58
1 DEPARTMENT OF MECHANICAL ENGINEERING ME 250 DESIGN AND MANUFACTURING I Fall 2013 ME 250 Final Report Team Roblock ME 250 Section #6, Team#3 Team Members Stephen Barch: sbarch Kevin Dulic: kdulic David Henderlong: dhenderl Chi Qiu: chiqiu

Robotics Competition Report & Drawings

Embed Size (px)

Citation preview

1

DEPARTMENT  OF  MECHANICAL  ENGINEERING

ME  250  DESIGN  AND  MANUFACTURING  I Fall  2013

 

ME  250  Final  Report Team  Ro-­‐block

ME  250  Section  #6,  Team#3

Team  Members

Stephen  Barch:  sbarch Kevin  Dulic:  kdulic

David  Henderlong:  dhenderl Chi  Qiu:  chiqiu

2

TABLE  OF  CONTENTS

ABSTRACT………………………………………………………………………………………………………………………………      3   INTRODUCTION……………………………………………………………………………………………………………………..      3 VEHICLE  DESIGN   Squad  Strategy  Selection…………………………………………………………………………………………….      4   Vehicle  Objectives  and  Requirements………………………………………………………………………..      6   Player  Concept  Design……………………………………………………………………………………………….        6   Detailed  Design………………………………………………………………………………………………………….        8 PRODUCT  MANUFACTURING…………………………………………………………………………………………………      13 BILL  OF  MATERIALS……………………………………………………………………………………………………………….      13 PROTOTYPE  TESTING   Preliminary  Test  Results…………………………………………………………………………………………….      14   Redesign  Based  on  Preliminary  Tests………………………………………………………………………..        15   Discussion  of  Competition  Results…………………………………………………………………………….        15 DISCUSSION  AND  RECOMMENDATIONS   Project  Summary………………………………………………………………………………………………………..    16   Future  Project  Idea…………………………………………………………………………………………………….      17 REFERENCES…………………………………………………………………………………………………………………………        17 ACKNOWLEDGEMENTS…………………………………………………………………………………………………………        17 APPENDICES

Strategies………………………………………………………………………………………………………………….        18 Concept  Sketches………………………………………………………………………………………………………      19 Dimensioned  Drawings  and  Manufacturing  Plans……………………………………………………..      20 Purchased  and  Traded  Items……………………………………………………………………………………..      58  

3

1.   ABSTRACT  

This  report  contains  a  summary  of  Team  63’s  ME  250  Project.  It  reports  on  our  team  and  overall  squad  strategy.  It  details  the  selection  of  various  strategies  and  vehicle  designs,  through  concept  selection  charts  and  sketches.  It  describes  our  motivations  for  certain  design  characteristics  through  objectives  and  constraints  of  our  robot.  A  detailed  description  of  our  analysis  prior  to  manufacturing  is  also  presented,  along  with  a  solid  model  using  CAD  software,  engineering  drawings,  manufacturing  plans,  and  a  bill  of  materials.  These  items  were  the  most  critical  in  the  design  and  manufacturing  process.  Additionally,  we  discuss  the  progression  of  our  robot  (including  design  changes  or  modifications),  a  critique  on  our  performance  at  the  M-­‐Ball  completion,  and  a  summary  of  our  entire  project.    We  also  speculate  what  we  could  have  done  better  and  a  brief  discussion  on  future  projects  and  how  ME  250  will  help  us.  We  acknowledge  the  help  that  faculty  of  the  University  of  Michigan  and  other  outside  resources  have  provided  us,  in  order  to  complete  our  project.  The  attached  appendix  includes  resources  such  as  individual  strategies,  concepts  sketches,  detailed  engineering  drawings,  manufacturing  plans,  and  an  inventory  list  of  purchased  or  traded  materials. 2.   INTRODUCTION All  students  in  ME  250  class  are  divided  into  8  sections  and  each  section  is  a  squad.  Each  squad  is  divided  into  4  teams.  We  work  in  a  team  of  four  teammates  to  create  a  remote-­‐controlled  machine.  Each  team  will  design  and  build  its  own  machine.    Each  squad  (consisting  of  4  machines)  will  compete  against  squads  from  other  sections  in  the  M-­‐Ball  competition  which  will  use  the  North  Campus  arena  shown  below.  Our  team  will  collaborate  with  other  teams  from  our  section  to  score  and  prevent  opponents  from  scoring.  We  can  score  by  using    machines  to  drop  balls  of  different  weights  (but  all  approximately  the  size  of  a  ping  pong  ball)  in  either  the  basket  or  the  scoring  hole    located  on  the  same  side  as  your  starting  zone  (shown  in  the  figure).    Our  squad  could  get  an  additional  75  points  if  we  place  a  Wolverine  statue  over  the  opponent’s    scoring  hole  at  the  end  of  the  round. After    discussion,  our  team  was    assigned  to  be  the  ground  defensive  robot,  which  means  we  are  responsible  with  coming  up  with  and  manufacturing  a  machine  that  can  effectively  stop  opponents’  robots  scoring  by  dropping  balls  on  the  ground  to  the  hole.  

4

Model  of  the  actual  M-­‐Ball  arena

3.   VEHICLE  DESIGN

3.1               Squad  (Section)  Strategy  Selection    

Stephen:  Have  three  offensive  robots,  and  one  defensive  robot.  Two  offensive  robots  will  work  together  to  score  the  more  valuable  (red  and  black)  balls  into  the  basket.  One  will  focus  on  retrieving  them  from  the  ground  and  the  tower,  and  the  other  will  lift  them  into  the  basket.  The  third  offensive  robot  will  score  the  balls  at  the  base  of  the  tower  into  the  hole.  The  defensive  robot  will  focus  on  blocking  our  opponents  from  scoring  in  their  hole  and  basket  interfering  with  their  offensive  zone.  This  strategy  is  good  because  of  its  potential  for  a  high  amount  of  scoring;  however,  its  weakness  is  that  the  offensive  area  may  become  too  crowded.  If  the  opposing  squad  prevents  the  “high  offense”  robots  from  working  together,  we  will  not  be  able  to  score  as  many  points.  (Appendix  A.1) Kevin:  Have  three  offensive  bots,  and  one  defensive  bot.  The  three  offensive  bots  consist  of  two  hole-­‐scoring,  and  one  basket-­‐scoring  bot.  The  defensive  bot  is  responsible  for  getting  the  wolverine  and  pushing  opponents  away  from  balls.  This  strategy  is  effective  because  it  allows  us  to  score  quickly.  Its  main  weakness  is  sacrificing  defense  for  offense,  as  we  only  have  one  bot  to  protect  our  team.  (Appendix  A.2) David:  As  all  the  other  teams  are  coming  up  with  ways  to  capture  the  most  balls  and  score  the  most  points,  they  will  surely  be  surprised  when  their  bots  are  immobilized.  #1  bot  puts  the  

5

wolverine  on  top  of  the  opponent’s  goal.  #2  puts  the  tower  on  top  of  the  scoring  hole.  #3  puts  a  barrier  on  top  of  the  opponent’s  basket.  Lastly  #4  blocks  the  basket  with  a  chained  plate. I  believe  this  is  the  best  strategy  because  it  is  creative  and  law  abiding.  Not  only  does  it  guarantee  success  it  provides  great  engineering,  planning,  and  building.  This  strategy  could  be  defeated  if  the  ref  believes  we  are  cheating.  (Appendix  A.3) Chi:  Have  two  defensive  robots  and  two  offensive  robots.  One  of  the  defensive  robots  is  responsible  for  blocking  the  hole.  Another  defensive  bot  would  be  designed  to  prevent  opponents’  bots  to  score  with  basket.  One  of  the  offensive  bot  would  be  the  basket-­‐scoring  bot  with  another  one  scoring  by  the  hole.  I  consider  this  strategy  very  effective  because  blocking  the  hole  would  be  the  best  option  to  defend  the  hole.  And  having  two  defensive  bots  can  create  enough  space  for  offensive  bots  to  score.  The  weakness  would  be  that  we  couldn’t  stop  opponents’  bots  keeping  annoying  our  own  offensive  bots.  (Appendix  A.4)   To  select  the  final  squad  strategy,  each  team  came  up  with  their  best  strategy  between  the  team  members.  Then  the  team  leaders  met  and  decided  on  the  best  of  four  strategies  from  each  team.  Our  squad  strategy  consisted  of  a  two  bots  devoted  to  offense,  one  for  defense,  and  one  for  the  wolverine.  This  strategy  could  be  countered  if  the  other  team  is  able  to  score  with  all  their  bots,  so  that  our  squad  could  not  compete  with  their  high  offense.  To  prevent  this,  we  made  the  defensive  bot  capable  of  scoring  as  well  as  playing  defense.  From  the  squad  strategy  selection  process,  the  two  offensive  robots  decided  to  work  together  to  score  in  the  basket;  one  bot  would  use  a  conveyor  belt  to  deposit  balls  in  the  basket,  while  the  other  robot  would  feed  the  conveyor  belt  balls  from  the  ground.  Once  the  teams  were  assigned  a  strategy,  they  were  able  to  begin  designing  the  player  vehicles  around  design  objectives  and  requirements.    

Team  63’s  final  strategy:  Disrupting  opponents  and  some  hole-­‐scoring

6

3.2                    Vehicle  Objectives  and  Constraints

Characteristics Objectives Constraints

Forklift Immobilize  robots Enough  torque  to  lift  bots

Large  Leverage Immobilize  robots Want  the  weight  to  be  10lb  and  ensure  the  center  of  mass  

is  at  the  rear

Ball  Container Score  loose  ground-­‐balls Bigger  than  3x3  in^2

Tank  Tread High  Traction Enough  Friction  and  Torque  to  push  bots

Low  Center  of  Mass Stability Keep  the  center  of  mass  lower  than  2’’  in  front  the  ground

Large  Footprint Stability Maximize  size  to  be  10x12  in^2

Bumper Push  robots Hard  and  big  enough  to  prevent  robot  being  damaged

We  consider  those  are  important  because  once  we  have  those  we  can  manipulate  other  bots  effectively,  we  can  completely  prevent  at  least  one  of  opponents’  offensive  bot,  so  that  we  could  have  higher  possibility  to  win  the  game.

3.3                  Player  Concept  Design   Using  a  concept  selection  chart  we  were  able  to  determine  the  best  possible  design  that  meets  our  objectives  and  requirements.  We  ranked  each  category  1  through  10  (10  being  the  best)  on  how  well  each  concept  accomplished  that  characteristic.  Also,  we  weighted  each  category  based  on  importance  to  our  strategy.  Seen  from  the  table  below,  we  felt  that  torque  and  ability  to  manipulate  other  bots  were  the  most  essential.  The  various  concepts  may  be  found  in  Appendix  B.

7

Concept  Selection  Chart

We  combined  the  best  aspects  of  all  of  our  concepts  to  create  the  final  concept,  with  an  emphasis  on  manipulating  other  robots,  torque,  and  traction.

Final  Concept  Sketch:  Has  tank  treads,  forklift,  bumper,  and  ball  container.

 

8

3.4                Detailed  Design

3.4.1                    Analysis  Model

9

Motor  Selection  Analysis: Motor shaft stall torque @ 3V: 0.5 oz in Torque  required  to  move  15  lb  robot:     T  =  Fs*r  =  µs*N*r  =  (1.035)*(60  oz.)*(1.75  in.)  =  108.675  oz-­‐in   Maximum  torque:     Tmax  =  (0.5  oz-­‐in)  *  (gearbox  ratio)    [from  Polulu  Website]   Gearbox  Efficiency:     #  of  gear  contacts  =  2    ɳ  =  (0.95)2  =  .9025

Gearbox  Ratio Maximum  Torque Theoretical  Max  Torque

115:1 57.5  oz-­‐in 51.89  oz-­‐in

344:1 172  oz-­‐in 155.23  oz-­‐in

  344:1  Gearbox  ratio  gives  up  38  rpm  to  the  wheels.

10

Motion  and  Time  Analysis:   Use  kinematic  equations:  x=x1  +  v1*t  +  .5at^2   Assume  the  following:  v1  =  .33  ft/s  and  a  =  .164  ft/s^2

     

      Step Distance  (ft) Drive  Time  (s) Other  Time  (s)

Drive  to  opponent’s  bot 8.43 8.33

Push  opponent’s  bot 0 0 10

Drive  to  another  bot 3 4.36

Lift  opponent’s  bot 0 0 5

Drive  to  loose  balls 1 2.08

Collect  loose  balls 10

Deposit  balls  into  hole 4.2 5.42

Total 16.63 20.19 25

       

 Total  Time  needed:  45  seconds

11

3.4.2                    Solid  Model

Design  changes  from  our  final  sketch  to  our  solid  model  include:  pulley  system  for  the    forklift  operation,    driving  wheels  instead  of    treads,  steel  block,    side  shield,  and  bent  forks. We chose the simpler design when deciding to make a pulley system for the forklift, and the wheels. The alternatives: rack and pinion, and treads were more complicated and since we were under a time constraint, we switched the design. The steel block was to add much needed weight to our robot, and bending the forks at the end allowed us to hook onto other robots. The side shields were to protect our robot from other’s bumping into us.

View  of  our  robot’s  front.  Seen  above  is  the  forklift,  baseplate,    steel  block,  wheels  and  side  shield.

12

View  of  our  robot’s  rear.  Seen  above  is  the  bumper,  baseplate,    steel  block,  wheels  ,  side  shield.,  and  forklift  support

Bottom  view  of  our  robot.  Seen  above  is  the  bumper,  baseplate,    ball  container,    and  shaft  support.

13

4.   PRODUCT  MANUFACTURING

4.1                    Manufacturing  Resource  Description

GG  Brown  Machine  Shop:  Drill  Press,  Lathe,  Mill,  Band  Saw,  Brake GG  Brown  Lab:  Soldering  Iron,  various  hand  tools,  fasteners Wilson  Student  Multidisciplinary  Project  Center:  Mill DH  Fab:  Welding,  Lathe,  Mill,  Band  saw

5.  BILL  OF  MATERIALS  

# Description Use Dimensions  

(in) Supplier Part  # Quantity Other  Details Assembly

1 Aluminum  Plate  1/8''  thick

Forklift  Plate 3.5  x  2 Alro Stock 1 -­‐ Forklift

2 Aluminum  1/2''  Square  Stock

Vertical  Supports 6 Kit 2 -­‐ Forklift

3 Steel  Shaft  1/4''  diameter Pulley  Shaft 4.5 Kit 8893K36 1 -­‐ Forklift

4 Stock  Fasteners Set  Screw #4-­‐48 Crib 2

For  Shaft  Stop Forklift

5 Kevlar  Thread  -­‐  28lb  Tensile,  

0.014''  diameter Pulley  Thread 15 Crib 8800K41 1 -­‐ Forklift

6 Aluminum  Round  Stock  1/2''  diameter Shaft  Stop

0.5  OD,  0.257  ID,  1/4  L Crib Stock 2

Uses  set  screw Forklift

7 Aluminium  Plate,  1/8''  thick Forks 5x0.5 Alro Stock 2

Angle  90  degrees Forklift

8 1/8  Aluminum  Rivets

Attaches  Forklift  +  Forklift  Plate 1/8  x  1/2 Crib Stock 4 -­‐ Forklift

9 Steel  Plate  1/4''  thick

Attaches  Forklift  +  Baseplate 2.75  x  2.75 Kit Stock 2 Triangle Forklift

10 Tamiya  72001  Planetary  Gearbox  Kit

Forklift  Motor -­‐ Kit 70 1 -­‐ Forklift

14

11 Tamiya  70168  Double  Gearbox  

Kit Driving  Motor -­‐ Kit 114 1 -­‐ Wheel

12 Pololu  1576  99:1  Metal  Gearbox -­‐ 0.98  x  2.13 Kit 1576 1 -­‐

13 Polypropylene  Wheels

Driving  Wheels

3  Diameter,  1/4  Bore Kit 2781T72 4 -­‐ Wheel

14

Aluminum  Square  Tube  Stock,  1''x1'',  1/8''  Wall

Wheel  Shaft  Support 3 Kit Stock 4 -­‐ Wheel

15 Flanged  SS  Bearing

Wheel  Bearings

1/4  ID,  1/2  OD,  1/8  Thick Kit 57155K304 4 $9.16 Wheel

16 Flanged  brass  bushing

Wheel  Bushings 1/4  ID.  3/8  OD Kit 2938T1 4 -­‐ Wheel

17 Steel  Rod  1/4''  Diameter Wheel  Shaft 4 Kit Stock 2 -­‐ Wheel

17 Steel  Plate  1/4''  thick

Attaches  Bumper  +  Baseplate 4.25  x  .88 Kit Stock 2 -­‐ Bumper

18 Aluminum  Plate  1/4''  thick Bumper 8  x  2 Kit Stock 1 -­‐ Bumper

19 Aluminum  Plate  1/16''  thick

Ball  Container 4  x  2 Kit Stock 3

Angle  90  degrees

Ball  Container

20 Acrylic  Plate  1/4'' Baseplate 8  x  8 Kit Stock 1 -­‐ Baseplate

21 Stock  Fasteners

Attaches  Elements  to  Baseplate -­‐ Crib Stock as  needed -­‐

-­‐

6.   PROTOTYPE  TESTING

6.1               Preliminary  Test  Results

Upon  testing  our  robot  on  the  arena  for  the  first  time,  we  discovered  a  few  small  flaws  in  our  robot’s  design.  Our  robot  would  tip  over  forward  when  we  used  the  forklift  to  lift  a  heavy  object.  This  issue  was  due  to  the  fact  that  our  robot  was  very  light  at  first  (about  3.5  lbs)  and  that  the  weight  was  not  distributed  properly.  Lifting  a  heavy  robot  would  add  a  relatively  

15

significant  amount  of  weight  to  the  front  of  our  robot,  and  the  entire  chassis  would  then  pivot  on  the  front  wheels  due  to  the  increased  moment. We  also  experienced  trouble  with  having  the  lifted  robot  slide  off  of  the  metal  forks.  This  was  caused  by  the  smoothness  of  the  material  (aluminum)  that  we  used  to  make  our  forks.  Trying  to  manipulate  other  robots  became  difficult  since  our  forks  did  not  have  enough  friction  to  hold  onto  them. 6.2             Redesign  Based  on  Preliminary  Tests

To  correct  our  robot’s  weight  issue,  we  decided  to  fabricate  two  weights  to  add  to  the  chassis.  We  added  a  large  weight  to  the  back  of  the  robot  to  prevent  it  from  tipping  forward  when  we  lifted  heavy  robots.  We  also  included  a  smaller  weight  to  the  front  of  the  robot  to  maintain  weight  over  our  front  wheels,  since  these  are  the  driven  wheels  and  they  must  stay  on  the  ground  in  order  to  drive  properly.  This  was  a  simple  fix  because  we  attached  steel  blocks  with  velcro  to  the  base  plate. We  solved  the  slippage  problem  of  our  forks  by  adding  rubber  strips  to  the  top  surfaces.  This  gave  our  forklift  the  extra  friction  that  it  needed  in  order  to  maintain  control  of  other  robots.  This  was  another  quick  design  improvement  because  we  only  needed  epoxy  to  attach  the  rubber  strips  to  the  aluminum  forks. We  tested  our  robot  on  the  arena  again,  and  this  time  it  was  successful.  We  lifted  several  different  heavy  robots  without  tipping  or  losing  hold  of  them.  The  results  of  our  quick  additions  were  positive,  and  they  solved  the  issues  that  we  had  when  we  tested  it  on  the  arena  beforehand. 6.3             Discussion  of  Competition  Results

At  the  M-­‐Ball  competition,  our  team’s  robot  functioned  properly  and  we  performed  very  well.  All  of  our  motors  ran  smoothly,  and  the  robot  drove  without  any  hiccups.  Our  forklift  succeeded  in  lifting  and  manipulating  several  of  our  opponents.  We  prevented  the  other  squad’s  main  offensive  robot  from  scoring  by  lifting  its  wheels  off  of  the  table  and  dragging  it  away  from  the  scoring  hole.  We  also  lifted  an  opponent  from  our  squad’s  scoring  hole  because  it  was  preventing  our  teammates  from  scoring  balls.  In  the  end,  we  successfully  performed  our  role  as  the  defensive  robot  of  the  squad.

16

Unfortunately,  our  squad  lost  our  first  match,  so  we  were  not  able  to  continue  playing  defense  in  the  competition.  Our  squad’s  strategy  was  not  successful  since  some  of  our  squad’s  robots  encountered  mechanical  and  electrical  problems  during  the  match.  Our  overall  squad  performance  could  have  been  improved  if  we  would  have  had  two  offensive  robots  scoring  balls  instead  of  one.  We  succeeded  in  preventing  the  other  squad  from  scoring  a  high  number  of  balls;  however,  our  squad  scored  fewer  points.

7.   DISCUSSION  AND  RECOMMENDATIONS 7.1  Project  Summary At  the  beginning  of  the  semester,  we  were  divided  into  8  squads  with  4  teams  in  each  squad.  We  were  first  asked  to  come  up  with  our  own  squad  strategies.  After  discussion  within  the  squad,  our  team  was  assigned  to  be  the  defensive  robot  to  stop  opponents  from  scoring.  Within  our  team,  we  came  up  with  different  concepts  and  designs  for  our  machine,  and  chose  the  one  we  thought  would  be  the  best.    We  did  this  by  discussion  and  evaluation  of  each  concept  by  using  the  concept  selection  chart.  We  concluded  that  a  bot  with  a  combination  of  forklift,  bumper,  and  ball  container  was  to  be  our  final  design.  We  calculated  and  analyzed  the  necessary  torque,  speed,  and  traction  to  perform  our  task.  We  also  created  a  CAD  solid  model  for  our  initial  design.   After  presenting  our  design  to  the  squad  we  refined  our  design  to  come  up  with  a  detailed  design  for  the  forklift,  which  is  the  most  critical  part  of  our  robot.  After  we  finalized  the  design  of  our  forklift,  we  began  manufacturing.  During  the  manufacturing  process,  we  changed  and  adjusted  a  few  details.  For  example,  during  the  manufacturing  and  assembly  process,  two  non-­‐driving  wheels  could  not  rotate  because  the  shaft  was  sticking,  so  we  have  to  turn  the  shaft  down  by  0.01’’  and  grease  it.  After  about  three  weeks  of  manufacturing,  we  completed  our  machine.  Our  completed  robot  functioned  properly:  it  lifted  a  15  lb  robot,  moved  around  the  arena,  scored  balls,  and  could  push  other  robots. At  the  competition,  we  were  able  to  effectively  play  defense  by  manipulating  two  robots,  by  using  the  forklift  and  dragging  them  around  the  arena.    Our  robot  performed  very  well,  but  unfortunately  our  squad  was  not  able  to  score  enough  points. Reflecting  on  our  design  and  strategy,  we  would  have  liked  to  have  more  robots  that  could  score  ground  balls,  as  we  were  unable  to  keep  up  with  the  other  team.  Also  we  would  have  another  defensive  robot  similar  to  our  design  that  could  lift  the  other  team.  The  best  aspect  of  our  design  was  our  forklift  as  it  was  able  to  lift  anything  on  the  arena.  The  worst  aspect  of  our  design  was  our  wheels,  which  would  have  been  better  if  we  used  treads.    

17

7.2.  Future  project  idea Upon  completing  this  project,  we  have  gained  experience  and  knowledge  to  help  us  in  future  projects  and  classes.  Designing  this  machine,  especially  the  forklift,  will  translate  well  into  our  projects  for  ME  350  and  450.  We  have  learned  design  and  manufacturing  techniques  that  will  help  us  in  future  courses,  projects,  and  in  industry.    

8.   REFERENCES Chris  Lindstrom,  How  to  Write  A  Problem  Statement.  Retrieved  from  http://www.ceptara.com/blog/how-­‐to-­‐write-­‐problem-­‐statement     9.   ACKNOWLEDGEMENTS We  would  like  to  thank  the  University  of  Michigan  faculty  who  helped  us  complete  our  project,  especially:  Professor  Panos  Papalambros  and  Mike  Umbriac  for  their  lectures,  advice,  and  organization  of  the  M-­‐Ball  competition.  Bobby  Eastman  for  his  hands  on  help  and  advice  during  lab  hours.  Bob  Coury  and  Mark  Stock  for  their  instruction  in  operating  machining  equipment.  Toby  Donajkowski,  and  our  guest  lecturers.

                     

18

APPENDICES A.  STRATEGIES A.1    Stephen’s  Strategy

Figure  A.1:  3  offensive  robots  (1  basket  scoring,  1  ball  retrieving,  1  hole  scoring)  and  1  defensive  robot

A.2  Kevin’s  Strategy

Figure  A.2:  3  offensive  robots  (1  basket  scoring,  2  hole  scoring)  and  1  defensive  robot

A.3  David’s  Strategy

Figure  A.3:  4  Defensive  robots  (2  Basket,  1  Wolverine  and  1  Tower  defense)

19

A.4  Chi’s  Strategy  

Figure  A.4:  2  offensive  robots  (1  basket  scoring,  1  hole  scoring)  and  2  defensive  robots  (1  basket  and  1  hole).

B.  CONCEPT  SKETCHES B.1    Stephen’s  Concept  Sketch  

Figure  B.1:  Has  ball  container,  wheels,  and  bumper.

B.2  Kevin’s  Concept  Sketch

Figure  B.2:  Has  ball  container,  bumper,  forklift,  and  tank  treads.

20

B.3  David’s  Concept  Sketch

Figure  B.3:  Has  bumper,  tank  treads,  forklift,  and  protective  enclosure.

B.4  Chi’s  Concept  Sketch

Figure  B.4:  Has  ramps  surrounding  robot,  and  wheels.

C.  DIMENSIONED  DRAWINGS  AND  MANUFACTURING  PLANS The  following  pages  contain  our  engineering  drawings  and  manufacturing  plans. C.1  Dimensioned  Drawings  of  Individual  Parts

4.13

2.000 STK

2.000 STK

DO NOT SCALE DRAWING

Back Weight

SHEET 1 OF 1

Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

Steel

12/10/13

SolidWorks Student Edition. For Academic Use Only.

.500 1.875

1.000

2.500 3.500 3.725

4.475

4.550

1.575

5.675

5.969

1.250

6.825 6.925

.375 .750 1.438

.625

1.500 1.273

1.945

.625

2.250 2.194

2.188

14X .266

6X .134

.500

8X .177

.250 STK 6.750

7.675

DO NOT SCALE DRAWING

Base Plate

SHEET 1 OF 1

12/9/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:5 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

AcrylicSolidWorks Educational Edition. For Instructional Use Only.

1.75

1.000 STK

.45

.88 .624

1.000 STK

.125 STK

.125 STK

.125 STK .125 STK

1.25 .25

2X 1/4-20 Tapped Hole

.50

DO NOT SCALE DRAWING

Bearing Block

SHEET 1 OF 1

11/18/13CQ

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL 0.02THREE PLACE DECIMAL 0.005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

R.09 90 Bend

.063 STK

1.31

.50

1.53

2.38

.38

2X .27

.63

.85

3.38

.81

DO NOT SCALE DRAWING

Bottom Wall C

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE 4:5 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

1.00

3.63 3.13

9.88

0.250 STK

2.13

DO NOT SCALE DRAWING

Bumper Plate

SHEET 1 OF 1

11/18/13SteveBarch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

AluminumSolidWorks Educational Edition. For Instructional Use Only.

4.25

.88

.75 3.00

.125

2X #8-32 Tapped Hole

.250 STK

DO NOT SCALE DRAWING

Bumper Support

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

.500 STK

.257

.25

.13

.25

#4-48 Tapped Hole

DO NOT SCALE DRAWING

Coupling

SHEET 1 OF 1

11/18/13CQ

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL 0.02THREE PLACE DECIMAL 0.005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Educational Edition. For Instructional Use Only.

1.47

2.94

0.063 STK

0.31

2X R0.09 90 Bends

2 X 0.125

0.75

0.25

0.56

1.56

0.50

3.13

DO NOT SCALE DRAWING

ForkSHEET 1 OF 1

11/3/13

11/3/13Stephen

Chi Qiu

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

Fork

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

Aluminum

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL 0.02THREE PLACE DECIMAL 0.005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

2.25

45.00°

AA

2.75

.250 STK

.75

1.25

.125

.75 1.25 .125

SECTION A-A4X #8-32 Tapped Hole 0.50" Deep

DO NOT SCALE DRAWING

Forklift Support A

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

45.00°

BB

.75

1.25 2.75

.250 STK

.125

.75 1.25 .125

4X #8-32 Tapped Hole 0.50" DeepSECTION B-B

DO NOT SCALE DRAWING

Forklift Support B

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

1.500 STK

1.00

1.500 STK

DO NOT SCALE DRAWING

Front Weight

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

SteelFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

.25

.75

.62

2.88

1.75

.25

4X .125

3.50

.05

4X R.1

2.00

.125 STK

DO NOT SCALE DRAWING

Plate

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND ONE PLACE DECIMAL .05TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

2.35 0.06

4.75

BB

0.250 STK

0.03

SECTION B-B

DO NOT SCALE DRAWING

Pulley ShaftSHEET 1 OF 1

11/3/13

11/3/13Stephen

Chi Qiu

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

Pulley Shaft

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

Steel

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL 0.02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

9.550

.750

.063 STK

DO NOT SCALE DRAWING

Rubber Strip(Wheel)

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

RubberFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

2.63

AA .250 STK

SECTION A-A

DO NOT SCALE DRAWING

Shaft (Back Wheel)

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

SteelFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Educational Edition. For Instructional Use Only.

2.79

1.31 AA

.375 STK

.250 .118

.125

.13

.38

#4-48 Tapped Hole

SECTION A-A

DO NOT SCALE DRAWING

Shaft (Front Wheel)

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Educational Edition. For Instructional Use Only.

1.50

.75

.55

.249

1.000 STK

.125 STK .125 STK

.125 STK

.125 STK 1.000 STK

.25 1.00

.50

2X 1/4-20 Tapped Hole

DO NOT SCALE DRAWING

Shaft Support

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

2.75

.25 .63

.38

2X 1/4-20 Tapped Hole

.750 STK

.750 STK

.125 STK .125 STK

.125 STK

.125 STK

DO NOT SCALE DRAWING

Side Shield Support

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

AluminumSolidWorks Student Edition. For Academic Use Only.

4.25

2X R1.75

1.75 2.88

7.75

.063 STK

DO NOT SCALE DRAWING

Side Shield

SHEET 1 OF 1

12/10/13Steve Barch

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL .02THREE PLACE DECIMAL .005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

0.251

5.13 0.25 0.25

2X R 0.09

0.25 AA

0.500 STK

0.500 STK

2.25 1.250

0.25

0.38

6.00

2X #8-32 Tapped Hole

SECTION A-A

DO NOT SCALE DRAWING SHEET 1 OF 1

11/3/13

11/3/13Stephen

Chi Qiu

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

ASIZE

TITLE:

Square Slot

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

AluminumFINISH

MATERIAL

INTERPRET GEOMETRICTOLERANCING PER:

DIMENSIONS ARE IN INCHESTOLERANCES:FRACTIONALANGULAR: MACH BEND TWO PLACE DECIMAL 0.02THREE PLACE DECIMAL 0.005

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIALTHE INFORMATION CONTAINED IN THISDRAWING IS THE SOLE PROPERTY OF<INSERT COMPANY NAME HERE>. ANY REPRODUCTION IN PART OR AS A WHOLEWITHOUT THE WRITTEN PERMISSION OF<INSERT COMPANY NAME HERE> IS PROHIBITED.

5 4 3 2 1

SolidWorks Student Edition. For Academic Use Only.

41

C.2  Manufacturing  Plans

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

D.  PURCHASED  AND  TRADED  ITEMS D.1  Purchased  Items We  purchased:  -­‐  4  Flanged  SS  Bearings  from  Ebay  ($7.90).  We  needed  these  bearing  for  our  wheels  to  operate  properly. -­‐  ⅛”  Aluminum  Plate  from  “DH  Fab”  ($1.00).  We  needed  this  to  use  as  our  forklift  plate,  where  we  attach  the  forks  using  rivets  to  it.   -­‐  Steel  block  from  “DH  Fab”  ($0.65).  We  needed  steel  to  weigh  our  machine  down  and  change  it’s  center  of  mass  so  we  would  not  tip  over. D.2  Traded  Items   We  traded: -­‐  Aluminum  Angle  Stock  ($3.40)  with  Team  64  for  a  Buna-­‐N  sheet  ($0.20).  We  needed  the  rubber  to  cover  our  wheels  to  increase  our  traction,  and  to  cover  our  forklifts  to  prevent  them  from  slipping  off  of  the  robots  we’re  trying  to  lift.