49
SS2016 Modern Neural Computation Lecture 2: Synaptic Learning Rules Hirokazu Tanaka School of Information Science Japan Institute of Science and Technology

JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Embed Size (px)

Citation preview

Page 1: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

SS2016 Modern Neural Computation

Lecture 2: Synaptic Learning Rules

Hirokazu TanakaSchool of Information Science

Japan Institute of Science and Technology

Page 2: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Neurons communicate through synapses.

In this lecture we will learn:• Basic anatomy and physiology of synapses

• Rate coding and spike coding

• Hebbian learning

• Spike-timing-dependent plasticity

• Reward-modulated plasticity

Page 3: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Synaptic plasticity underlies behavioral modification.

Kandel (1979) Scientific American; Kandel (2001) Science

Page 4: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Synapses: electrical and chemical neurotransmission

Figure 5.1, Neuroscience 3rd Edition

Page 5: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Long-term potentiation (LTP) of hippocampal synapses

Figure 24.6, Neuroscience 3rd EditionFigure 24.5, Neuroscience 3rd Edition

Page 6: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Long-term potentiation (LTP) of hippocampal synapses

Figures 24.7 & 24.8, Neuroscience 3rd Edition

Page 7: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Molecular mechanisms underlying hippocampal LTP.

Figures 24.9 & 24.10, Neuroscience 3rd Edition

Page 8: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Long-term depression (LTD)

Page 9: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

How does a neuron represent information?

Panzari et al. (2010) Trends in Neurosciences

Page 10: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Rate coding: Number of Spikes matters.

Rate coding hypothesis: a neuron represents information through its spike rate.

Hartline (1940) Am J Physiol; Hartline (1969) Science

Compound eye of horseshoe crab Recoding from optic nerve

Firing patterns of cortical neurons are highly irregular, which are well approximated by a random Poisson process (Softky & Koch (1993) J Neurosci; Shadlen & Newsome (1994) Current Biology).

Page 11: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Temporal coding: Spike timing matters.Temporal coding hypothesis: a neuron represents information

through its spike timings.

Gollisch & Meister (2008) Science Johansson & Birznieks (2004) Nature Neurosci

Page 12: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Hebb’s postulate of activity dependent plasticity.

"Let us assume that the persistence or repetition of a reverberatoryactivity (or "trace") tends to induce lasting cellular axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased."

Hebbian theory: a theory in neuroscience that proposes an explanation for the adaptation of neurons in the brain during the learning process.

Donald O. Hebb (1904-1985) The Organization of Behavior (1949)

Image source: Wikipedia, Donald O. Hebb

Page 13: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Synaptic plasticity: rate-coding model

1u

2u

3u

1w

2w

3w

Tv vτ = − +w u

v ( )( )

T1

T1

n

n

u u

w w

=

=

u

w

input ratesoutput rate

synaptic strengths

Tv ≈ w u

If we consider a time scale larger than τ, then

Page 14: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Hebbian plasticity in equation.

vη∆ =w u

1 1

n n

w uv

w uη

∆ = ∆

Tη∆ =w uu w

Hebbian learning with input vector u and output v

Vector form:

Or component form:

If the membrane dynamics is fast compared to the timescale of synaptic plasticity, the output is approximated as: Then the Hebbian rule now reads:

T .v = w u

Page 15: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

This form of learning rule is unstable.

Tη∆ =w uu w

Tη η∆ = =w uu w Cw

Covariance matrix of random inputs

T=C uu Wishart matrix

If inputs u1, …, un are i.i.d., their covariance matrix is called the Wishart matrix (Wishart, 1936):

All eigenvalues of a Wishart matrix are non-negative.

Hebbian learning with single input u

Hebbian learning with input ensemble

Exercise 1

Page 16: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

This form of learning rule is unstable.Eigenvalue decomposition

1, ,i i i i nλ= =Ce e 1 0nλ λ≥ ≥ ≥

η∆ =w Cw

i ii

a=∑w e

i i ia aηλ∆ =

All eigenvalues of a Wishart matrix are non-negative.

The eigenvectors form a basis for the n-dim space, and the weight vector w may be decomposed into the eigenvectors:

Then, the Hebbian learning rule is reduced as:

Therefore, ai grows exponentially, finally diverging to infinity.

Page 17: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Covariance matrix of input has non-negative eigenvalues.

Covariance matrix of random inputs

( )T 2T T T 0≥= =x Cx x uu x u x

1i i

n

ia e

=

=∑x

T

, 1 ,

2

1,

1

Tn n n

ii j i j

i j j i j j i ii

j ia a a a aλ δ λ= = =

= = =∑ ∑ ∑x Cx e Ce

For any non-zero vector x:

If the vector is decomposed in terms of eigenvectors,

then,

For any {ai} this quantity must be non-negative. Therefore, the eigenvalues {λi} must be non-negative, too.

Page 18: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Generalization of Hebbian learning.

( )( )v vη∆ = − −w u u

Covariance learning

BCM rule

( )Mv vη θ∆ = −w u

Bienenstock, Cooper & Munro (1982) J Neurosci

Sejnowski (1977) Biophys J

φ(v)

v

Synaptic weights change if pre-and post-activities are positively correlated.

Synaptic plasticity depends linearly on pre-synaptic activities and nonlinearly on post-synaptic activity (thresholding).

The thresholding value changes according to post-synaptic activity (homeostasis).

Page 19: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Generalization of Hebbian learning.

BCM rule

( )Mv vη θ∆ = −w u

Bienenstock, Cooper & Munro (1982) J Neurosci

φ(v)

v

Synaptic plasticity depends linearly on pre-synaptic activities and nonlinearly on post-synaptic activity (thresholding).

The thresholding value changes according to post-synaptic activity (homeostasis).

2EM vθ =

( )2 1v vη∆ = −w u

There is only one stable fixed point at v=1.

Page 20: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Weight normalization: additive or multiplicative.

vη∆ =w uHebbian learning, , is inherently unstable.

One way to avoid this instability (i.e., divergence) is to impose a constraint over the weight vector w.

1ii

w =∑

Additive normalization

Multiplicative normalization

i i jj

w w v w vnηη∆ = − ∑

( ) ( ) ( )( ) ( )

1t t

tt t+ ∆

+ =+ ∆

w ww

w w1=w

Oja (1982) Neural Networks

Page 21: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Oja learning rule as a principle component analyzer.Oja learning rule in discrete time

Oja (1982) Neural Networks

( ) ( ) ( )21 vt v vv

η η ηη

++ = = + − +

+w uw w u ww u

( ) ( ) ( ) ( ) ( ) ( )( )1t t v t t v t tη+ = + −w w u w

( )d v vdt

η= −w u w

( )Tddt

η= −w Cw w Cww

Oja learning rule in continuous time

Oja learning rule in continuous time

Page 22: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Oja learning rule as a principle component analyzer.

Oja (1982) Neural Networks

( )Tddt

η= −w Cw w Cww

i ii

a=∑w e 1, ,i i i i nλ= =Ce e 1 0nλ λ≥ ≥ ≥

2

1

n

i i i j j ij

a a a aλ λ=

= −

1

ii

ab a≡

( )1i i ib bλ λ= −

( )1 const, 0 2, ,ia a i n∴ → → =

Eigenvector decomposition

Page 23: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Modeling synapses: conductance-based model.

( )( ) ( )( )rest ex ex in inmdV V V g t E V g t E Vdt

τ = − + − + −

LIF excitatory synapse

inhibitory synapse

Gerstner (2014) Neuronal Dynamics, Chapter 3

( ) ( )synsyn syn

ft tt

fg t g e t tτ

−−

= Θ −∑

( ) ( ) ( )rise fast slowsyn syn 1 1

f f ft t t t t tf

fg t g e ae a ae t tτ τ τ

− − −− − −

= − + − Θ −

exponential with one decay time constant

exponentials with one rise and two decay time constants

Page 24: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Modeling synapses: conductance-based model.

( )( ) ( )( )rest ex ex in inmdV V V g t E V g t E Vdt

τ = − + − + −

LIF excitatory synapse

inhibitory synapse

Gerstner (2014) Neuronal Dynamics, Chapter 3

( ) ( )synsyn syn

ft tt

fg t g e t tτ

−−

= Θ −∑

( ) ( ) ( )rise fast slowsyn syn 1 1

f f ft t t t t tf

fg t g e ae a e t tτ τ τ

− − −− − −

= − + − Θ −

exponential with one decay time constant

exponentials with one rise and two decay time constants

Page 25: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Modeling synapses: conductance-based model.

Gerstner (2014) Neuronal Dynamics, Chapter 3

( ) ( )synsyn syn

ft tt

fg t g e t tτ

−−

= Θ −∑

( ) ( ) ( )rise fast slowsyn syn 1 1

f f ft t t t t tf

fg t g e ae a e t tτ τ τ

− − −− − −

= − + − Θ −

exponential with one decay time constant

exponentials with one rise and two decay time constants

excitatory

inhibitory

rise fast1 ms, 6 msτ τ≈ ≈

rise fast slow25 50 ms, 100 300 ms, 500 1000 msτ τ τ≈ − ≈ − ≈ −

GABAA

GABAB

Page 26: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Modeling synapses: conductance-based model.

( )( ) ( )( )rest ex ex in inmdV V V g t E V g t E Vdt

τ = − + − + −

exex ex

dg gdt

τ = −

( ) ( )ex ex exg t g t g← +

inin in

dg gdt

τ = −

( ) ( )in in ing t g t g← +

LIF excitatory synapse

inhibitory synapse

Dynamics of conductance

Synaptic plasticity: how the peak conductances of excitatory and inhibitory synapses is modified in an activity-dependent manner.

Song et al. (2000) Nature Neurosci

Page 27: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Spike-timing dependent plasticity (STDP)

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362

pre-post: potentiation

post-pre: depression

Page 28: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

STDP in equations.

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362

( ): post spikes : pre spikes

n fij i j

n fw W t t∆ = −∑ ∑

( )exp for 0

exp for 0

tA tW t

tA t

τ

τ

++

−−

− > = − <

Page 29: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Online implementation of STDP learning

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362

( ) ( ): presynaptic

spike

j fj j j

f

dxx a x t t

dtτ δ+ += − + −∑ ( ) ( )

: postsynapticspike

nij i i

n

dy y a y t tdt

τ δ− −= − + −∑

xj : presynaptic trace of neuron j“remembering when presynaptic neuron j spikes”

yi : postsynaptic trace of neuron i“remembering when postsynaptic neuron i spikes”

( ) ( ) ( ) ( ): postsynaptic : presynaptic

spikes spikes

ij n fij j i ij i i

n f

dwA w x t t A w y t t

dtδ δ+ −= − − −∑ ∑

Page 30: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Weight dependence: hard and soft bounds.

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362

( ) ( ) ( ) ( ): postsynaptic : presynaptic

spikes spikes

ij ijij n f

j i i in f

dwx t t y t tA w A w

dtδ δ+ −= − − −∑ ∑

Weight learning dynamics

Hard bound rule

(Linear) Soft bound rule

( ) ( ), :A w A w+ − determines the weight dependence of STDP learning rule.

( ) ( )( ) ( )

maxA w w w

A w w

η

η+ +

− −

= Θ −

= Θ

For biological reasons, the synaptic weights should be restricted to wmin < w < wmax .

( ) ( )( )

maxA w w w

A w w

η

η+ +

− −

= −

=

( )A w+

( )A w−

Page 31: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Temporal all-to-all versus nearest-neighbor spike interaction.

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362

( ) ( ) ( ) ( ): presynaptic : postsynaptic

spike spike

,j f nij j j i

f nj i

dx dyx t t y t tdt d

a a yt

xτ δ τ δ+ −+ −= − + − = − + −∑ ∑

Synaptic trace dynamics

( ) :a x+ determines how much trace is incremented by spikes.

( ) 1a x+ = ( ) 1a x x+ = −

All-to-all interaction Nearest-neighbor interactionAll spikes contribute additively to the trace, and the trace is not upper-bounded.

Only the nearest spike contributes to the trace and the trace is upper-bounded to 1.

Page 32: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Additive vs multiplicative STDP.

van Rossum et al. (2000) J Neurosci.

( )exp for 0

exp for 0

tA tW t

tA t

τ

τ

++

−−

− > = − <

( )exp for 0

exp for 0

tA tW t

tA tW

τ

τ

++

−−

− > = − <

Additive STDP Multiplicative STDP

Potentiation and depression are independent of the weight value.

Depression are weight dependent in a multiplicative way; a large synapse gets depressed more and a weak synapse less.

Page 33: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Triplet law: three-spike interaction

pre pre1 2pre1 1 1 1 pre2 2 2 2

post post1 2post1 1 1 1 post2 2 2 2

if then 1. if then 1.

if then 1. if then 1.

dx dxx t t x x x t t x xdt dtdy dyy t t y y y t t y ydt dt

τ τ

τ τ

= − = ← + = − = ← +

= − = ← + = − = ← +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )pre post2 1 3 2 1 2 1 3 2 1w t A y t A x t y t t t A x t A y t x t t tε δ ε δ− − + + ∆ = − + − − + + − −

post-pre LTD pre-post-pre LTD pre-post LTP post-pre-post LTP

Pfister & Gerstner (2006) J Neurosci

Dynamics of two presynaptic and two postsynaptic traces

Pre-post-pre LTD and pre-post-pre LTP

Page 34: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

STDP for inhibitory synapses

Vogels et al. (2011) Science

Page 35: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Relation of STDP to other learning rules.

• STDP and rate-based Hebbian learning rulesKempter, R., Gerstner, W., & Van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59(4), 4498.

• STDP and Bienenstock-Cooper-Munro (BCM) ruleIzhikevich, E. M., & Desai, N. S. (2003). Relating stdp to bcm. Neural computation, 15(7), 1511-1523.Pfister, J. P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. The Journal of neuroscience, 26(38), 9673-9682.

• STDP and temporal-difference learning ruleRao, R. P., & Sejnowski, T. J. (2001). Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural computation, 13(10), 2221-2237.

Exercise 2

Page 36: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Functional consequence: reduced latency

Sjöström & Gerstner, Scholarpedia, 5(2):1362. doi:10.4249/scholarpedia.1362Song & Abbott (2000) Nature Neurosci

potentiateddepressed

Page 37: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Functional consequence: latent pattern detection

Masquelier et al. (2008) PLoS One; (2009) Neural Comput

Page 38: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Functional consequence: latent pattern detection

Masquelier et al. (2008) PLoS One; (2009) Neural Comput

Page 39: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Functional consequence: latent pattern detection

Masquelier et al. (2008) PLoS One; (2009) Neural Comput

( ) ( ) ( )j

i j jt

t t wv t t tη ε= −− +∑

Spike response model (SRM): membrane potential in integral form.

action potential synaptic potential

presynaptic spikepostsynaptic spike

Spike-timing-dependent plasticity: presynaptic spike tj and postsynaptic spike ti

if

if

i j

i j

t

j i jj t

j

t

i j

t

A ew tw

e t

t

A tw

τ

τ−

+−

+

+→ − <

>

Page 40: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Functional consequence: latent pattern detection

Masquelier et al. (2008) PLoS One; (2009) Neural Comput

Page 41: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Bird-song learning: LMAN provides exploratory noise.

Vocal motor pathway (VMP)• HVC (High vocal center)• RA

Anterior forebrain pathway (AFP)• Area X• DLM• LMAN

Kao et al. (2005) Nature

Page 42: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

HVC-RA synaptic plasticity modulated by reward.

Fiete & Seung (2007) J Neurophysiol.

Page 43: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Tripartite synaptic plasticity

( ) LMAN LM V

0

N CA H( ) ( ) ( ) (( )) i

tijij ii j

dWR t e t dt s tG t t

dtt s s tRη η ′ − ′= − ′= ∫

Fiete & Seung (2007) J Neurophysiol.

Exercise 3

This tripartite learning rule indeed leads to reward maximization.

Page 44: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Summary

• Synaptic plasticity refers to activity-dependent change of a synaptic weight between neurons, underlying the physiological basis for learning and memory.

• Hebbian learning: “Fire together, wire together.”

• Synaptic plasticity may be formulated in terms of rate coding or spike-timing coding.

• Synaptic plasticity is determined not only among two connected neurons but also is modulated by other factors (e.g., reward, homeostasis).

Page 45: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Exercises

1. Prove that all eigenvalues of a Wishart matrix are positive semidefinite.

2. Read the following paper:Kempter, R., Gerstner, W., & Van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59(4), 4498.From the additive STDP learning rule, derive the following rate-based Hebbian learning rule (fi and fj are pre- and post-synaptic activity, respectively):

3. Read the following paper:Fiete, I. R., & Seung, H. S. (2006). Gradient learning in spiking neural networks by dynamic perturbation of conductances. Physical review letters, 97(4), 048104.Prove that the learning rule (slide 46) can be derived as a consequence of reward maximization.

ij i j jw f f fα β∆ = +

Page 46: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Exercises: Code Implementation of Song et al. (2000)

( ) ( ) ( ) ( )( ) ( ) ( )( )m rest ex ex inin

dV tV V t g t E V t g t E V t

dtτ = − + − + −

( ) ( ) ( ) ( )ex ine iex in nx ,

dg t dg tg t g t

dt dtτ τ= − = −

Membrane dynamics

Conductance dynamics

( ) ( )ex ex ag t g t g→ + when a-th excitatory input arrives

( ) ( )ini inng t g t g+→ when any inhibitory input arrives

Goal: Implement the STDP rule in Song, Miller & Abbott (2000).

Page 47: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Exercises: Code Implementation of Song et al. (2000)

STDP for presynaptic firing:

( )maxmax ,0a a

a a

g M tg g

P P A+

→ →

+

+

STDP for postsynaptic firing:

when a-th excitatory input arrives

( )max maxmin ,a a ag P tg g

A

g

M M −

→ → +

+when output neuron fires

Synaptic traces:( ) ( )

( ) ( )+

,

aa

dM tM t

dtdP t

P tdt

τ

τ

− = −

= −

Page 48: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules

Exercises: Code Implementation of Song et al. (2000)

%% parameter setting:% LIF-neuron parameters:taum = 20/1000;Vrest = -70;Eex = 0;Ein = -70;Vth = -54;Vreset = -60;

% synapse parameters:Nex = 1000;Nin = 200;tauex = 5/1000;tauin = 5/1000;gmaxin = 0.05;gmaxex = 0.015;

% STDP parameters:Ap = 0.005;An = Ap*1.05;taup = 20/1000;taun = 20/1000;

%simulation parameters:dt = 0.1/1000;T = 200;t = 0:dt:T;

% input firing rates:Fex = randi([10 30], 1, Nex);Fin = 10*ones(1,Nin);

%% simulation:V = zeros(length(t), 1);M = zeros(length(t), 1);P = zeros(length(t), Nex);gex = zeros(length(t), 1);gin = zeros(length(t), 1);

V(1) = Vreset;ga = zeros(length(t), Nex);ga(1,:) = gmaxex*ones(1,Nex);

disp('Now simulating LIF neuron ...');tic;for n=1:length(t)-1

% WRITE YOUR CODE HERE:

endtoc;

Page 49: JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules