22
C.V.F-C.F.B. José Alves Manuel 2012 Apontamentos de Geometria Descritiva I 11º Ano – Cadeira Anual Área Ciências Físicas e Biológicas Ano Lectivo de 2007-2008 (Revisado) José Alves Manuel Email: [email protected] Url: www.profjosealvesmanuel.blogspot.com Url: www.sites.google.com/profjosealvesmanuel Telm: 924 172 422

Material de geometria descritiva 2012

Embed Size (px)

DESCRIPTION

Este material está sobe análise podendo ser alterado no futuro.

Citation preview

Page 1: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Apontamentos de

Geometria Descritiva I 11º Ano – Cadeira Anual

Área Ciências Físicas e Biológicas

Ano Lectivo de 2007-2008 (Revisado)

José Alves Manuel

Email: [email protected]

Url: www.profjosealvesmanuel.blogspot.com

Url: www.sites.google.com/profjosealvesmanuel

Telm: 924 172 422

Page 2: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Índice

1 Introdução à Geometria Descritiva 1

1.1 Objectivos ……………………………………………………………………………………………. 1 1.2 Sistemas de projecção ………………………………………………………………………....... 1 1.3 Elementos Principais da geometria descritiva …………………………………………… 4

2 Pontos e Rectas ………………………………………………………………………………………. 10 2.1 Objectivos ………………………………………………………………………………………….... 10 2.2 Estudo do Ponto ………………………………………………………………………………….. 10

- Diedros - Convenções de Sinais - Coordenadas descritivas do ponto - Pontos situados no diedro ou quadrantes - Planos bissectores

2.3 Estudo discritivo da recta …………..…………………………………………………………. 10 2.3.1 Elementos Principais ……………………………………………………………………. 10 2.4 Exercícios ………………………………………………………………………………………. 15

Lista de desenvolvimentos

1.1 Elementos principais do sistema de projecção ……………………………………………... 2 1.2 Efeito da proximidade com o centro de projecção ……………………………………….. 2 1.3 Centro de projecção no infinito ………………………………………………………………….. 3 1.4 Sistema cilíndrico de projecção ………………………………………………………………….. 3 1.5 Sistema cilíndrico ortogonal de projecção …………………………………………………… 4 1.6 A perpendicularidade se mantém ………………………………………………………….... 5 1.7 Sistema de Monge ……………………………………………………………………………………. 6 1.8 Projecção de um ponto em dois planos perpendiculares entre si ………………….. 7 1.9 Rotação das figuras contidas em π2 em torno da linha de terra (LT) ……………… 7 1.10 Épura ………………………………………………………………………………………………... 8 1.11 Divisão do espaço em quatro diedros ……………………………………………………. 8

2.1 Cota, Afastamento e Abcissa de um ponto ………………………………………………… 11

2.2 Projecções de uma recta na épura …………………………………………………………….. 12

2.3 Traços de uma recta ……………………………………………………………………………….. 13

Page 3: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Capitulo I

Introdução à geometria descritiva

1.1 Objectivo

O objectivo geral é apresentar aos caros alunos e docentes os fundamentos da geometria descritiva, que é uma ferramenta gráfica para soluções de problemas geométricos no espaço. A experiência que tenho no ramo indica que apesar de o tema ser de fácil leitura, é difícil aprender. Pois a melhor forma de o aprender é fazendo Exercícios.

1.2 Sistemas de projecção

Em geometria descritiva existem inúmeros sistemas de projecção, e depois que se atinge um certo nível de maturidade, pode-se formular problemas algébricos, resolver problemas de geodésicas 1ou até mesmo projectar elementos geométricos em 4D para sistemas de projecção em 2D. Mas vamos ficar por aqui e vamos ao mais importante.

Apresentamos agora dois sistemas de projecção, o cilíndrico ortogonal e o cónico. Em ambos os sistemas, há três elementos principais: o objecto a ser projectado, o plano de projecção e o centro de projecção, como mostra a figura 1.1

Um raio de luz ou mais tecnicamente conhecido como raio visual parte do centro de projecção O, passa por um ponto genérico (F) do objecto, e atinge o plano de projecção (π) em F. logo dizemos

que o ponto F é projecção de (F) em π.

1

Linhas de menor comprimento

Page 4: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

1.3 Elementos principais do sistema de projecção

A geometria Descritiva foi criada por Gaspar Monge (1746-1818), um matemático francês que serviu Napoleão em sua campanha pelo Egipto, foi seu Ministro da Marinha, e tinha vários interesses tanto na Matemática como na Física e Química.

Foi amigo de Lavoisier e Fourier. Para termos uma ideia do avanço científico da época, que naturalmente envolvia problemas geométricos tridimensionais complexos. Após sua invenção, ela foi guardada como segredo militar por vários anos pelo próprio Napoleão. Certamente a geometria descritiva não era “óbvia”, como é hoje.

E, afinal qual era o grande “segredo” de Gaspar Monge? Era o uso simultâneo de dois sistemas de projecção cilíndricos ortogonais entre si, como mostra a figura 1.2

figura 1.2

Como você já deve ser capaz de intuir, que um ponto no espaço é representado

no sistema mongeano como a figura 1.3. Falando um pouco mais formalmente, um ponto (A) no espaço tridimensional é

localizado por três coordenadas, x, y e z. Através da projecção em dois planos π1 e π2, é possível se especificar as três coordenadas de (A),

A recta resultante da intersecção dos planos π1 e π2 é denominada linha de terra representado pelas letras (LT).

Tanto o plano π2 como as figuras nele representado são rotacional em torno da LT. de modo a ficarem coplanares com π1, assim aposição de um dado ponto (A) pode ser totalmente descrita por suas projecções em π1 e π2, disposto em um único plano (figura 1.4) denominado Épura.

Figura 1.3

Page 5: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Figura 1.4

Na épura, logo acima e abaixo da linha de terra são escritas os algarismos correspondentes aos planos que dão origem a ela, o segmento que une as projecções do ponto A, A1 e A2, é denominado linha de chamada. Perceba que deve ser perpendicular à linha de terra. Vamos considerar neste material que o plano π1 e que contém os eixos x e y, de plano horizontal de projecção e o plano π2, que contém os eixos x e z, de plano vertical de projecção. A projecção de um ponto no plano horizontal de projecção é denominada projecção horizontal, e a projecção sobre o plano vertical, de projecção vertical.

Em resumo, pode-se perceber que um ponto no espaço pode ser completamente especificado dadas as suas projecções ortogonais em dois planos perpendiculares (pois temos as três coordenadas x, y e z de cada ponto), designamos plano horizontal de projecção, e plano vertical de projecção.

O plano vertical e horizontal de projecção, dividem em quatro diedros2 como é mostrado na figura 1.5

Figura 1.5 divisão do espaço em quatro diedros

Para deixarmos mais claro vamos dizer que: pha=IQ, pvs=IIQ, php=IIIQ e pvi=IVQ

2 Pode ser chamado também quadrantes

Page 6: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Capítulo 2

2 Pontos e Rectas

2.1 Objectivos

Os elementos principais para a resolução de qualquer problema espacial são pontos e rectas. Neste capítulo, examinaremos esses itens, procurando no processo de aprendizado, fomentar o amadurecimento de ideias relacionadas ao espaço geométrico representado no sistema de Gaspar Monge.

2.2 Estudo do Ponto A distância z de um ponto A ao plano horizontal de projecção é denominada cota, como na geometria cotada, na épura, a cota é a distância acima da linha de terra até a projecção vertical do ponto, como é mostrado na figura 1.6

Figura 1.6 Cota, afastamento e abcissa de um ponto

Um ponto pertencente ao plano horizontal de projecção tem cota nula, e portanto, na épura, sua projecção vertical deve estar na linha de terra. A coordenada y de um ponto A é denominada afastamento. Na épura, o afastamento é a distância abaixo da linha de terra até a projecção horizontal do ponto. A coordenada x, fixada a partir de uma origem arbitrária, é denominada abcissas.

Um ponto pertencente ao plano vertical de projecção tem coordenadas y, nula, e portanto, sua projecção horizontal deve estar sobre a linha de terra. É importante notar que é possível a existência de cota e afastamentos negativos. Por exemplo um ponto do segundo diedro tem cota positiva mas afastamento negativo.

Exemplo 1 O ponto (A) no espaço onde (A)=(1;3;2) ou (A)=(x;y;z)

Page 7: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Em épura, a abcissa x de um ponto é marcado sobre a linha de terra, a partir da origem pré fixada. A épura do ponto (A) é representada na épura da seguinte forma,

Diedros

Como já nos referimos no capítulo anterior os planos de projecção π1 e π2 dividem o espaço em quatro diedros e a linha de terra divide cada plano de projecção em dois semiplanos.

SPHA – semiplano horizontal anterior

SPHP – semiplano horizontal posterior

SPVS – semiplano vertical superior

SPVI – semiplano vertical inferior

A região do espaço limitada pelos spha e spvs denomina-se primeiro diedro, a limitada pelas spvs e sphp segundo diedro, a limitada pelos sphp e spvi terceiro diedro e a limitada pelas spvi e spha quarto diedro.

Page 8: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Figura 1.7 representação dos semiplanos

Devemos lembrar não se pode medir com régua e compasso as distancias A’ (A) e A (A) porque são desenhos que representam figuras no espaço e só podemos medir distância sobre o plano. Ao girarmos um plano sobre o outro, em torno da linha de terra, temos o semiplano horizontal posterior (sphp) coincidindo com o semiplano vertical superior (spvs). Teremos também a coincidência do semiplano horizontal anterior (spha) coincidindo com o semiplano vertical inferior (spvi) conforme a figura 1.8

Figura 1.8

As projecções verticais e horizontais de um ponto qualquer determinam uma linha perpendicular à linha de terra que chamamos linha de chamada conforme figura 1.4

Convenção de sinais

Um ponto pode estar localizado em qualquer dos quatro diedros. Para sabermos exactamente em qual dos diedros, foram estabelecidas convenções de sinais para cota e afastamentos que permitem resolver esse problema, assim sendo, foi estabelecido que:

• São positivas as cotas dos pontos localizados acima do plano vertical de projecção e negativas as cotas dos pontos localizados abaixo.

• São positivos os afastamentos dos pontos anteriores ao plano vertical de projecção e negativos os afastamentos dos pontos posteriores. Resumindo temos:

Figura 1.9 Convenções de sinais

Page 9: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Coordenadas descritivas do ponto

O conhecimento da cota e do afastamento de um ponto determinam com precisão as distâncias do ponto aos planos de projecção π1 e π2.

Se, numa mesma épura, for necessário representar as projecções de vários pontos ou de pontos distintos que tenham afastamento e/ou cota iguais e com o mesmo sinal, torna-se importante conhecer a posição relativa entre eles no espaço.

A posição de cada ponto fica facilmente determinada pela distância da linha de chamada de cada um dos pontos a um ponto fixo da linha de terra.

Tal distância é chamada abcissa do ponto e pode ser positiva ou negativa conforme a linha de chamada esteja à direita ou à esquerda desse ponto fixo da linha de terra que é definido como origem das abcissas , designado por O0.

Normalmente são usadas apenas abcissas positivas. Na figura 2 são mostrados as épuras dos pontos M, N, P e Q, utilizando

uma mesma linha de terra.

Figura 2a Representação dos pontos na linha de terra

Figura 2b Indicações das representações dos pontos

Page 10: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Pontos situados nos diedros ou quadrantes

Ponto do I quadrante

Um ponto do I quadrante, pelas suas projecções, tem a cota positiva e o afastamento positivo. Nos planos de projecção, a cota situa-se nos SPVS, dada pela projectante frontal, enquanto o afastamento situa-se no SPHA, recorrendo a sua projectante frontal.

Ainda no I quadrante, um ponto poderá situar-se no primeiro octante onde se verifica um maior valor do afastamento do que a da cota ou estar situado no segundo octante onde a cota tem um valor maior do que o do afastamento, pode ainda, estar no bissector impar caso a cota seja igual ao afastamento3.

Podemos então dizer que este é o quadrante mais simples de se representar…!?

Ponto do II quadrante

Quando um ponto P está situado no II segundo quadrante, sua projecção horizontal P esta sobre o plano horizontal posterior SPHP e a projecção vertical, P´ sobre o plano vertical superior SPVS.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2 percebe-se que, tanto a projectante horizontal P, quanto a projectante vertical P´, situam-se acima da linha de terra ver figura 2.1

Figura 2.1 Representação dos pontos do II quadrante

As projecções dos pontos localizados na porção de espaço correspondentes a este diedro, como se pode perceber, situam-se, em épura, todas acima da linha de terra.

Figuras complexas, como polígonos, poliedros e superfícies em geral poderão ficar com as projecções horizontais e verticais de seus elementos juntos de tal forma que será extremamente difícil o seu entendimento. Por esta razão as projecções neste quadrante devem ser evitadas.

3 O valor do afastamento e da cota devem ser contrário ou seja cota positiva e afastamento negativo

Page 11: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Também neste mesmo quadrante um ponto pode situar-se no terceiro octante com o valor absoluto da cota maior que o afastamento, pertencer ao bissector par em que, apesar de terem sinais4 diferentes, os valores para o afastamento e a cota são iguais ou ainda situar-se no quarto quadrante onde o valor do afastamento é maior que a cota.

Ponto do III quadrante

Quando um ponto P esta situado no terceiro quadrante, sua projecção horizontal P está sobre o plano horizontal posterior SPHP e a sua projecção vertical, sobre o plano vertical inferior SPVI.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2, a projecção horizontal P fica acima da linha de terra, enquanto a projecção vertical, P´, fica abaixo dela. Ver figura 2.2

Figura 2.2 Representação dos pontos do III quadrante

Uma vez que o ponto se situa no terceiro quadrante, pode ocupar uma das seguintes posições: estar no quinto octante5 onde o valor do afastamento será maior que a cota, pertencer ao bissector impar com o valor do afastamento e da cota serem iguais ou ainda situar-se no sexto octante onde o valor da cota é maior que a do afastamento.

Ponto do IV quadrante

Quando um ponto P está situado no quarto quadrante6, sua projecção horizontal P está sobre o plano horizontal anterior SPHA e a projecção vertical, P´, sobre o plano vertical inferior SPVI.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2,percebe-se que, tanto as projecções horizontais P, quanto a projecção vertical P´, situam-se abaixo da linha de terra ver figura 2.3

4 Lembre-se que os sinais só identificam os quadrantes e não interferem nos octantes pois eles são valores modulares 5 Octante pode também ser escrito como 1º oct, 2º oct etc. 6 Quadrante pode ser denotado também como IQ, IIQ

Page 12: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Pontos em posições especiais

Pontos no plano π1

Quando um ponto pertence ao plano π1 em qualquer circunstância, sua cota é nula, uma vez que a distância de P ao plano π1, que mede a sua cota, é nula. Se o ponto esta no semi-pano anterior a π2, seu afastamento é positivo.

Para melhor compressão observe a figura 2.4

Figura que representa o SPHA Figura que representa o SPHP

Podemos notar que para um ponto pertencer ao SPHA ela deve possuir uma cota nula e um afastamento positivo. Analogamente o inverso para o SPHP se verifica com afastamento negativo.

Pontos no plano π2

Quando um ponto pertence ao plano π2, em qualquer circunstância, seu afastamento é nulo, uma vez que a distância de P ao plano π2, que mede o seu afastamento, é nula.

Se o ponto está no semi-plano superior a π1, sua cota é positiva ver figura 2.5

Figura que representa o SPVS Figura que representa o SPVI

Podemos notar mas uma vez que para um ponto pertencer ao SPVS ela deve possuir uma cota positiva e um afastamento nulo ou coincidente com a linha de terra. Analogamente o inverso para o SPVI se verifica com a cota negativa.

Ponto da linha de terra

Quando um ponto pertence à linha de terra, tanto sua cota quanto o seu afastamento são nulos.

Figura 2.5

Page 13: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Planos bissectores

Além dos planos de projecção que anteriormente estudamos, fazem parte da organização do espaço mais dois planos: são os planos bissectores. Um plano bissector divide um diedro em duas partes iguais e passa em dois quadrantes, interceptando o eixo x ou linha de terra.

• Β2/4 – é o plano bissector que a travessa os quadrantes pares, II e IV quadrantes

• Β1/3 – é o plano bissector que a travessa os quadrantes impares, I e III quadrantes.

Agora sim temos o estudo do espaço completo representados na figura 2.6 abaixo

Figura 2.6 Representação de todos os planos

Page 14: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

2.3 Estudo descritivo da recta

Dois pontos distintos determinam uma recta. A recta é representada por uma letra minúscula entre parênteses (r). E r´ representa a projecção de uma recta (r) no plano π1 e r representa a projecção de uma recta (r) no plano π.

Figura 2.7 Representação da recta

Tipos de rectas

Recta horizontal é toda recta paralela ao plano horizontal. Quando a recta é paralela ao plano horizontal sua projecção vertical é paralela à linha de terra.

Figura 2.8 Recta horizontal

Recta frontal é toda recta paralela ao plano vertical. Quando a recta é paralela ao plano vertical sua projecção horizontal é paralela à linha de terra.

Figura 2.9 Recta frontal

Page 15: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Recta paralela à linha de terra é toda recta paralela à linha de terra e paralelo ao plano vertical e ao plano horizontal suas projecções são paralela à linha de terra.

Figura 3 Recta paralela à linha de terra

Recta vertical é toda recta perpendicular ao plano horizontal. A sua projecção horizontal é um ponto e sua projecção vertical é uma recta vertical r´.

Figura 3.1 Recta vertical

Recta de topo é toda recta perpendicular ao plano vertical. A sua projecção horizontal é uma recta vertical e sua projecção vertical é um ponto.

Figura 3.2 Recta de topo

Page 16: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Traço de uma recta

Traços de uma recta são os pontos onde a recta atravessa os planos de projecção.

( V) – Traço vertical Figura 3.3 Traços de uma recta

Para encontrarmos o traço vertical de uma recta (Tv), se deve prolongar a sua projecção r até a linha de terra. Na intersecção da linha de terra com a projecção r levanta-se uma linha de chamada com a projecção r´ temos o traço vertical (Tv).

(H) – Traço horizontal Figura 3.4 Traços de uma recta

Para encontrar o traço horizontal (Th), de uma recta, se prolonga sua projecção r´ ate a linha de terra. Na intersecção da linha de terra com a projecção r´ levanta-se uma linha de chamada até encontrar a projecção r teremos então o traço horizontal (Th).

Page 17: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Representação do plano

Um plano pode ser determinado por uma das quatro possibilidades:

1. Três pontos não colineares7 2. Uma recta e um ponto exterior 3. Duas rectas concorrentes 4. Duas rectas paralelas

Representação do plano

Estas figuras abaixo representam os quatros pontos referidos acima.

Figura 3.5 Regras 1e 2 sobre planos

Figura 3.6 Regras 3 e 4 sobre planos

7 Pontos que não estão alinhados ou não estão situados em Lina recta

Page 18: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Traços de um plano

A recta de intersecção de um dado plano α com o plano horizontal designa-se por traço horizontal. Trata-se de uma recta de nível de cota nula. E a recta de intersecção de um dado plano α com o plano frontal designa-se por traço frontal. Trata-se de uma recta de frente de afastamento nulo.

Figura 3.7 Traços de um plano

Plano de topo

O plano de topo é um plano em posições particulares

• É um plano perpendicular ao plano F8; • As projecções frontais das suas rectas são coincidentes com o seu traço frontal;

• As projecções frontais dos seus pontos pertencem ao seu traço frontal.

Figura 3.8 Plano de topo

8 F significa frontal e H horizontal

Page 19: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Plano vertical

• Plano perpendicular ao plano H

• As projecções horizontais das suas rectas são coincidentes com o seu traço horizontal

• As projecções horizontais dos seus pontos pertencem ao seu traço horizontal.

Figura 3.9 Plano vertical

Plano de Nível

• Plano paralelo ao plano H

• Só tem traço frontal e todas as projecções frontais dos seus elementos pontos e rectas estão sobre essa linha, paralela à linha de terra.

Figura 4 Plano de Nível

Plano de frente

• Plano paralelo ao plano F

• Só tem traço horizontal e todas as projecções horizontais dos seus elementos pontos e rectas estão sobre essa linha paralela à linha de terra.

Figura 4.1 Plano de frente

Page 20: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Plano de perfil

• Plano perpendicular à linha de terra, ao plano H e ao plano F; • São de perfil todas as rectas pertencentes a um plano de perfil incluindo as verticais e as de topo.

Figura 4.2 Plano de perfil

Plano passante

• Os seus traços são coincidentes com a linha de terra • Pode ser representado pela linha de terra (traços) e um dos seus pontos

Figura 4.3 Plano passante

Plano rampa

• Paralelo à linha de terra mas oblíquo aos dois planos de projecção, F e H • Os seus traços são rectas paralelas à linha de terra.

Figura 4.4 Plano de Rampa

Page 21: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Plano Oblíquo

• Oblíquo em relação aos dois planos de projecção e à linha de terra.

Figura 4.5 Plano Oblíquo

Page 22: Material de geometria descritiva 2012

C.V.F-C.F.B. José Alves Manuel 2012

Referencias Bibliográficas

• Rangel, Alcyr Pinheiro – Poliedros, Livros Técnicos e Científicos Editora, 1985 • Almeida, Célio Pinto – Geometria Descritiva, vols. 7 Apostila para cursos de vestibulares, editor

desconhecido • Rodrigues, Álvaro José – Geometria descritiva, livro Técnico, Rio de Janeiro, 1960 • Machado, Adervan, Geometria Descritiva, Editora McGraw-Hill do Brasil LTDA, 1974 • Stamato, José, Cadernos do MEC, Introdução ao Desenho Técnico, 1972 • Príncipe, JR, Geometria Descritiva, V.1 e 2 • Neilzel, E, Desenho Tecnico para a construção Civil, São Paulo, Editora USP • Leonardo, Barros, Geometria Descritiva, Luanda, Textos Editores, 2007 • http://www.mat.uel.br/marie • www.google.com.br • www.wikipedia.com • www.google.com.ao • www.google.com.pt

OBS:

Todos os nomes registados, e marcas registadas e direito de uso citado neste trabalho pertencem aos seus respectivos autores.