 mol

Redox titration Winkler Method

DO bottle

Mn2+ salt

1g KI excess

alkaline/OH-

shake

White ppt Mn(OH)2

Conc

H2SO4

White ppt dissolve in acid

Na2S2O3

M = 0.05M V = 12.5ml

titrated S2O32-

1 O2 + 4S2O32- → products

M = ? M = 0.05M

V = 12.5ml

I- oxidized to I2 by Mn2+

O2

M = ? V = 500ml

2 mol 4 mol

4 mol 4 mol

Mole ratio O2 : S2O32-

(1 : 4) 1 mol O2 : 4 mol I2 : 4 mol S2O3

2-

1 mol O2 4 mol S2O32-

Brown I2 sol form

Starch added

Iodometric titration I2/thiosulphate/starch

↓ Mn2+ oxidized by O2 to Mn4+

↓ Mn4+ oxidized I- to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

↓ I2 used up – blue black disappear

Water sample

added

1 mol O2 : 4 mol S2O32-

Page 16: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

1 mol 2 mol 2Mn2+ + O2 + 4OH- → 2MnO2 + 2H2O 2MnO2 + 4I- + 4H+ → 4I2 + 2Mn2- + 4H2O

4I2 + 4S2O3

2- → 4I- + 2S4O6 2-

Dissolve O2 reacts with alkaline manganese (Mn2+) to form (Mn4+)

Redox titration Winkler Method

DO bottle

Mn2+ salt

1g KI excess

alkaline/OH-

shake

White ppt Mn(OH)2

Conc

H2SO4

White ppt dissolve in acid

Na2S2O3

M = 0.05M V = 12.5ml

titrated S2O32-

1 O2 + 4S2O32- → product

M = ? M = 0.05M

V = 12.5ml

I- oxidized to I2 by Mn2+

O2

M = ? V = 500ml

2 mol 4 mol

4 mol 4 mol

Mole ratio O2 : S2O32-

(1 : 4) 1 mol O2 : 4 mol I2 : 4 mol S2O3

2-

1 mol O2 4 mol S2O32-

Brown I2 sol form

Starch added

Iodometric titration I2/thiosulphate/starch

↓ Mn2+ oxidized by O2 to Mn4+

↓ Mn4+ oxidized I- to I2

I2 react with starch (blue black colour)

↓ S2O3

2- added to reduce I2

↓ I2 used up – blue black disappear

Water sample

added

500ml water tested for dissolve oxygen by adding Mn2+ in alkaline solution, followed by addition of KI and acid. I2 produced is reduced by titrating with 0.05M S2O3

2-. Average vol S2O32- used is 12.50ml. Calculate

dissolved oxygen in g/dm3.

1

Mole S2O32- = MV

= (0.05 x 0.0125) = 6.25 x 10-4 Mole ratio (1 : 4) • 1 mole O2 react 4 mole S2O3

2- ? 6.25 x 10-4 S2O2

2-

6.25 x 10-4 = 1.56 x 10-4

4

1 mol O2 : 4 mol S2O32-

2 3 Mole O2 = 1.56 x 10-4 mol Mass O2 = Mole O2 x RAM Mass O2 = (1.56 x 10-4 x 32.0)g = (5.00 x 10-3)g in 500ml = 0.01 g in 1000ml = 0.01g/dm3

4

Click here on Winkler titration method Click here on Winkler titration method

Page 17: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Titration for IA (DCP) assessment

Acid Base Titration

Standardization HCI with primary std Na2CO3

Click here for expt 4.2

Standardization NaOH with primary std KHP Click here or here for expt`

Titration bet NaOH with std HCI Click here for expt 4.2a

Titration bet HCI with std NaOH Click here for expt 4.2a

Determining water crystallization in hydrated Na2CO3 with std HCI Click here for expt 4.4

Standardization KMnO4 with std ammonium iron(II) sulphate Click here for expt 4.5

Iron (II) determination with std KMnO4

Click here for expt 4.6

Hypochlorite (OCI-) in bleach with iodine/thiosulphate Click here for expt 4.8

Determining ethanoic acid in vinegar with std NaOH Click here for expt 4.3

Copper(II) determination in brass with iodine/thiosulphate Click here or here for expt` Click here for more expt

Standardization KI/I2 with std KIO3 Click here for expt 4.7 Click here for more expt

Determining acetylsalicylic acid in aspirin with std NaOH Click here or here for expt` Click here for more expt

Vit C determination with iodine/thiosulphate Click here or here for expt Click here more detail expt

Standardization Expt Acid/Base Titration Expt

Standardization Expt

Redox Titration Expt

Redox Titration

Standardization KI/I2 with std sodium thiosulphate Click here for expt 4.7 Iodine/thiosulphate (iodometric titration)

Page 18: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

CI2 + 2KBr-→ 2KCI + Br2

3CuO + 2NH3→ 3H2O+ 3Cu + N2

Redox (Oxidation and Reduction)

(+7) (+2) Mn red - ON ↓

(+2) Fe oxi – ON ↑ (+3)

MnO4- + Fe2+ + 8H+ → Mn2+ + Fe3+ 4H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation Oxidizing

Agent Reducing

Agent

MnO4- Fe2+

Reduction Oxidation

Oxidizing Agent

Reducing Agent

CI2 Br-

Reduction Oxidation

Oxidizing agent

Reduction

Reducing agent

Oxidation

(0) CI red – ON ↓ (-1)

(-1) Br - oxi – ON ↑ (0)

Oxidizing Agent

Reducing Agent

CuO NH3

Reduction Oxidation

Reducing agent

Oxidation

(-3) NH3 oxi – ON ↑ (0)

Oxidizing agent

Reduction (+2) Cu red – ON ↓ (0)

2HCI + Zn → H2 + ZnCI2

(0) Zn oxi – ON ↑ (+2) Reducing agent

Oxidation

Oxidizing agent

Reduction (+1) H red – ON ↓ (0)

Oxidizing Agent

Reducing Agent

HCI Zn

Reduction Oxidation

Page 19: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

CI2 + 2KBr-→ 2KCI + Br2

3CuO + 2NH3→ 3H2O+ 3Cu +N2

Redox (Oxidation and Reduction)

(+7) (+2) Mn red - ON ↓

(+2) Fe oxi – ON ↑ (+3)

MnO4- + 8H+ + Fe2+ → Mn2+ + Fe3+ 4H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

MnO4- + 5e → Mn2+

Oxidizing agent

Reduction

Reducing agent

Oxidation

(0) CI red – ON ↓ (-1)

(-1) Br - oxi – ON ↑ (0)

Reducing agent

Oxidation

(-3) NH3 oxi – ON ↑ (0)

Oxidizing agent

Reduction (+2) Cu red – ON ↓ (0)

2HCI + Zn → H2 + ZnCI2

(0) Zn oxi – ON ↑ (+2) Reducing agent

Oxidation

Oxidizing agent

Reduction (+1) H red – ON ↓ (0)

Reducing Agent Oxidation

Fe 2+ → Fe2+ + e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Reducing Agent Oxidation

2Br - → Br2 + 2e-

Loss electron

Increase ON ↑

Oxidizing Agent Reduction

CI2 + 2e → 2CI- Gain electron

Decrease ON ↓

Reducing Agent Oxidation

(NH3) -N3- → N + 3e- Loss electron

Increase ON ↑

Oxidizing Agent Reduction

(CuO) Cu2+ + 2e → Cu Gain electron

Decrease ON ↓

Reducing Agent Oxidation

Zn → Zn2+ + 2e- Loss electron

Increase ON ↑

Oxidizing Agent Reduction

2H+ + 2e → H2

Gain electron

Decrease ON ↓

Page 20: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox (Oxidation and Reduction)

Half equations

Oxidation rxn

Oxidation half eqn Reduction half eqn

Loss electron ↓

Reduction rxn

Loss hydrogen ↓ Gain oxygen ↑ Gain ON ↑ Gain electron ↑ Gain hydrogen ↑ Loss oxygen ↓ Loss ON ↓

Oxidizing Agent Reducing Agent

Oxidation rxn Reduction rxn lose electron

Zn + 2H+ → H2 + Zn2+

Zn → Zn2+ + 2e 2H+ + 2e → H2

(0) ON increase ↑ (+2)

Zn → Zn2+ + 2e

2H+ + 2e → H2 2H+ + Zn → Zn2+ + H2

lose electron gain electron

(+1) ON decrease ↓ (0)

Complete full eqn

Zn + Cu2+ → Zn2+ + Cu Oxidation half eqn

Zn → Zn2+ + 2e lose electron

(0) ON increase ↑ (+2)

Reduction half eqn

Cu2+ + 2e → Cu

(+2) ON decrease ↓ (0)

gain electron

Zn → Zn2+ + 2e

Cu2+ + 2e → Cu Cu2+ + Zn → Zn2+ + Cu

Half equations

Page 21: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox (Oxidation and Reduction)

Half equations

Oxidation half eqn Reduction half eqn

Zn → Zn2+ + 2e 2H+ + 2e → H2

(0) ON increase ↑ (+2)

Zn → Zn2+ + 2e

2H+ + 2e → H2 2H+ + Zn → Zn2+ + H2

lose electron gain electron

(+1) ON decrease ↓ (0)

Complete full eqn

Oxidation half eqn

Zn → Zn2+ + 2e lose electron

(0) ON increase ↑ (+2)

Reduction half eqn

Cu2+ + 2e → Cu

(+2) ON decrease ↓ (0)

gain electron

Zn → Zn2+ + 2e

Cu2+ + 2e → Cu Cu2+ + Zn → Zn2+ + Cu

Half equations

Zn + 2HCI → H2 + ZnCI2

Zn + 2H+ + 2CI- → H2 + Zn2+ + 2CI -

Complete ionic/redox eqn

Zn + 2H+ → H2 + Zn2+

spectator ions spectator ions

Zn + 2H+ → H2 + Zn2+

Zn + CuSO4 → ZnSO4 + Cu

Zn + Cu2++ SO42- → Zn2+ + SO4

2- + Cu

Complete full eqn

Complete ionic/redox eqn

spectator ions

Zn + Cu2+ → Zn2+ + Cu

Half equations Half equations Zn + Cu2+ → Zn2+ + Cu

Page 22: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Redox (Oxidation and Reduction)

Half equations

Oxidation half eqn Reduction half eqn

Mg → Mg2+ + 2e Pb2+ + 2e → Pb

(0) ON increase ↑ (+2)

Mg → Mg2+ + 2e

Pb2+ + 2e → Pb Pb2+ + Mg → Mg2+ + Pb

lose electron gain electron

(+2) ON decrease ↓ (0)

Complete full eqn

Oxidation half eqn

2Br- → Br2 + 2e

lose electron

(-1) ON increase ↑ (0)

Reduction half eqn

CI2 + 2e → 2CI-

(0) ON decrease ↓ (-1)

gain electron

2Br- → Br2 + 2e

CI2 + 2e → 2CI-

CI2 + 2Br- → 2CI- + Br2

Half equations

Mg + PbO → Pb + MgO

Mg + Pb2+ + O2- → Pb + Mg2+ + O 2-

Complete ionic/redox eqn

spectator ions spectator ions

Mg + Pb2+ → Pb + Mg2+

2KBr + CI2 → Br2 + 2KCI

2K+ + 2Br- + CI2 → Br2 + 2K+ + 2CI -

Complete full eqn

Complete ionic/redox eqn

spectator ions

2Br- + CI2 → Br2 + 2CI-

Half equations Half equations

Mg + Pb2+ → Pb + Mg2+

2Br- + CI2 → Br2 + 2CI-

lose electron

Page 23: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

MnO4- + 8H+ + 5Fe2+ → Mn2+ + 5Fe3+ + 4H2O

Constructing Half and complete redox equation

(+7) (+2) Mn red - ON ↓

(+2) Fe oxi – ON ↑ (+3)

MnO4- + 5Fe2+ + 8H+ → Mn2+ + 5Fe3+ + 4H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

MnO4- + 5e → Mn2+

Reducing Agent Oxidation

Fe 2+ → Fe2+ + e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O -add H2O

2. Balance # H add H+

3. Balance # charges -add electrons

4. Balance # electron transfer

MnO4- → Mn2+

MnO4- → Mn2+ + 4H2O

MnO4- + 8H+ → Mn2++ 4H2O

MnO4- + 8H+ + 5e- → Mn2+ + 4H2O

Fe2+ → Fe3+

Fe2+ → Fe3+ + e-

5Fe2+ → 5Fe3+ + 5e- MnO4- + 8H+ + 5e- → Mn2+ + 4H2O

x 5 x 1

MnO4- + 8H+ + 5e- → Mn2+ + 4H2O

5Fe2+ → 5Fe3+ + 5e- +

MnO4- - In acidic medium

- Strong oxidizing agent MnO4

- + 8H+ + 5Fe2+ → Mn2+ + 5Fe3+ 4H2O

Page 24: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

2MnO4- + 5SO2+ 2H2O → 2Mn2+ + 5SO4

2- + 4H+

Constructing Half and complete redox equation

(+7) (+2) Mn red - ON ↓

(+4) SO2 oxi – ON ↑ (+6)

2MnO4- + 5SO2 + 2H2O

→ 2Mn2+ + 5SO42- + 4H+

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

MnO4- + 5e → Mn2+

Reducing Agent Oxidation

SO2 → SO4

2- + 2e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer

MnO4- → Mn2+

MnO4- → Mn2+ + 4H2O

MnO4- + 8H+ → Mn2++ 4H2O

MnO4- + 8H+ + 5e- → Mn2+ + 4H2O

SO2 → SO4

2-

2MnO4- + 16H+ + 10e- → 2Mn2+ + 8H2O

x 5 x 2

2MnO4- + 16H+ + 10e- → 2Mn2+ + 8H2O

5SO2 + 10H2O → 5SO42- + 20H+ + 10e-

+

2MnO4- + 5SO2 + 2H2O

→ 2Mn2+ + 5SO42- 4H+

SO2 + 2H2O

→ SO42-

SO2 + 2H2O

→ SO42- + 4H+

SO2 + 2H2O

→ SO42- + 4H+ + 2e-

5SO2 + 10H2O

→ 5SO42- + 20H+ + 10e-

Page 25: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

2MnO4- + 5H2O2 + 6H+ → 2Mn2+ + 5O2

+ 8H2O

Constructing Half and complete redox equations

(+7) (+2) Mn red - ON ↓

(-1) H2O2 oxi – ON ↑ (0)

2MnO4- + 5H2O2 + 6H+ → 2Mn2+ + 5O2

+ 8H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

MnO4- + 5e → Mn2+

Reducing Agent Oxidation

H2O2 → O2

+ 2e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer

MnO4- → Mn2+

MnO4- → Mn2+ + 4H2O

MnO4- + 8H+ → Mn2++ 4H2O

MnO4- + 8H+ + 5e- → Mn2+ + 4H2O

2MnO4- + 16H+ + 10e- → 2Mn2+ + 8H2O

x 5 x 2

2MnO4- + 16H+ + 10e- → 2Mn2+ + 8H2O

5H2O2 → 5O2 + 10H+ + 10e-

+

2MnO4- + 5H2O2 + 6H+ → 2Mn2+ + 5O2

+ 8H2O

H2O2 → O2

H2O2 → O2 + 2H+

H2O2 → O2 + 2H+ + 2e-

5H2O2 → 5O2 + 10H+ + 10e-

Page 26: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Cr2O72- + 3NO2

- + 8H+ → 2Cr3+ + 3NO3- + 4H2O

Cr2O72-→ 2Cr3+

Constructing Half and complete redox equations

(+6) (+3) Cr red - ON ↓

(+3) NO2- oxi – ON ↑ (+5)

Cr2O72- + 3NO2

- + 8H+ → 2Cr3+ + 3NO3- + 4H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

Cr2O72- + 6e- → 2Cr3+

Reducing Agent Oxidation

NO2- → NO3

- + 2e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 3 x 1

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

3NO2-+ 3H2O → 3NO3

- + 6H+ + 6e- +

Cr2O72- + 3NO2

- + 8H+ → 2Cr3+ + 3NO3- + 4H2O

Cr2O72- → 2Cr3+ + 7H2O

Cr2O72- + 14H+ → 2Cr3+ + 7H2O

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

NO2- → NO3

-

NO2- + H2O → NO3

-

NO2- + H2O → NO3

- + 2H+

NO2- + H2O → NO3

- + 2H+ + 2e-

3NO2- + 3H2O → 3NO3

- + 6H+ + 6e-

Page 27: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Cr2O72- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2O

Cr2O72-→ 2Cr3+

Constructing Half and complete redox equations

(+6) (+3) Cr red - ON ↓

(+2) Fe2+ oxi – ON ↑ (+3)

Cr2O72- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ + 7H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

Cr2O72- + 6e- → 2Cr3+

Reducing Agent Oxidation

Fe2+ → Fe3+ + e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 6 x 1

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

6Fe2+ → 6Fe3+ + 6e- +

Cr2O72- → 2Cr3+ + 7H2O

Cr2O72- + 14H+ → 2Cr3+ + 7H2O

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

Cr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O

Cr2O72- + 6Fe2+ + 14H+ → 2Cr3+ + 6Fe3+ 7H2O

Fe2+ → Fe3+

Fe2+ → Fe3+ + e

6Fe2+ → 6Fe3+ + 6e

Page 28: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Constructing Half and complete redox equations

(+5) (-1) CIO3 - red - ON ↓

(-1) I- oxi – ON ↑ (0)

CIO3- + 6I- + 6H+ → 3I2 + CI- + 3H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

CIO3- + 6e- → CI-

Reducing Agent Oxidation

2I- → I2 + 2e-

Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 3 x 1

CIO3- + 6H+ + 6e- → CI- + 3H2O

6I- → 3I2 + 6e-

+

CIO3- + 6I- + 6H+ → 3I2 + CI- + 3H2O

CIO3- → CI-

CIO3- → CI- + 3H2O

CIO3- + 6H+ → CI- + 3H2O

CIO3- + 6H+ + 6e- → CI- + 3H2O

CIO3- + 6H+ + 6e- → CI- + 3H2O

2I- → I2

2I- → I2 + 2e-

6I- → 3I2 + 6e-

CIO3- + 6H++ 6I- → 3I2 + 3H2O

Page 29: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Constructing Half and complete redox equations

(+5) (+2) NO3 - red - ON ↓

(0) Cu oxi – ON ↑ (+2)

2NO3- + 3Cu + 8H+ → 3Cu2+ + 2NO + 4H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

NO3- + 3e- → NO

Reducing Agent Oxidation

Cu → Cu2+ + 2e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 3 x 2

2NO3- + 8H+ + 6e- → 2NO + 4H2O

3Cu → 3Cu2+ + 6e- +

2NO3- + 3Cu + 8H+ → 3Cu2+ + 2NO + 4H2O

NO3- → NO

NO3- → NO + 2H2O

NO3- + 4H+ → NO + 2H2O

NO3- + 4H+ + 3e- → NO + 2H2O

2NO3- + 8H+ + 6e- → 2NO + 4H2O

Cu → Cu2+

Cu → Cu2+ + 2e-

3Cu → 3Cu2+ + 6e-

2NO3- + 8H+ + 3Cu → 3Cu2+ +2NO + 4H2O

Page 30: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

HNO3 +3Fe2+ + 3H+ → 3Fe3+ + NO + 2H2O

Constructing Half and complete redox equations

(+5) (+2) HNO3 red - ON ↓

(+2) Fe oxi – ON ↑ (+3)

HNO3 + 3Fe2+ + 3H+ → 3Fe3+ + NO + 2H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

HNO3 + 3e- → NO

Reducing Agent Oxidation

Fe 2+ → Fe3+ + e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 3 x 1

HNO3 + 3H+ + 3e- → NO + 2H2O

3Fe2+ → 3Fe3+ + 3e- +

HNO3 → NO + 2H2O

HNO3+ 3H+ → NO + 2H2O

HNO3 + 3H+ + 3e- → NO + 2H2O

HNO3 + 3H+ + 3e- → NO + 2H2O

Fe2+ → Fe3+

HNO3 + 3Fe2+ + 3H+ → 3Fe3+ + NO + 2H2O

HNO3 → NO

Fe2+ → Fe3+ + e-

3Fe2+ → 3Fe3+ + 3e-

Page 31: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

H2O2 + 2Fe2+ +2H+ → 2Fe3+ + 2H2O

Constructing Half and complete redox equations

(-1) (-2) H2O3 red - ON ↓

(+2) Fe oxi – ON ↑ (+3)

H2O2 + 2Fe2+ + 2H+ → 2Fe3+ + 2H2O

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

H2O3 + e- → H2O

Reducing Agent Oxidation

Fe 2+ → Fe3+ + e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer x 2 x 1

H2O2 + 2H+ + 2e- → 2H2O

2Fe2+ → 2Fe3+ + 2e- +

Fe2+ → Fe3+

Fe2+ → Fe3+ + e-

2Fe2+ → 2Fe3+ + 2e-

H2O2 + 2Fe2+ + 2H+ → 2Fe3+ + 2H2O

H2O2 → H2O

H2O2 → 2H2O

H2O2 + 2H+ → 2H2O

H2O2 + 2H+ + 2e- → 2H2O

H2O2 + 2H+ + 2e- → 2H2O

Page 32: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

CI2 + SO2 + 2H2O → 2CI- + SO4

2- + 4H+

Constructing Half and complete redox equations

(0) (-1) CI2 red - ON ↓

(+4) SO2 oxi – ON ↑ (+6)

CI2 + SO2 + 2H2O

→ 2CI- + SO42- + 4H+

Oxidizing agent

Reduction

Reducing agent

Oxidation

Oxidizing Agent Reduction

CI2 + 2e → 2CI-

Reducing Agent Oxidation

SO2 → SO4

2- + 2e- Loss electron

Increase ON ↑

Gain electron

Decrease ON ↓

Complete full eqn Oxidation half eqn Reduction half eqn

1. Balance # O - add H2O

2. Balance # H add H+

3. Balance # charges - add electrons

4. Balance # electron transfer

SO2 → SO4

2-

x 1 x 1

CI2 + 2e- → 2CI-

SO2 + 2H2O → SO42- + 4H+ + 2e-

+

SO2 + 2H2O

→ SO42-

SO2 + 2H2O

→ SO42- + 4H+

SO2 + 2H2O

→ SO42- + 4H+ + 2e-

CI2 + SO2 + 2H2O

→ 2CI- + SO42- + 4H+

CI2 → 2CI-

CI2 + 2e- → 2CI-

CI2 + 2e- → 2CI-

SO2 + 2H2O

→ SO42- + 4H+ + 2e-

Page 33: IB Chemistry on Redox Titration, Biological Oxygen Demand and Redox

Sn2+ + 2Fe3+ → Sn4+ + 2Fe2+ 2Fe2+ + CI2 → 2Fe3+ + 2CI- Ca + 2H+ → Ca2+ + H2

IB Redox Questions

Deduce half eqn of oxidation and reduction for the following

Ca + 2H+ → Ca2+ + H2 2Fe2+ + CI2

→ 2Fe3+ + 2CI- Sn2+ + 2Fe3+ → Sn4+ + 2Fe2+

0 +1 +2 0

Ca → Ca2+ + 2e

2H+ + 2e → H2

oxidation

reduction

+2 0 +3 -1

2Fe2+ → Fe3+ + 2e

CI2 + 2e → 2CI-

oxidation

reduction

+2 +3 +4 +2

Sn2+ → Sn4+ + 2e

2Fe3+ + 2e → 2Fe2+

Substances acting as oxidizing and reducing agent

2MnO4- + 5H2O2 + 6H+ → 2Mn2+ + 5O2

+ 8H2O

H2O2 + 2Fe2+ + 2H+ → 2Fe3+ + 2H2O

H2O2 + 2I- + 2H+ → I2

+ 2H2O

Oxidizing Agent Reducing Agent

MnO4- Fe2+

Cr2O72- SO2

HNO3 I-

H2O2 H2S

CI2 SO3 2-

Acidified H2O2 act as oxidizing agent - Oxidizes Fe2+ to Fe3+

- Oxidizes I- to I2

Acidified MnO4- act as more powerful oxidizing agent

- Oxidizes weaker oxidizing agent H2O2 to H2O and O2

- H2O2 act as reducing agent

Identify oxidizing and reducing agent for following rxn.

5As2O3 + 2MnO4

- + 16H+ → 2Mn2+ + 5As2O5 + 8H2O 2NO3- + 3Cu + 8H+ → 3Cu2+ + 2NO + 4H2O

Cr2O72- + 3NO2

- + 8H+ → 2Cr3+ + 3NO3- + 4H2O

1 2

3

oxidizing

agent

oxidizing

agent

oxidizing

agent

reducing

agent reducing

agent

reducing

agent