54
Juhani Heljo, Antti Kurvinen, Jaakko Vihola Energiansäästömahdollisuudet rakennuskannan korja- ustoiminnassa Liitteet

Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

Embed Size (px)

DESCRIPTION

Osana Suomen energia- ja ilmastopoliittisten toimenpiteiden valmistelua ympäristöministeriö teetti selvityksen "Energiatehokkuuden parantamisen menetelmät olemassa olevassa rakennuskannassa" (EPAT). Se koskee olemassa olevan rakennuskannan korjaustoimintaan liittyviä energiatehokkuuden parantamistoimenpiteitä ja -menetelmiä sekä energiansäästöpotentiaalia. Tämä raportti on selvityksen loppuraportin liiteraportti. Tutkimus toteutettiin Tampereen teknillisen yliopiston (TTY) Rakennustekniikan laitoksella. Projektin johtajana ja tutkijana toimi TTY:llä Juhani Heljo ja tutkijoina Antti Kurvinen ja Jaakko Vihola. Eero Nippala Tampereen ammattikorkeakoulusta toimi rakennuskannan, poistuman ja korjaustoiminnan asiantuntijana. Martti Hekkanen Oulun ammattikorkeakoulusta toimi korjausasiantuntijana. Toteuttamiskelpoisten energiansäästömahdollisuuksien arviointi rakennuskanan korjaustoiminnassa aikavälillä 2010–2050 on haastava ja monitahoinen tehtävä. Realistisen kuvan mahdollisuuksista saa vain tutustumalla mahdollisimman moniin aiheeseen liittyviin selvityksiin. Tämän liiteraportin tavoitteena on esittää kootusti loppuraportin tuloksia tukevaa materiaalia. Liitteet 1 ja 2 ovat referaatteja muista selvityksistä. Liitteet 3–5 ovat osa tehtyä selvitystä.

Citation preview

Page 1: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

Juhani Heljo, Antti Kurvinen, Jaakko Vihola

Energiansäästömahdollisuudet rakennuskannan korja-ustoiminnassa

Liitteet

Page 2: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)
Page 3: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

III

Tampereen teknillinen yliopisto. Rakennustekniikan laitos.

Rakennustuotanto ja -talous.

Tampere University of Technology. Department of Civil Engineering.

Construction Management and Economics

Tampereen ammattikorkeakoulu

Oulun ammattikorkeakoulu

Juhani Heljo, Antti Kurvinen, Jaakko Vihola

Energiansäästömahdollisuudet rakennuskannan

korjaustoiminnassa, liitteet

Tampereen teknillinen yliopisto. Rakennustekniikan laitos.

Tampere 2012

Page 4: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

IV

ALKUSANAT

Osana energia- ja ilmastopoliittisten toimenpiteiden valmistelua ympäristöministeriö

teetti selvityksen Energiatehokkuuden parantamisen menetelmät olemassa olevassa

rakennuskannassa (EPAT). Se koskee olemassa olevan rakennuskannan korjaustoimin-

taan liittyviä energiatehokkuuden parantamistoimenpiteitä ja -menetelmiä sekä energi-

ansäästöpotentiaalia. Tämä raportti on selvityksen loppuraportin liiteraportti. Jokaisen

liitteen kirjoittaja on mainittu liitteen otsikon perässä.

Tutkimus toteutettiin Tampereen teknillisen yliopiston (TTY) Rakennustekniikan lai-

toksella. Projektin johtajana ja tutkijana toimi TTY:llä Juhani Heljo ja tutkijoina Antti

Kurvinen ja Jaakko Vihola. Eero Nippala Tampereen ammattikorkeakoulusta toimi ra-

kennuskannan, poistuman ja korjaustoiminnan asiantuntijana. Martti Hekkanen Oulun

ammattikorkeakoulusta toimi korjausasiantuntijana.

Toteuttamiskelpoisten energiansäästömahdollisuuksien arviointi rakennuskanan korja-

ustoiminnassa aikavälillä 2010–2050 on haastava ja monitahoinen tehtävä. Realistisen

kuvan mahdollisuuksista saa vain tutustumalla mahdollisimman moniin aiheeseen liit-

tyviin selvityksiin.

Tämän liiteraportin tavoitteena on esittää kootusti loppuraportin tuloksia tukevaa mate-

riaalia. Liitteet 1 ja 2 ovat referaatteja muista selvityksistä. Liitteet 3–5 ovat osa tehtyä

selvitystä.

Tampereella helmikuussa 2012

Juhani Heljo

Page 5: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

V

SISÄLLYS

LIITE 1. Korjaustoiminnalla saavutettavat säästöt asuinkerrostaloissa ............. 6

LIITE 2. Koulujen perusparannukset .................................................................. 9

LIITE 3. Case 1: Vuokrakerrostalon energiatehokas remontti Oulaisissa ....... 15

LIITE 4. Case 2: Vuokrakerrostalon perusparannus Tampereella ................... 25

LIITE 5. Energiansäästöpotentiaalit Ruotsin rakennuskannassa ...................... 45

Page 6: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

6

LIITE 1. Korjaustoiminnalla saavutettavat säästöt asuinker-rostaloissa (Vihola)

Tämän liitteen 5 luvun tulokset perustuvat Heljo & Viholan (2010) tekemään selvityk-

seen ”Toteutettavissa olevat energiansäästöpotentiaalit Helsingin kaupungin kiinteis-

töissä”. Selvitys on osa Helsingin kaupungin perustaman energiatehokkuustyöryhmän

tavoitetta laatia toimenpideohjelma koskien AESS-sopimuksen mukaista energiatehok-

kuustavoitetta. Selvityksen tarkoituksena oli tarkastella Helsingin kaupungin hallin-

noiman asuinrakennuskannan energiansäästöpotentiaalia sekä uudis- että korjausraken-

tamisen osalta. Laskelmissa perusvuotena on käytetty vuotta 2006 ja säästöpotentiaalia

on tarkasteltu vuosina 2016, 2020 ja 2050.

Jotta olemassa olevan kannan korjaustoiminnalla saavutettavia säästöjä päästiin laske-

maan, tuli ensiksi selvittää mahdollisten toimenpiteiden määrä. Tämä tehtiin hyväksi

käyttäen Helsingin kaupungilta saatuja PTS-suunnitelmia, joista poimittiin kohteittain

toimenpiteet joiden ohessa on mahdollista parantaa energiatehokkuutta, tai jotka suo-

raan parantavat rakennuksen energiatehokkuutta. Vuosittain tehtävä toimenpiteiden laa-

juus koko kannassa on nähtävissä kuvasta 2.1. Vesikattojen peruskorjauksista mukaan

laskettiin vain puolet, koska oletettiin osan korjaustoimenpiteistä olevan sellaisia, että

yläpohjan samanaikainen lisäeristäminen ei olisi todennäköistä tai mahdollista.

Kuva 2.1. PTS-suunnitelmien perusteella arvioitu vuosittainen mahdollisten korjaus-

toimenpiteiden laajuus Helsingin kaupungin asuinrakennuskannassa.

Poikkileikkausvuosien korjaustoimenpiteiden määrät saadaan kertomalla vuosittaisten

korjaustoimenpiteiden määrä aikavälillä, joka perustarkasteluvuodesta on kyseessä ole-

vaan poikkileikkausvuoteen. Kun poikkileikkausvuosia on tarkasteltu, on oletettu, että

0,7 %

2,0 %

0,6 %

2,4 %

4,2 %

2,6 %

1,8 % 1,7 %

0,5 %

0,9 %

2,0 %

0,0 %

0,5 %

1,0 %

1,5 %

2,0 %

2,5 %

3,0 %

3,5 %

4,0 %

4,5 %

Energiasäästön mahdollistavat korjaustoimenpiteet vuosittain Helsingin kaupungin asuinrakennuskannassa (otos 70% kannasta)

Page 7: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

7

koskaan korjaustoimenpiteiden laajuudessa ei mennä yli 100 %:n. Tämä tarkoittaa sitä,

että kukin parannustoimenpide voidaan tehdä vain kerran. Tämä saattaa vääristää tulok-

sia jonkun verran vuoden 2050 osalta, koska on hyvinkin mahdollista, että joitakin toi-

menpiteitä on tehty tällöin jo useampaan kertaan ja näin ollen saavutettava energian-

säästö voi olla laskennallista suurempi. Suurempi energiansäästö johtuu siitä, että toisel-

la korjauskerralla olisi mahdollista valita energiatehokkaampi ratkaisu kun ensimmäistä

kertaa korjatessa.

Tuloksia tarkastellessa tulee muistaa, että kyseessä on hyvin optimistinen näkemys toi-

menpiteiden määrästä. Säästöt toteutuvat vain siinä tapauksissa, että energiasäästötoi-

menpiteitä tehdään aina kun muu korjaustoiminta antaa siihen mahdollisuuksia. Toi-

menpiteitä kuitenkin tuskin suoritetaan näin suuressa mittakaavassa. Tämä tarkoittaa

sitä, että todellinen saavutettava energiansäästö jäänee laskennallista pienemmäksi. Toi-

saalta tulee myös muistaa, että on mahdollista tehdä laskelmissa oletettua tehokkaampi

energiansäästötoimenpide, jolloin yksittäisellä toimenpiteellä saavutettu säästö on ole-

tettua suurempi.

Suoritettujen korjaustoimenpiteiden vaikutukset yksittäisessä kohteessa on esitetty tau-

lukossa 2.1. Taulukkoon on lisätty myös joitakin huomautuksia liittyen toimenpiteisiin.

Näitä ovat muun muassa toimenpiteen toteutukseen liittyvät seikat ja tehtyyn tarkaste-

luun liittyvät epävarmuustekijät.

Taulukko 2.1. Toimenpiteiden vaikutukset yksittäisessä kohteessa ja toimenpiteisiin

liittyviä huomautuksia. LTO tarkoittaa koneellisen sisäänpuhallus ja poistoilmanvaih-

don rakentamisen yhteydessä asennettavaa ilmanvaihdon lämmöntalteenottolaitetta.

Kuvassa 2.2 on esitetty poikkileikkausvuodet 2016, 2020 ja 2050 ja toimenpiteillä saa-

vutettavat hyötyenergiansäästöt asuinrakennuksissa verrattuna vuoden 2006 lähtötasoon

(636 GWh/a). Kuten kuvasta havaitaan, vuoteen 2016 mennessä saavutetaan korjaus-

toiminnalla 7,6 % säästö (-48 GWh/a). Vuoteen 2020 mennessä säästö on 9,7 % (-62

GWh/a) ja vuoteen 2050 mennessä 19,3 % (-123 GWh/a). Nämä säästöt saavutetaan, jos

tehdään kaikki toimenpiteet, mihin suunnitellun korjaustoiminnan aikana voisi olla

mahdollisuuksia. Todelliset säästöt tulevat todennäköisesti olemaan kuitenkin yllä ole-

via lukuja pienempiä. Toinen tuloksiin vaikuttava seikka on, että tarkastelu laskelmien

osalta alkaa vuodesta 2006. Toimenpiteiden laajuudesta välillä 2006–2010 ei ollut saa-

tavilla tarkempaa tietoa. Voi siis olla mahdollista, että osa laskennallisesta säästöpoten-

Ikkunoiden U-arvo -0.3 W/m2,K Säästö 1-4 % rakennustasolla

Ikkunoiden U-arvo -1 W/m2,K Vanhoista osa kaksilasisia ja osa kolmilasisia. Uudet 1,0 W/m2,K tai alle

Seinien U-arvo -0.2 W/m2,K U-arvo puolitetaan eli n. 100 mm lisäeristys

Yläpohjan U-arvo -0.15 W/m2,K Oletetaan 50% lisäeristys. Lisäeristetyissä U-arvo puoleen eli n. 100 mm lisäeristys

Sisälämpötila -0.5 Co

Säästön suuruusluokka Energia-avustusta saaneiden kohteiden mukainen

Sisälämpötila -0.5 Co

Säästön suuruusluokka Energia-avustusta saaneiden kohteiden mukainen

Veden kulutus -2 % Arvio

Sisälämpötila -0.5 Co

Arvio. Toimenpiteitä vähän !

Ovien U-arvo -0.5 W/m2,K Tiivistyminen tuo lisäsäästöä!

LTO 50 % Ilmanvaihdon ja sähkönkulutuksen kasvu syö osan säästöstä. SFP -luvun muutokseksi oletettu 1,5 - 2,5

Veden kulutus -20 % Veden kulutus vähenee keskimäärin 20 % useiden selvitysten perusteella

Kylpyhuonekalusteiden vaihto

Patteriventtiilien vaihto

Parvekeovien vaihto

LTO-laitteen asennus

Vedenkulutuksen mittaus

Parvekelasien asennus

Ikkunoiden vaihto

Julkisivujen peruskorjaus

Vesikattojen peruskojaus

Lämmönvaihtimen uusiminen

Patteriverkoston säätö

ToimenpideTarkasteltava

ominaisuus

Muuttujan

muutos

korjausko

yksikkö Huomautukset

Page 8: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

8

tiaalista on menetetty jo tällä aikavälillä, jos energiansäästötoimenpiteitä ei ole toteutet-

tu tämän selvityksen olettamassa mittakaavassa. Vuoden 2050 osalta säästö voi kuiten-

kin olla suurempi, kuten jo aikaisemmin on mainittu.

Kuva 2.2. Mahdollisten energiasäästötoimenpiteiden aikaansaamat hyötyenergian

säästö poikkileikkausvuosina 2016, 2020 ja 2050. Oletuksena on, että PTS –

suunnitelmien mukaisten korjausten yhteydessä tehdään niihin liitettävät energiansääs-

tötoimet siten, että kulutus putoaa näiden rakennusosien osalta keskimäärin lähes puo-

leen.

-7.6%

-9.7%

-19.3%

-25%

-20%

-15%

-10%

-5%

0%

2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

Pro

se

ntu

aa

lin

en

äs

Mahdollisilla energiansäästötoimenpiteillä saavutetavat

prosentuaaliset hyötyenergian säästöt Helsingin kaupungin asuinrakennuskannassa vuosina 2016, 2020 ja 2050

Page 9: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

9

LIITE 2. Koulujen perusparannukset (Heljo)

Palvelurakennusten osalta on vähemmän tietoa energiansäästötoimenpiteiden vaikutuk-

sista kuin asuinrakennusten osalta. Linkki 2 –tutkimusohjelmassa selvitettiin peruskor-

jausten energiavaikutuksia kuntien palvelurakennuksissa. Kohteena oli pääasiassa kou-

luja. (Leskinen et al. 2001.) Tässä esitetään lyhyesti kyseisen tutkimuksen tuloksia.

Puolessa tutkituista kohteista lämmönkulutus pieneni ja puolessa kasvoi. Lämmönkulu-

tuksen kasvun syyt eivät olleet yksiselitteiset. Sähkönkulutus kasvoi lähes kaikissa koh-

teissa. Sähkönkulutuksen kasvua selitti käyttöasteen kasvu sekä paljon sähköä kulutta-

vien tilojen ja laitteiden lisääntyminen kohteissa. Vedenkulutus pieneni lähes poikkeuk-

setta, paitsi sellaisissa kohteissa, joissa toiminnan muutos tai käytön kasvaminen aiheut-

tivat vedenkulutuksen kasvua.

Perusparannusten yhteydessä tehdyt ilmanvaihdon, valaistuksen ja toimintaan liittyvien

sähkölaitteiden lisäykset lisäävät energiankulutusta. Tällöin energiansäästötoimenpiteis-

tä huolimatta energian kokonaiskulutus useimmiten kasvaa. Lisäksi käyttöasteen muu-

tokset vaikuttavat energiankulutukseen. Tutkimuksessa on kehitetty luonnos mallista,

jonka avulla voidaan arvioida etukäteen ja raportoida jälkikäteen perusparannushank-

keen laatutaso- ja käyttöastemuutokset sekä energiansäästötoimenpiteet ja niiden vaiku-

tukset erikseen energiankulutukseen. Kehitetyn mallin tai vastaavan käyttö on välttämä-

töntä, jos halutaan ymmärtää palvelurakennusten perusparannusten yhteydessä tapahtu-

neita energiankulutusmuutoksia.

Peruskorjausten vaikutusta energiankulutukseen on vaikea jäljittää jostakin yksittäisestä

tekijästä johtuvaksi, koska samassa yhteydessä tehdään yleensä monta eri toimenpidettä.

Korjausrakentaminenkin noudattaa muun rakentamisen kanssa samoja ohjeita ja määrä-

yksiä, asiakkaan ja käyttäjän toiveita sekä rakentamistapamuutoksia. Peruskorjauksen

tavoitteena on yleensä myös tilan laatutason ja toiminnallisten ominaisuuksien paranta-

minen (perusparannus). Esimerkiksi sisäilman laadun parantaminen saattaa olla eräs

tällainen energiankulutusta nostava tekijä.

Sisäilman laadun energiavaikutus

Karjalainen & Kimarin (1999) koulujen sisäilmaa käsittelevässä tutkimuksessa havait-

tiin, että koulurakennuksissa sisäilman laadun parantaminen oli ollut erittäin tarpeellista,

ja että korjausrakentamisen yhteydessä sisäilman laatu oli parantunut huomattavasti.

Em. tutkimuksessa sisäilman laatua ja ilmanvaihdon toimivuutta tutkittiin mittauksin ja

kyselyin 14 kohteessa. Ennen peruskorjausta sisäilman hiilidioksidipitoisuus oli korkea

ja lämpötilat ohjearvoja korkeammat. Korjauksen jälkeen lämmitysenergian kulutus oli

kasvanut keskimäärin 12 %, mikä johtui sisäilman laadun ylläpitämiseksi tarvittavan

ilmanvaihdon määrän lisäyksestä. Sähköenergian kulutus oli kasvanut keskimäärin 34

%. Sähköenergian kulutusta oli lisännyt pääasiassa ilmanvaihtokoneiden sähkön kulu-

Page 10: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

10

tus. Koneellisella ilmanvaihdolla on tutkimuksen mukaan varustettu vain noin kolmas-

osa opetusrakennuksista. Tämä tarkoittaa sitä, että painovoimaisella ilmanvaihdolla on

varustettu jopa 2/3 opetusrakennuksista. (Karjalainen & Kimari 1999.)

Lämmönkulutus tutkimuskohteissa

Lämmönkulutuksia verrattiin laskemalla kullekin kohteelle lämmön vuosittainen omi-

naiskulutus kWh/m³ normaalivuonna Jyväskylässä ennen ja jälkeen peruskorjauksen.

Mikäli tietoja oli käytettävissä, laskettiin ominaiskulutukset myös toisena vuonna korja-

uksen jälkeen. Ajatuksena oli, että ensimmäisenä vuonna säädöt eivät ehkä ole kohdal-

laan, jolloin toisena vuonna saataisiin realistisempi kuva siitä, mille tasolle lämmönku-

lutus asettuu korjauksen jälkeen. Lämmönkulutuksessa ei huomioitu erikseen veden

lämmitykseen kuluvaa energiaa, koska kaikista kohteista ei ollut kattavasti saatavilla

vedenkulutustietoja ennen ja jälkeen korjauksen. Tässä kappaleessa on pyritty löytä-

mään mahdollisia syitä merkittäviin lämmönkulutuksen muutoksiin.

Lämmönkulutus oli pienentynyt puolessa tutkimuksen kohteista 3–41 % (kuva 3.1).

Keskimäärin näissä kohteissa kulutus oli pienentynyt 19 % verrattuna kohteen alkupe-

räiseen kulutukseen. Puolessa kohteista lämmönkulutus oli kasvanut 7–112 %. Keski-

määrin näissä kohteissa kulutus oli kasvanut 36 % (prosenttilukujen keskiarvo). Tutki-

muskohteissa suoritettujen peruskorjausten yhteenlaskettu vaikutus oli, että lämmönku-

lutus oli kasvanut 7 %, mikä tarkoittaa yhteensä 1400 MWh:n kasvua vuosittaisessa

lämmönkulutuksessa.

Kuva 3.1. Lämmönkulutus kohteissa ennen ja jälkeen peruskorjauksen. Uimahallissa

lämmönkulutus oli ennen peruskorjausta 200 kWh/m³, jälkeen 138 kWh/m³.

0,0

20,0

40,0

60,0

80,0

100,0

120,0

Kou

lu1

Kou

lu2

Kou

lu3

Kou

lu4

Kou

lu5

Kou

lu6

Kou

lu7

Kou

lu8

Kou

lu9

Kou

lu10

Kou

lu11

Kou

lu12

Kou

lu13

Päivä

koti1

Päivä

köti2

Päivä

koti3

Kirjas

to

Toim

italo

Mon

itoim

italo

Van

hust

enta

lo

Tsto

ja te

rvey

skes

kus

No

rme

era

ttu

mm

ön

om

ina

isk

ulu

tus

, k

Wh

/m3,a

Ennen

Jälkeen

2.vuosi

Page 11: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

11

Koulussa4, jossa lämmönkulutus oli kasvanut eniten (112 %), oli lisätty mm. ruuanval-

mistuskeittiö, joka valmistaa ruokaa ulos myytäväksi. Peruskorjauksen yhteydessä kou-

lun päivittäiset ja viikoittaiset käyttöajat pitenivät ja tilojen käyttöaste kasvoi.

Koulussa7 lämmönkulutus oli kasvanut toiseksi eniten (68 %). Kasvun syyt eivät aivan

yksiselitteisesti selviä vastauslomakkeesta, varsinkin, kun eräänä syynä peruskorjauk-

seen oli suuri lämmönkulutus. Kohteessa oli tehty varsin perusteellinen perusparannus:

pintarakenteet, vesikatto ja talotekniikka oli korjattu, samoin lämmitys osittain. Myös

vesijohdot oli korjattu ja viemärit osittain. Asunnot oli otettu koulukäyttöön ja kohtees-

sa oli kokeiltu vuoroittaiskäyttökattilaa, jota on joskus käytetty myös sähköllä tilapäi-

sesti ja kesällä. Kohteeseen oli lisätty kaksi öljykattilaa. Käyttötapojen muutoksista ei

ollut tämän kohteen yhteydessä raportoitu, joten siltä osin jäi epäselväksi, mitkä muut

seikat ovat voineet aiheuttaa lämmönkulutuksen kasvua.

Päiväkodissa1 lämmönkulutus oli ensimmäisenä vuonna peruskorjauksen jälkeen 53 %

suurempi kuin ennen peruskorjausta, mutta jo toisena vuonna kulutus oli samalla tasolla

kuin ennen peruskorjausta (2 % pienempi). Ilmanvaihtokoneita lisättiin ja uusittiin, mut-

ta samalla tehtiin myös monia lämmönkulutusta laskevia toimenpiteitä, kuten termo-

staattisten patteriventtiilien asennus ja lämmönsiirtimien uusinta. Rakennuksen käyttäjät

ja toiminta eivät muuttuneet mitenkään peruskorjauksen yhteydessä.

Lämmönkulutus oli pienentynyt eniten Koulussa3 (41 %), jossa ilmanvaihto- ja lämmi-

tysjärjestelmä oli uusittu ja rakennus oli liitetty kaukovalvontajärjestelmään. Toiminnan

muutoksesta tässä kohteessa ei ole tietoa.

Tämän lisäksi kolmessa kohteessa lämmönkulutus oli pienentynyt yli 30 %: Kirjastossa

(35 %), Koulussa6 (32 %) ja Uimahallissa (31 %). Kirjastossa oli säädetty ilmanvaihto

ja tarkistettu sen käyntiaikoja. Myös kaukovalvontalaitteet oli uusittu. Toiminta ei ollut

muuttunut. Koulussa6 oli lisätty lämmöntalteenotto, uusittu lämmityksen säätöautoma-

tiikka, öljypoltin ja kattila sekä asennettu termostaattiset patteriventtiilit ja pattereille oli

tehty perussäätö. Uimahalli oli uusittu kokonaan, ainoastaan runkorakenne ja vesikatto

säilyivät entisellään. Lämmönkulutuksen pieneneminen tässä kohteessa on erityisen

ilahduttavaa siksi, että käyttäjämäärät olivat kasvaneet puolitoistakertaisiksi peruskorja-

uksen jälkeen.

Sähkönkulutus tutkimuskohteissa

Sähkönkulutus oli yleensä kasvanut, joissakin kohteissa jopa kolminkertaiseksi. Keski-

määrin sähkönkulutus oli kasvanut 63 % (prosenttilukujen keskiarvo). Kolmessa koh-

teessa (Koulu13, Koulu3 ja Uimahalli) sähkönkulutus oli hieman pienentynyt (enintään

11 %). (Kuva 3.2, Uimahalli ei kuvassa.) Tässä kappaleessa on pyritty löytämään syitä

sähkönkulutuksessa tapahtuneille muutoksille.

Page 12: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

12

Kohteessa, jossa sähkönkulutus oli pienentynyt eniten (Koulu13, 11 %), oli korjattu

lämmitysjärjestelmää sekä uusittu ilmanvaihto- ja sähköjärjestelmä kokonaan. Tietotek-

niikkajärjestelmänkään lisääminen ei ollut vaikuttanut sähkönkulutusta nostavasti. Toi-

nen kohteista (Uimahalli), joissa sähkönkulutus oli pienentynyt, oli uusittu lähes täydel-

lisesti. Kolmannessa kohteessa (Koulu3) oli uusittu ilmanvaihto- ja lämmityksensäätö-

järjestelmä ja rakennus oli liitetty kiinteistöjen kaukovalvontajärjestelmään. Vastauksien

perusteella ei voi päätellä, mitkä syyt erityisesti olivat vaikuttaneet sähkönkulutusta

pienentävästi.

Kuva 3.2. Sähkönkulutus kohteissa ennen ja jälkeen peruskorjauksen. Uimahallissa

sähkönkulutus oli ennen peruskorjausta 45 kWh/m³, jälkeen 43kWh/m³.

Suhteellisesti eniten sähkönkulutus oli kasvanut Monitoimitalossa, toiseksi eniten Kou-

lussa4, johon oli mm. lisätty hissi ja kolmanneksi eniten Koulussa7. (Vanhustentalon

sähkönkulutuksen nousua ei voida tässä suhteessa tarkastella, koska ennen peruskorja-

usta sähkönkulutuslukema sisälsi vain kiinteistösähkön.) Näiden kohteiden lisäksi säh-

könkulutus oli noussut yli kaksinkertaiseksi Päiväkodissa3. Lähes kaksinkertaiseen

sähkönkulutukseen oli peruskorjauksen jälkeen päädytty myös Koulussa1.

Monitoimitalon sähkönkulutuksen jyrkkää nousua on vaikea selittää peruskorjauksessa

tehtyjen toimenpiteiden perusteella. Monitoimitalon peruskorjauksessa oli rakennettu

rakennusautomaatiolaitteet. Vertaamalla kulutuksia ennen peruskorjausta ja toisena

vuonna sen jälkeen näyttäisi sähkönkulutus nousseen kuitenkin vain kaksinkertaiseksi.

Mahdollisesti – kuten käytännöstä tunnetusti voi tapahtua – ensimmäisenä vuonna kor-

jauksen jälkeen säädöt eivät vielä toimineet ideaalisesti. Peruskorjauksessa mukana ol-

leita ei valitettavasti tavoitettu tarkempien tietojen selvittämistä varten ennen loppura-

portin viimeistelyä.

0

5

10

15

20

25

30

35

40

Koulu1

Koulu2

Koulu3

Koulu4

Koulu5

Koulu6

Koulu7

Koulu8

Koulu9

Koulu10

Koulu11

Koulu12

Koulu13

Päivä

koti1

Päivä

köti2

Päivä

koti3

Kirjas

to

Toim

italo

Moni

toim

italo

Vanhu

sten

talo

Tsto

ja te

rvey

skes

kus

Säh

n o

min

ais

ku

lutu

s, kW

h/m

3,a

Ennen

Jälkeen

2.vuosi

1) Lisätty mm. hissi ja ruuanvalmistuskeittiö

2) Ei tietoa sähkönkulutuksesta ennen korjausta

3) Todennäköisesti virhe kulutusseurannassa

4) Ennen korjausta vain kiinteistösähkö, jälkeen kaikki

2)2)

4)

1)

3)

Page 13: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

13

Koulussa4 sähkönkulutuksen kasvuun (+188 %) on ilmeiset syyt: kouluun oli lisätty

hissi, valmistuskeittiöön tuli paljon uusia laitteita, muihinkin tiloihin lisättiin paljon

sähköä kuluttavia laitteita, kuten purunpoisto ja atk-laitteita. Myös tilojen käyttöaste

kasvoi.

Koulussa7 sähkönkulutuksen kasvuun (+158 %) on osaltaan varmasti vaikuttanut asun-

tojen ottaminen luokkahuonekäyttöön. Toinen sähkönkulutuksen kasvua selittävä syy

Koulussa7 on vuoroittaiskäyttökattilan käyttöönotto peruskorjauksen jälkeen; kattilaa

lämmitetään toisinaan ja kesäisin sähköllä.

Päiväkodissa3 (+139 %) oli lisätty paljon sähköä kuluttavia laitteita laitoskeittiön uusi-

misen yhteydessä. Myös ilmastointilaitteita oli lisätty siirryttäessä painovoimaisesta

ilmanvaihdosta koneelliseen. Tilojen käyttötarkoitusta oli osittain muutettu, kun osasta

neuvolatiloja tehtiin päiväkotitilaa kehitysvammaisten lasten ryhmälle. Kehitysvammai-

sia varten oli myös lisätty poreallas, joka lisää sähkön kulutusta kohteessa.

Koulussa1 (+89 %) oli siirrytty painovoimaisesta ilmanvaihdosta koneelliseen (sisäil-

mastoa haluttiin parantaa ja ilmastointijärjestelmä oli vanhentunut ja huonokuntoinen).

Sähköä kuluttavien laiteiden määrä oli lisääntynyt, samoin ilmanvaihdon ilmamäärät.

Koulussa2 (+57 %) tekniikka oli uusittu kokonaan ja sitä oli lisätty huomattavasti. Il-

manvaihdon ilmamääriä oli lisätty runsaasti (tavoitteena mm. sisäilmaston parantami-

nen).

Niissä kohteissa (esim. Koulu4, Koulu7, Päiväkoti3, Kartano), joissa rakennuksen käyt-

töaste oli kasvanut, sähkönkulutuksen kasvu on helposti selitettävissä. Tosin kahdessa

kohteessa (Koulu13 ja Uimahalli), jossa käyttöaste oli kasvanut, sähkönkulutus oli jopa

laskenut. Lähes puolessa kohteista (43 %) sähköä kuluttavia laitteita, kuten ATK-laittei-

ta, oli lisätty merkittävästi. Joihinkin kohteisiin (Vanhustentalo, Koulu4, Päiväkoti3,

Kartano) oli lisätty paljon sähköä kuluttava tila, mikä selittää sähkönkulutuksen kasvun.

Monessa kohteessa painovoimainen ilmanvaihto oli vaihdettu koneelliseen ilmanvaih-

toon, mikä osaltaan lisää sähkönkulutusta. Yleensä oli vähintään lisätty ilmanvaihtoko-

neita, jos muuta sähkönkulutuksen kasvua selittävää tekijää ei löytynyt. On merkille

pantavaa, että ilmanvaihtokoneiden tai ilmastointitavan muutos ei peruskorjauksissa

välttämättä ole johtanut sähkönkulutuksen merkittävään kasvuun. Vaikka sähkönkulu-

tuksen laskuun vaikuttavia toimenpiteitäkin oli tehty, peittyivät näiden vaikutukset säh-

könkulutusta lisäävien toimenpiteiden ja muutosten alle.

Page 14: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

14

Yhteenveto sähkönkulutuksen muutosten syistä:

käyttöajat pitenivät, tilojen käyttöaste tai käyttäjämäärä kasvoi

rakennukseen lisättiin sähkönkulutukseltaan merkittävä tila

sähköä kuluttavien laitteiden määrä lisääntyi huomattavasti

ilmastointikoneita lisätty

siirrytty painovoimaisesta ilmanvaihdosta koneelliseen

sisävalaistuksen ohjaustapaa muutettu tai valaisimet uusittu (oletetaan vaikutta-

van sähkönkulutusta laskevasti)

Page 15: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

15

LIITE 3. Case 1: Vuokrakerrostalon energiatehokas remont-ti Oulaisissa (Kurvinen)

Kuva 4.1. Case-kohde ennen perusparannusta ja sen jälkeen.

Tämä EPAT-tutkimushankkeen osaselvitys toteutettiin Oulunseudun ammattikorkea-

koulussa. Selvityksen kenttätyön tekivät insinööri (amk) Jenni Matilainen ja insinööri

(amk) Kimmo Aho. Kokonaisuuden toteutuksesta vastasi Martti Hekkanen. Tutkimuk-

sessa selvitettiin vuosina 1995–1996 osana ympäristöministeriön Remontti-ohjelmaa

toteutetun asuinkerrostalon energiatehokkaan korjauksen kokemuksia. Selvityksen pää-

paino kohdistui seinäpuhalluksella toteutetun huoneistokohtaisen ilmanvaihtojärjestel-

män toimivuuteen. Lisätietoja tästä osaselvityksestä saa Aho et al. (2009) raportista

”Energiakorjausten pitkäaikaistoimivuus asuinkerrostalossa”.

Tutkimuskohde sijaitsee Oulaisissa Pohjois-Pohjanmaalla. Kohde on vuonna 1971 ra-

kennettu asuinkerrostalo, jossa tehtiin vuosina 1995–1996 mittava energiatehokkuutta

parantava korjaus. Perusparannuksessa kohteen ulkoseiniin ja yläpohjaan asennettiin

lisälämmöneristys, ikkunat ja parvekeovet uusittiin ja rakennuksen talotekniikka uusit-

tiin kokonaisuudessaan. Rakennukseen asennettiin seinäpuhalluksella toimiva huoneis-

tokohtainen tulo- ja poistoilmanvaihtojärjestelmä. Energiatehokkuutta parantavien kor-

jaustoimenpiteiden osuus kokonaishinnasta oli noin 13 %. Perusparannuksen tuloksena

kohteen vuotuinen lämmitysenergiankulutus aleni tasolta 225 kWh/htm2 tasolle 125

kWh/htm2, vedenkulutus aleni tasolta 233 l/hlö, vrk tasolle 100 l/hlö, vrk ja vuotuinen

kokonaissähkönkulutus aleni tasolta 70 kWh/htm2 tasolle 50 kWh/htm

2. Sisäilman laatu

oli perusparannuksen jälkeen hyvä ja asukkaat olivat perusparannukseen tyytyväisiä.

Kohteesta oli käytettävissä kulutustiedot vuosilta 1998–2007. Normeerattu lämmi-

tysenergian kulutus seurantajaksolla oli keskimäärin 139 kWh/htm2. Energiatehokkuu-

1972 1996

Page 16: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

16

den parantumisen pysyvyyttä voidaan pitää varsin hyvänä, vaikka seuranta-ajanjakson

kulutus oli hieman kasvanut välittömästi perusparannuksen jälkeen saaduista lukemista.

Vedenkulutus oli seurantajaksolla keskimäärin 101 l/hlö, vrk. Vedenkulutus on viime

vuosina ollut kasvussa. Asuntokohtaiset kulutusmittarit alensivat aluksi korkeaa kulu-

tusta 65 %. Suurin syy kulutuksen alenemiselle oli kylpyammeiden korvaaminen suih-

kuilla.

Sähkönkulutus sisältää sekä kiinteistösähkön että huoneistojen kotitaloussähkön osuu-

den. Kulutus on pysynyt seurantajaksolla samalla tasolla kuin välittömästi perusparan-

nuksen jälkeen. Kuitenkin myös sähkönkulutus on viime vuosina kasvanut. Lisäänty-

neen sähkönkulutuksen syitä ei seurantatutkimuksessa saatu selvitettyä.

Ilmanvaihtokoneen lämmöntalteenoton lämpötilahyötysuhde vaihteli välillä 50–80 %.

Lämpötilahyötysuhde on pysynyt suunnitelmien mukaisella tasolla. Vaikka teknisesti

laitteella on saavutettu asetettu tavoite, todettiin tulo- ja poistoilmanvaihdon käyttöön

liittyvän paljon ongelmia. Asukkaat eivät tiedä, miten laitetta pitää huoltaa ja virheelli-

sen huollon vuoksi laitteet toimivat huonosti.

Vakavia rakenteisiin liittyviä ongelmia ei todettu. Ulkoseinillä olevat ilmanvaihtojärjes-

telmän suojakotelot eivät olleet aiheuttaneet julkisivuihin vaurioita. Sisäilman laadussa

ei havaittu merkittäviä ongelmia. Asukkaat olivat sisäilmaston laatuun tyytyväisiä.

Energiatehokkaassa kerrostalokorjauksessa rakenteiden korjaaminen on helpompi tehdä

kuin talotekniikan korjaaminen. Laadunvarmistus ja vaikutusten jatkuva seuranta pitää

sisällyttää osaksi hankkeen rakennuttamista. Lämpökamerakuvauksella pystytään ikku-

noiden ja ulko- ja parvekeovien korjauksessa varmistamaan asennuksen onnistuminen.

Jos korjaus kohdistuu ilmanvaihtojärjestelmään, pitää varmistaa, että asukkaat osaavat

käyttää ja huoltaa laitetta oikealla tavalla.

Tutkimuskohde

Tutkimuskohde on vuonna 1971 rakennettu kuusikerroksinen kerrostalo, joka sijaitsee

Oulaisissa osoitteessa Kangaskatu 4. Kohde edustaa tyypillistä elementtirakentamisen

aikakaudella vuosina 1960–1977 rakennettua asuinkerrostaloa. Toimenpiteet, joita koh-

teessa tehtiin, ovat sellaisia, joita rakennetussa kerrostalokannassa tullaan todennäköi-

sesti tekemään myös tulevaisuudessa.

Kohteessa on 29 asuinhuoneistoa. Huoneistoista viisi on yksiöitä, kuusi kaksioita ja

loput 18 kolmioita. Asuntojen huoneistoala on yhteensä 1 833 htm2. Kellarikerroksessa

sijaitsevat varastotilat, pyykki- ja kuivaustilat ja lämmönjakohuone lämmönjakokeskuk-

sineen. Kohteessa on hissi.

Page 17: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

17

Kohteessa tehtiin vuosina 1995–1996 perusparannus, jonka yhteydessä parannettiin

rakennuksen energiatehokkuutta ja sisäilmaston laatua. Tärkeimpiä toteutettuja toimen-

piteitä olivat:

ulkoseinien ulkopuolinen lisälämmöneristäminen (70 mm) ja uuden pintaverho-

uksen asennus

ikkunoiden ja parvekeovien uusiminen

kattorakenteen muuttaminen harjakatoksi ja siinä yhteydessä tehty yläpohjan li-

sälämmöneristäminen (200 mm)

lämmönvaihtimien uusiminen

asuntokohtaisen tulo- ja poistoilmanvaihtojärjestelmän rakentaminen seinäpu-

hallustekniikalla ja lämmöntalteenotolla varustettuna

käyttövesiputkiston, viemäreiden ja vesi- ja viemärikalusteiden uusiminen

sähköjärjestelmän uusiminen

huoneistojen ja yhteistilojen pintarakenteiden ja kalusteiden uusiminen.

Energiatehokkuutta parantavien korjaustoimenpiteiden osuus kokonaishinnasta noin 13

%.

Energian- ja vedenkulutus vuosina 1998–2007

Lämmönkulutus on normeerattu vastaamaan vuotuista Oulun normaalia lämmitystarve-

lukua. Kulutustietojen vertailussa käytetään kohteen huoneistopinta-alaa (htm2). Seuran-

tajakson kulutukset esitetään kuvissa 8–10. Ennen perusparannusta keskimääräinen vuo-

tuinen kulutus oli:

lämmitysenergia 415 MWh/vuosi (225 kWh/htm2, a)

sähkönkulutus: 129,9 MWh/vuosi (70 kWh/htm2, a)

vedenkulutus: 6 031 m3/vuosi (233 l/hlö, vrk)

Lämmitysenergian kulutus

Lämmitysenergian kulutukseen vaikuttavat varsinainen lämmitysjärjestelmä, huoneisto-

kohtainen mukavuuslattialämmitys ja ilmanvaihtokoneiden jälkilämmityspatterit. Ennen

perusparannusta lämmitysenergiankulutus oli 225 kWh/htm2.

Page 18: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

18

Kuva 4.2. Normeerattu lämmitysenergian kulutus kohteessa ennen perusparannusta

sekä vuosina 1998–2007, yksikkönä kWh/htm2, a.

Lämmitysenergian kulutus on vaihdellut vuosittain melko paljon. Keskimäärin kulutus

on seurantajaksolla ollut 139 kWh/htm2. Normeerattu lämmitysenergian kulutus vuosina

1998–2007 on esitetty kuvassa 4.2. Kulutuspiikkejä ovat etenkin vuodet 2002, 2006 ja

2007. Näinä vuosina kulutus oli korkeampaa kuin muina vuosina keskimäärin. Kauko-

lämmön lämmönsiirtimet menettävät lämmönluovutustehoaan ajan saatossa. Huonekoh-

taisten ilmanvaihtokoneiden lämmöntalteenottokennoja ei ilmeisesti ole puhdistettu. Jo

nämä kaksi lämmönjohtumiseen vaikuttavaa asiaa voivat vaikuttaa lämmitysenergian-

kulutuksen lisääntymiseen.

Sähkönkulutus

Kokonaissähkönkulutus oli ennen perusparannusta 71 kWh/htm2. Seurantajaksolla

1998–2007 sähkönkulutus oli 50 kWh/htm2. Kulutus on vähentynyt keskimäärin 29 %.

Euroiksi muutettuna tämä on vuosien 1998–2007 keskimääräisen sähkön hinnan 6,4

c/kWh mukaisesti noin 2 430 euroa vuodessa. Säästö on merkittävä. Hyvään tulokseen

on päästy vaihtamalla vanhat energiasyöpöt kodinkoneet uusiin energiatehokkaisiin

laitteisiin ja asentamalla huoneistokohtainen sähkönmittaus. Vaikka kohteeseen asennet-

tiin perusparannuksen yhteydessä huoneistokohtaiset ilmanvaihtokoneet, jotka lisäsivät

sähkönkulutusta, on kulutus silti pudonnut selvästi. Tämä kertoo asukkaiden muuttu-

neista asenteista sähkönkulutusta kohtaan sekä siitä, että peruskodinkoneiden energiata-

loudellisuus on kehittynyt selvästi. Kuvassa 4.3 esitetään kohteen kokonaissähkönkulu-

tus seurantajaksolla.

225

127 133 132 129

152141 138 142 150 151

0

50

100

150

200

250

ENNENPERUSP.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

[kW

h/h

tm2,

a]Lämmitysenergian kulutus

Page 19: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

19

Kuva 4.3. Kokonaissähkönkulutus kohteessa ennen perusparannusta sekä seurantajak-

solla 1998–2007, yksikkönä kWh/htm2, a.

Sähkönkulutus on aaltoillut perusparannuksen jälkeen paljon. Vuosien 2001–2002 kulu-

tuslukemat eivät ole vertailukelpoisia, koska mittausjakso on poikkeava. Sähkönkulu-

tuksen kasvu näyttää jatkuvan. Kasvun syynä voi olla kodinelektroniikan lisääntyminen

ja tehokkaiden tietokoneiden yleistyminen.

Vedenkulutus

Vedenkulutus on ennen perusparannusta edeltävältä tasolta vähentynyt yli 60 % eli kes-

kimäärin 3 700 m3/vuosi. Perusparannuksen yhteydessä vesikalusteet vaihdettiin vettä

säästäviin kalusteisiin ja asuntoihin asennettiin huoneistokohtainen vedenmittaus. Asu-

kas voi siis itse seurata omaa vedenkulutustaan ja säästää näin vesimaksuissa. Kuvassa

4.4 esitetään vedenkulutus kohteessa seurantajaksolla.

71

52 54

49

22

64

4547

5558 57

0

10

20

30

40

50

60

70

80

ENNEN

PERUSP.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

[kW

h/h

tm2 , a

]

Sähkön kokonaiskulutus

Page 20: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

20

Kuva 4.4. Vedenkulutus kohteessa ennen perusparannusta sekä seurantajaksolla 1998–

2007, yksikkönä l/hlö, vrk.

Käyttöveden kulutuksen voimakas vähentyminen on tärkein syy rakennuksen energiate-

hokkuuden paranemiseen. Lämmitysenergian kokonaiskulutuksen alenemisesta, joka on

86 kWh/htm2 vuodessa, lämpimän käyttöveden osuus on 26 kWh/htm

2 vuodessa eli 30

%.

Johtopäätökset

Miten asuinkerrostalojen energiatehokkuutta voidaan parantaa?

Tehty selvitys osoittaa, että matalaenergiakorjausrakentaminen toimii asuinkerrostalojen

perusparantamisessa. Useimmat toimenpiteet ovat myös taloudellisesti kannattavia, kun

ne tehdään osana muuta korjausta. Julkisivujen korjauksessa kannattaa lähes poikkeuk-

setta parantaa rakenteen lämmöneristystä. Putkistojen linjasaneerauksissa asuntoihin

kannattaa asentaa kulutusmittarit erityisesti silloin, jos rakennuksen vedenkulutus on

ollut poikkeuksellisen suurta.

Onnistuminen edellyttää rakennuttamisen ja suunnittelun käytäntöjen muuttamista. Seu-

rantatutkimuksessa todettiin kokonaisuuden toimivan kohtuullisen hyvin, mutta uuden

järjestelmän käytön opettaminen asukkaille on oltava jatkuva prosessi. Uuden ilman-

vaihtojärjestelmän avulla saavutettava sisäilman laadun paraneminen menetetään, kun

laitetta ei osata käyttää ja huoltaa. Kohteessa suurin syy tähän on valittu laite, jonka

huollettavuus on erittäin huono. Suodattimien vaihtaminen edellyttää kansiruuvien

avaamisen, joka ei kuulu tavallisen asukkaan tehtäviin. Ilmanvaihtokone on myös asen-

nettu huollon kannalta erittäin hankalasti.

129

84 82

96 93

120110

102 106 107117

0

20

40

60

80

100

120

140

ENNENPERUSP.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

[kW

h/h

tm2,

a]

Käyttöveden ominaiskulutus

Page 21: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

21

Alapohja

Asuinkerrostalojen kohdalla ei alapohjan tai kellarin rakenteiden lämmöneristyksen

parantaminen merkittävästi vaikuta rakennuksen energiatehokkuuteen. Kuivatusjärjes-

telmän rakentamisen yhteydessä kellarin ulkoseinään kannattaa aina asentaa samalla

lisälämmöneristys. Jos alapohja tai alavälipohja joudutaan vaurion vuoksi uusimaan,

kannattaa uusi rakenne tehdä mahdollisimman energiatehokkaaksi.

Ulkoseinät

Ulkoseinien ulkopuolinen lisälämmöneristäminen on taloudellisesti kannattava toimen-

pide, jos ulkoverhous joudutaan vaurioiden vuoksi uusimaan tai perusteellisesti kunnos-

tamaan. Ulkopuolinen lämmöneristys parantaa rakenteen lämpö- ja kosteusfysikaalista

toimintaa. Lisälämmöneristys paksuntaa rakennetta. Korjauksen yhteydessä voidaan

rakennuksen ulkoista ilmettä muuttaa. Lisälämmöneristys on tehokas erityisesti pää-

tyseinissä, joissa on vähän ikkuna- ja oviaukkoja. Jotta lisälämmöneristys toimii mak-

simaalisen hyvin, pitää myös ikkunoiden pielet lisäeristää sekä rakennuksen lämmitys-

ja ilmanvaihtojärjestelmä säätää uudelleen.

Sisäpuolisen lisälämmöneristyksen riskinä on rakenteen ulkopinnan lämpötilan laske-

minen. Jos sisäpuolista lisälämmöneristystä käytetään, pitää rakenteen lämpö- ja koste-

usfysikaalinen toimivuus varmistaa.

Yläpohja

Yläpohjan yläpuolinen lisälämmöneristys on kannattava toimenpide, jos rakennuksen

vesikatto joudutaan uusimaan ja lämmöneristeen määrää voidaan kattomuodon muutok-

sen yhteydessä merkittävästi lisätä. Erityisen tehokas toimenpide on 1960- ja 1970-

luvuilla tyypillisen kolmikerroksisten lamellitalojen korjausten yhteydessä. Lisäläm-

möneristämisen yhteydessä voidaan yläpohjassa mahdollisesti olevat piilevät kosteus-

vauriot havaita ja korjata.

Yläpohjan lisälämmöneristystä ei yleensä voida tehdä ellei samalla katon harjakorkeutta

lisätä, koska yläpohjan tuulettuvuuden tulee aina säilyä riittävänä.

Yläpohjan alapuolinen lisälämmöneristäminen ei asuinkerrostaloissa ole yleensä kan-

nattava toimenpide.

Ikkunat

Ikkunoiden uusiminen parantaa voimakkaasti rakennuksen energiatehokkuutta erityises-

ti 1960-luvun alun asuinkerrostaloissa. Samalla, kun ikkunat vaihdetaan mahdollisim-

man energiatehokkaiksi, voidaan myös ikkunoiden kokoa haluttaessa pienentää. Ikku-

noiden uusiminen on aina kokonaisuus, jossa pitää ottaa huomioon myös ääneneristä-

vyys ja asumisviihtyisyys.

Page 22: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

22

Useimmissa suomalaisissa asuinkerrostaloissa ikkuna on osa rakennuksen ilmanvaihto-

järjestelmää. Vasta vuoden 2005 jälkeen rakennetuissa kohteissa on koneellinen tulo- ja

poistoilmanvaihtojärjestelmä lämmöntalteenotolla varustettuna.

Ikkunaan kohdistuu usein voimakas säärasitus. Ikkunoissa esiintyy runsaasti kosteus-

vaurioita. Uusimisen yhteydessä pitää aina tarkastaa pielirakenteiden kunto, jolloin kos-

teus- ja homevauriot on helppo korjata.

Ikkunoiden uusiminen on kannattava toimenpide, jos vanha ikkuna on huonokuntoinen.

Mitä paremmassa kunnossa ikkuna on, sitä tarkemmin pitää uusimispäätöstä harkita.

Hyvin kunnossapidetty, vahvasta puusta tehty ikkuna on mahdollista korjata myös kun-

nostamalla. Kunnostuksen yhteydessä voidaan ikkunan energiatehokkuutta parantaa

tiivistämällä.

Parvekeovien uusiminen tehdään usein parveke- tai ikkunakorjauksen yhteydessä. Kak-

silehtisen parvekeoven korvaaminen hyvän u-arvon omaavalla uudisovella, on lasken-

nallisesti kannattavaa. Käytännössä parvekeoven energiatehokkuus riippuu ennen muuta

asennuksen onnistumisesta.

Sekä ikkunoiden että ulko-ovien rakennuttamiseen tulee liittää laadunvarmistusmittaus.

Lämpökameralla tulee varmistaa, että ikkunoiden ja parvekeovien tiivistykset rakentei-

siin tehdään huolellisesti ja ikkunat muiltakin osin täyttävät niille luvatut tekniset omi-

naisuudet.

Lämmitysjärjestelmä

Lämmitysjärjestelmä voidaan jakaa lämmöntuotantojärjestelmään ja lämmönjakojärjes-

telmään. Lämmöntuotantolaitteiden taloudellinen käyttöikä on noin 20–30 vuotta. Tä-

män jälkeen ne on järkevää uusia mahdollisimman energiatehokkaiksi.

Lämmönsäätöjärjestelmän taloudellinen käyttöikä on lyhyempi. Säätöautomatiikka van-

henee nopeasti. Lämmöntuotantojärjestelmän uusimisen yhteydessä uusitaan siten myös

säätöjärjestelmä ohjelmistoineen ja päätelaitteineen.

Lämmitysjärjestelmän valinta on tehtävä tapauskohtaisesti. Jos kohteessa on mahdolli-

suus käyttää kaukolämpöä, on se yleensä luonteva valinta. Jos kaukolämpöön liittymi-

nen ei ole mahdollista, on vaihtoehtoja runsaasti:

Öljykeskuslämmitys voidaan uusia ja samalla siihen voidaan yhdistää aurinkoke-

räimet, joilla voidaan osa käyttöveden lämmityksestä hoitaa.

Pellettilämmitys on kotimaista polttoainetta hyödyntävä vaihtoehto, joka vaatii

kuitenkin keskimääräistä suuremman polttoainevaraston.

Maalämpöpumppu ja ilma-vesi –lämpöpumppu ovat pienemmissä rakennuksissa

käyttökelpoisia valintoja.

Page 23: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

23

Sähkölämmitys oikein mitoitetulla ilmalämpöpumpulla tuettuna on toimiva rat-

kaisu hyvin eristetyssä pientalossa.

Kotimaista polttoainetta, puuta tai pellettiä, käyttävä tukilämmitysjärjestelmä

kannattaa aina rakentaa ainakin sähkölämmityksellä varustettuun kohteeseen.

Asuntokohtainen lämmönkulutuksen mittaus on tehokas keino vaikuttaa asukkaiden

käyttötottumuksiin. Kulutusmittaus on helppo toteuttaa sähkölämmityskohteissa. Ker-

rostaloihin soveltuvaa kulutusmittausjärjestelmää ei Suomessa ole käytössä.

Vesi- ja viemärijärjestelmä

Perusteellisen putkistokorjauksen yhteydessä vesi- ja jätevesijärjestelmän kalusteet kan-

nattaa aina uusia vettä vähän kuluttaviin. Asuntokohtaisen kulutusmittauksen asentami-

nen on järkevää, jos vedenkulutus on ennen perusparannusta ollut korkea (yli 200 l/hlö,

vrk) eikä teknistä syytä korkeaan kulutukseen ole todettu.

Ilmanvaihtojärjestelmä

Painovoimaisen ilmanvaihtojärjestelmän muuttaminen koneelliseksi lisää lämmitys- ja

sähköenergiankulutusta. Jos koneelliseen järjestelmään asennetaan jäteilman lämmön-

talteenotto, voidaan lisääntynyt lämmitysenergiankulutus pystyä kompensoimaan. Kor-

jauskohteen ilmanvaihtojärjestelmän suunnittelu, toteutus ja käytön opastus on vaativa

toimenpide.

Sähköjärjestelmä

Rakennuksen ja asuntojen sähköteknisen varustetason merkitys korjausrakentamisessa

tulee lisääntymään. Ilmanvaihtojärjestelmiin liittyvät sähköiset jälkilämmitysvastukset

lisäävät sähkönkulutusta. Jos laitteen ominaissähkötehoon ei kiinnitetä huomiota, myös

puhaltimien sähkönkulutus on merkittävä kulutuslisä. Huoneistojen sähkötekninen va-

rustetaso lisääntyy jatkuvasti. Laitteiden valinnassa sähkönkulutuksen merkitystä tulee

korostaa. Korjausrakentamisen liittyvän sähköjärjestelmien uusimisen energiataloudelli-

suuden ohjaus tulee ohjeistaa nykyistä paremmin.

Miten energiatehokkuutta parantavien toimenpiteiden vaikuttavuus ja hinta voi-

daan arvioida?

Pääsääntönä voidaan pitää, että kasvukeskuksissa energiatehokkaiden korjausten kan-

nattavuus on yleisesti hyvä tai tyydyttävä. Jos kohde sijaitsee paikkakunnalla, missä

asuntojen tarve vähenee, pitää korjausten taloudellisuus arvioida aina hyvin huolellises-

ti.

Korjaustoimenpiteen taloudellisuuden tai edullisuuden arviointi tulee perustua toimen-

pideohjelman arviointiin. Toimenpideohjelma muodostuu yksittäisistä toimenpiteistä.

Yksittäisillä toimenpiteillä on keskinäisiä riippuvuuksia, minkä vuoksi on vaarallista

Page 24: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

24

tehdä päätöksiä pelkästään niiden pohjalta. Koska niidenkin kohdalla on useita vaihto-

ehtoisia tapoja, pitää taloudellisuuden mittaus silti tehdä.

Investoinnin taloudellisuus riippuu seuraavista tekijöistä:

investoinnin hankintameno

investoinnin huolto- ja kunnossapitokustannukset sekä energiakustannukset

laskentakorko

investoinnin vaikutus energiankulutukseen eli energiansäästö

energian hinta sekä sen kehitys tulevaisuudessa ja

taloudellinen pitoaika.

Page 25: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

25

LIITE 4. Case 2: Vuokrakerrostalon perusparannus Tampe-reella (Kurvinen)

Kuva 5.1. Case-kohde perusparannuksen jälkeen. Rakennus oli alun perin kolmi-

kerroksinen. Rakennusta on korotettu osittain. Maanpäälliskerrokseen on raken-

nettu asuntoja ja varastotiloja on siirretty piharakennukseen.

Tutkimuskohde

Kitiniitynkadun case-kohteen rakennukset edustavat hyvin tyypillistä 1970-luvun alku-

puolen kerrostalotuotantoa. Tutkimuskohteena on kaksi Tampereen Vuokratalosäätiön

(VTS) vuonna 1971 samalle tontille rakennuttamaa vuokra-asuinkerrostaloa, jotka ovat

edelleen Vuokratalosäätiön omistuksessa. Kerrostaloihin tehtiin vuosina 2004–2005

mittava perusparannus, jonka yhteydessä tehtiin merkittäviä energiansäästötoimenpitei-

tä. Case-kohde on toiminut myös SUREURO-projektin (Suomen Kiinteistöliitto 2010)

Suomen pilot-kohteena hankesuunnittelu- ja suunnitteluvaiheen energiansäästötoimen-

piteiden sekä ylläpitokustannusten tarkastelussa.

Kohde sijaitsee Tampereen Multisillan kaupunginosassa osoitteessa Kitiniitynkatu 2.

Elementtirakenteisissa kerrostaloissa oli lähtötilanteessa kolme asuinkerrosta sekä kella-

rikerros. Tuolloin hissittömissä taloissa oli yhteensä 54 asuntoa. Kuvassa 5.2 näkyy ta-

lon 1 luoteenpuoleinen julkisivu ennen peruskorjausta.

Page 26: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

26

Kuva 5.2. Kitiniitynkatu 2, talo 1, julkisivu luoteeseen: tilanne ennen peruskorjausta

(Kaihari 2003a).

Perusparannushankkeen yhteydessä tarkasteltiin erilaisia ratkaisuja rakennusten energi-

ankulutuksen vähentämiseksi sekä tutkittiin ratkaisujen energiataloudellista kannatta-

vuutta. Energiataloudellisen kannattavuuden laskemiseksi selvitettiin eri energiansäästö-

toimenpiteillä saavutettavat laskennalliset energiansäästöt sekä arvioitiin toimenpiteiden

toteuttamisen aiheuttamat lisäkustannukset. Koska rakennukset toimivat SUREURO-

projektin pilot-kohteena, oli hankkeen suunnitteluvaiheen aikana tavoitteena selvittää,

minkälaisilla toimenpiteillä päästäisiin SUREURO-projektin tavoitteeksi asetettuun 40

% energiansäästöön. (Heljo & Peuhkurinen 2004, s. 2.)

Yksi tavoite oli mahdollistaa vanhusten asuminen perusparannetussa kohteessa. Näin

ollen hissien lisääminen taloihin oli lähes välttämätöntä. Hissien kustannusrasitusta ne-

liötä kohden pyrittiin vähentämään lisäämällä asuntoja ja asuinneliöitä. Asuinneliöiden

lisäys toteutettiin rakentamalla taloihin korotuskerroksia ja ottamalla kellarikerroksen

tiloja asuinkäyttöön. Pyrkimystä voimakkaisiin energiansäästötoimenpiteisiin peruspa-

rannuksen yhteydessä edesauttoi tavoite siitä, että vanhat kunnallistekniikan liittymät

olisivat riittävät myös perusparannuksen jälkeisessä tilanteessa. Vanhojen rakennusten

perusparantamisen oletettiin myös olevan ympäristöystävällisempää kuin rakennusten

purkamisen kokonaan sekä niiden tämän jälkeisen uudelleen rakentamisen. (Heljo &

Peuhkurinen 2004, s. 2.)

Jotta energiansäästötoimenpiteiden toteuttaminen olisi kannattavaa, on taustalla oltava

muista syistä lähtöisin oleva tarve perusparannuksen tekemiselle. Tavallisesti tarve pe-

rusparannukselle syntyy rakennuksen ollessa 30–40 vuotta vanha. Tutkitun case-

kohteen tapauksessa rakennusten ikä ennen perusparannusta oli 33 vuotta. Perusparan-

nushankkeen suunnitteluvaiheessa valittiin ensin rakennusten energiatalouteen oleelli-

sesti vaikuttaville rakenteille ja järjestelmille niin sanotut perusratkaisut lähinnä raken-

nusteknisin ja -fysikaalisin sekä arkkitehtonisin perustein. Tämän jälkeen tutkittiin eri-

laisten energiataloudellisten lisävalintojen kannattavuutta ja laadittiin niiden keskinäi-

nen valintajärjestys. Energiataloudellisilla lisävalinnoilla tarkoitetaan rakennuksen

energiatehokkuuden parantamiseksi tehtäviä toimenpiteitä, joilla voidaan parantaa ra-

kennusten energiatehokkuutta perusratkaisujen tasosta.

Tarkastellut perusparannuksen ratkaisuvaihtoehdot

Hankkeen suunnitteluvaiheen tarkasteluissa oli mukana neljä eri ratkaisuvaihtoehtoa: 1.

rakennukset ennen peruskorjausta, 2. molempien talojen korotus (Arkkitehtitoimisto

Kaihari & Kaihari Ky), 3. molempien talojen korotus (tutkija Keränen) sekä 4. molem-

Page 27: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

27

pien talojen korotus ja yksi lisärakennus (tutkija Keränen). Toteutettavaksi valittiin

Arkkitehtitoimisto Kaihari & Kaihari Ky:n suunnittelema ratkaisu 2.

Toteutetun ratkaisuvaihtoehdon mukaisesti taloa 1 korotettiin puoleen väliin asti kah-

della kerroksella ja taloa 2 korotettiin kokonaan yhdellä kerroksella. Perusparannuksen

myötä rakennusten yhteenlaskettu kokonaistilavuus nousi 15 310 m3:stä 20 260 m

3:iin.

Samalla kokonaispinta-ala nousi 5 468 brm2:sta 7 236 brm

2:iin ja asuntopinta-ala 3 284

hum2:stä 4 645 hum

2:iin. Kuvassa 5.3 on esitetty hankkeen arkkitehdin näkemys case-

kohteen talon 1 luoteenpuoleisesta julkisivusta perusparannuksen jälkeen.

Kuva 5.3. Kitiniitynkatu 2, talo 1, julkisivu luoteeseen: arkkitehdin näkemys peruskor-

jauksen jälkeisestä tilanteesta (Kaihari 2003b).

Case-hankkeen perusratkaisut ja toteutetut energiataloudelliset lisävalin-

nat

Yläpohja

Lähtötilanteen yläpohjarakenteiden keskimääräiseksi U-arvoksi saatiin Suomen raken-

tamismääräyskokoelman osan C4 ohjeiden mukaan laskettuna 0,35 W/m2K. Yläpohja-

rakenteen perusparannuksen perusratkaisuna tarkasteltiin rakennetta, jossa lähtötilan-

teen yläpohjan 250 mm leca-soraeristys korvataan 150 mm mineraalivillakerroksella ja

50 mm tuulensuojavillakerroksella. Tällaisen rakenteen U-arvo on 0,17 W/m2K. Ener-

giataloudellisen tarkastelun jälkeen toteutettavaksi yläpohjaksi valittiin rakenne, jossa

perusratkaisun rakenteen mineraalivillakerrosta kasvatettiin vielä 50 mm:llä, jolloin

toteutetun rakenteen U-arvo on 0,14 W/m2K kokonaiseristepaksuuden ollessa 250 mm.

Korotuskerrosten uudisrakennusosien yläpohjarakenteen U-arvo vastaa korjatun yläpoh-

jarakenteen U-arvoa. Koska uudisosan yläpohjarakenteessa käytettiin Siporex-lankkuja,

päästiin korjausosan rakennetta vastaavaan U-arvoon 50 mm ohuemmalla mineraalivil-

lakerroksella.

Ulkoseinä

Lähtötilanteen ulkoseinärakenteiden keskimääräinen U-arvo on Suomen rakentamis-

määräyskokoelman osan C4 ohjeiden mukaan laskettuna 0,41 W/m2K. Ulkoseinäraken-

teen perusparannuksen perusratkaisuna tarkasteltiin rakennetta, jossa vanhaan ulkosei-

närakenteeseen asennetaan 80 mm ulkopuolinen lisälämmöneristys. Tällaisen rakenteen

Page 28: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

28

U-arvo on 0,21 W/m2K. Energiataloudellisen tarkastelun jälkeen toteutettavaksi ulko-

seinäksi valittiin rakenne, jossa perusratkaisun rakenteen mineraalivilla kerrosta kasva-

tettiin vielä 20 mm:llä, jolloin lisäeristyksen kokonaispaksuudeksi tuli 100 mm, jolloin

toteutetun ulkoseinärakenteen U-arvo on 0,19 W/m2k.

Todellisuudessa case-kohteen rakennuksissa on useita eri seinärakennetyyppejä, mutta

koska niiden eritelty tarkasteleminen käytettävissä olleiden lähtötietojen perusteella olisi

ollut epätarkkaa ja hyvin työlästä, toteutettiin energialaskenta siten, että koko rakennuk-

sen seinille käytettiin yhtä keskimääräistä U-arvoa. Korotuskerrosten uudisraken-

nusosan sekä perusparannetun osan ulkoseinärakenteiden U-arvot vastasivat toisiaan.

Ikkunat

Perusparannusta edeltäneessä tilanteessa case-kohteen rakennuksissa oli kaksilasiset

ikkunat, joiden U-arvoksi oletettiin 2,7 W/m2K. Perusratkaisuna tarkasteltiin ikkuna-

vaihtoehtoa, jonka U-arvo on 1,8 W/m2K. Energiataloudellisen tarkastelun jälkeen koh-

teeseen asennettavaksi ikkunavaihtoehdoksi valittiin kuitenkin ikkunat, joiden U-arvo

on 1,0 W/m2K.

Ilmanvaihtojärjestelmä

Lähtötilanteessa case-kohteen rakennuksissa oli koneellinen poistoilmanvaihtojärjes-

telmä. Perusparannushankkeen perusratkaisuna tarkasteltiin vanhan koneellisen pois-

toilmanvaihtojärjestelmän korjaamista, jolloin ilmanvaihtojärjestelmän perusratkaisulla

ei saavutettaisi energiansäästöä. Energiataloudellisen tarkastelun jälkeen kohteeseen

päätettiin kuitenkin asentaa keskitetty koneellinen tulo- ja poistoilmanvaihtojärjestelmä

lämmöntalteenotolla.

Asuntokohtainen käyttövedenkulutuksen mittaus

Case-kohteen perusparannuksen eräänä energiataloudellisena lisävalintana tarkasteltiin

asuntokohtaisen käyttövedenkulutuksen mittauksen käyttöönoton vaikutuksia. Tällä

lisävalinnalla voidaan vaikuttaa rakennusten asukkaiden käyttäytymiseen, sillä asunto-

kohtaisen mittauksen myötä he joutuvat suoraan itse vastaamaan käyttämästään vedestä

aiheutuvista kuluista ja näin ollen oletettavasti kiinnittävät myös enemmän huomiota

kuluttamansa käyttöveden määrään. Asuntokohtaisen vedenkulutuksen mittauksen voi-

daan olettaa olevan melko tehokas keino ohjata asukkaiden käyttäytymistä energian-

säästön kannalta suotuisampaan suuntaan. Energiataloudellisen tarkastelun jälkeen koh-

teeseen päätettiin asentaa asuntokohtainen käyttövedenkulutuksen mittaus.

Page 29: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

29

Taulukossa 5.1 on esitetty yhteenveto case-kohteen perusparannuksen yhteydessä toteu-

tetuista energiansäästötoimenpiteistä.

Taulukko 5.1. Perusparannuksen yhteydessä toteutetut ratkaisut.

Energiataloudellisten valintojen kannattavuuden systemaattinen vertailu

päätöksenteon tukena

Energiataloudellisten valintojen kannattavuutta voidaan tarkastella systemaattisella me-

netelmällä, joka on esitetty Kurvisen (2010) diplomityössä ”Korjaustoiminnan energia-

taloudellisten valintojen systematiikka”. SUREURO-hankkeen yhteydessä Kitiniityn-

kadun energiataloudellisten valintojen kannattavuuksien tarkasteluun käytettiin DI Ju-

hani Heljon kehittämää laskentamallia, jonka pohjalta Kurvisen (2010) diplomityössä

esitetty systemaattinen tarkastelu on jatkokehitetty. SUREURO-hankkeen yhteydessä

tehdyistä hankesuunnittelu- ja suunnitteluvaiheen energiataloudellisista tarkasteluista

löytyy tarkempaa tietoa Heljo & Peuhkurisen (2004) raportista ”Asuinkerrostalon pe-

rusparantamisen ja laajuusmuutosten vaikutus energiankulutukseen ja elinkaarikustan-

nuksiin”.

Energiataloudellisten valintojen systemaattinen tarkastelu suunnitteluvaiheessa on tar-

peellista, jotta saadaan selkeitä perusteita päätöksenteolle. Valintojen energiataloudelli-

sen kannattavuuden tarkastelua varten täytyy selvittää kunkin valinnan aiheuttama li-

säinvestointikustannus, valinnan vaikutukset rakennuksen vuotuiseen energiankulutuk-

seen sekä valinnan vaikutukset muihin ylläpitokustannuksiin. Energiataloudellisilla va-

linnoilla saavutettavat laskennalliset energiansäästöt selvitettiin case-kohteen tapaukses-

sa D.O.F.techin DOF-Energia 2.0 –ohjelmalla, jonka laskenta perustuu Suomen raken-

tamismääräyskokoelman osan D5 ohjeisiin. Valinnoista aiheutuvien lisäkustannusten

selvittämiseen käytettiin alan kustannustietoa käsittelevää kirjallisuutta. Tässä raportissa

esitettävä systemaattinen tarkastelu tehtiin Kurvisen (2010) diplomityöhön perustuen.

PARANNUS

YLÄPOHJA U = 0,35 W/m2K → U = 0,14 W/m2K

ULKOSEINÄ U = 0,41 W/m2K → U = 0,19 W/m2K

IKKUNAT U = 2,7 W/m2K → U = 1,0 W/m2K

ILMANVAIHTOKONEELLINEN POISTO →

KONEELLINEN TULO- JA POISTO LTO:lla

VEDENKULUTUSTALOKOHTAINEN MITTAUS →

ASUNTOKOHTAINEN MITTAUS

Page 30: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

30

Valintakriteerinä sisäinen korko

Taulukossa 5.2 on esitetty case-hankkeen yhteydessä laskennallisesti tarkasteltujen

energiataloudellisten lisävalintojen kannattavuusjärjestys valintojen sisäisen koron mu-

kaan järjestettynä. Ensimmäinen sarake kertoo valinnan järjestysnumeron kannattavuus-

järjestyksessä ja toisessa sarakkeessa on ilmoitettu kunkin valinnan sisäinen korko.

Kolmannessa sarakkeessa oleva toimenpiteen tunnus kertoo, mistä toimenpiteestä on

kyse: toimenpiteiden tunnukset on selitetty taulukon alapuolella. Neljännestä sarakkees-

ta selviää valinnan toteuttamisen aiheuttama lisäkustannus kyseisen rakenteen tai lait-

teiston edelliseen valintatasoon verrattuna. Viides sarake kertoo kunkin lisävalinnan

tuoman laskennallisen vuotuisen energiansäästön. Kuudennessa sarakkeessa on ilmoitet-

tu valinnalla vuosittain saavutettavat laskennalliset euromääräiset säästöt, kun sähkö-

energialle on käytetty hintaa 140 €/MWh ja lämmitysenergialle hintaa 60 €/MWh. Käy-

tetyt energian hinnat perustuvat Energiatilasto – Vuosikirja 2009:ssä (Tilastokeskus

2010) esitettyihin lukuihin. Tässä esitettyihin kustannusten vuosimuutoksiin sisältyy

myös ylläpitokustannusten muutokset. Viimeisessä sarakkeessa on ilmoitettu valinnalle

arvioitu taloudellinen pitoaika.

Taulukko 5.2. Tarkasteltujen energiataloudellisten lisävalintojen valintajärjestys sisäi-

sen koron mukaan järjestettynä.

VALINTA- JÄRJESTYS

SISÄINEN KORKO

TOIMEN-PITEEN

TUNNUS

LISÄKUS- TANNUS

[€]

VUOTUINEN ENERGIAN-

SÄÄSTÖ [MWh/a]

KUSTANNUSTEN VUOSIMUUTOS

[€/a]

PITOAIKA [a]

1 24,8 % IKK2 10 868 -45 -2 700 30

2 23,8 % VKM 46 800 -29 -11 597 15

3 22,0 % IKK1 12 540 -46 -2 760 30

4 13,6 % YP1 2 628 -6 -360 40

5 10,9 % IV1 78 400 -259 -8 960 30

6 10,4 % US1 5 100 -9 -540 40

7 7,3 % IV2 98 000 -259 -8 176 30

8 3,2 % YP2 5 408 -4 -240 40

IKK1 = UUSI IKKUNA U=1,4 W/m2K (U=1,8 W/m

2K → 1,4 W/m

2K)

IKK2 = UUSI IKKUNA U=1,0 W/m2K (U=1,4 W/m

2K → 1,0 W/m

2K)

IV1 = KESKITETTY KONEELLINEN TULO- JA POISTOILMANVAIHTO LTO 50 %

(korvataan lähtötilanteen koneellinen poistoilmanvaihtojärjestelmä tällä)

IV2 = HAJAUTETTU KONEELLINEN TULO- JA POISTOILMANVAIHTO LTO 50 %

(korvataan lähtötilanteen koneellinen poistoilmanvaihtojärjestelmä tällä)

US1 = LISÄERISTYS 100 mm (eristemuutos 80 mm → 100 mm)

VKM = ASUNTOKOHTAINEN KÄYTTÖVEDEN KULUTUKSEN MITTAUS

YP1 = ERISTYS 200 + 50 mm (eristemuutos 200 mm → 250 mm)

YP2 = ERISTYS 250 + 50 mm (eristemuutos 250 mm → 300 mm)

Suunnitteluvaiheessa laskentakorkokantana käytettiin 5,0 %. Tämä tarkoittaa, että kun-

kin valinnan sisäisen koron tulisi olla vähintään 5,0 %, jotta lisävalinta olisi asetetun

tuottovaatimuksen mukaan kannattava. Taulukosta nähdään, että lisävalinta YP2 ei täytä

Page 31: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

31

tätä tuottovaatimusta ja näin ollen yläpohjan eristystä ei case-kohteen tapauksessa enää

kannattaisi lisätä 250 mm:stä 300 mm:iin. Koska rakennukseen asennetaan yksi ilman-

vaihtojärjestelmä, ovat toimenpiteet IV1 ja IV2 toisensa pois sulkevia. Näistä kannattaa

valita energiataloudellisesti kannattavampi järjestelmävaihtoehto eli IV1: rakennuksiin

valittiin asennettavaksi keskitetty koneellinen tulo- ja poistoilmanvaihtojärjestelmä 50

% lämmöntalteenotolla.

Taulukon 5.2 mukaan valinta IKK2 on kannattavampi kuin IKK1. Tämä tarkoittaa sitä,

että siirtymä ikkunoiden U-arvosta 1,4 W/m2K U-arvoon 1,0 W/m

2K on energiatalou-

dellisesti kannattavampaa kuin siirtymä U-arvosta 1,8 W/m2K U-arvoon 1,4 W/m

2K.

Tästä huolimatta myös vaihtoehdon IKK1 on oltava valintajärjestyksessä kannattava

ennen kuin voidaan parantaa ikkunoiden U-arvoa valinnan IKK2 tasoon.

Edellä mainittu johtuu siitä, että rakenne- ja laitetason valintojen energiataloudellista

kannattavuutta on tarkasteltava kustannus- ja energiansäästöeroina edeltävään valinta-

tasoon. Tällöin valinnan toteuttamisesta aiheutuviin kokonaiskustannuksiin kuuluvat

kyseisen valinnan lisäkustannusten lisäksi kaikkien edeltävien lisävalintatasojen lisäkus-

tannukset. Case-kohteen ikkunoita tarkasteltaessa tämä tarkoittaa, että valinnan IKK2

toteuttamisen kokonaiskustannuksiin kuuluvat myös aiempien ikkunavalintatasojen li-

säkustannukset, mikä tässä tapauksessa tarkoittaa lisävalinnan IKK1 lisäkustannuksia.

Edellä esitetyn lisävalintojen sisäiseen korkoon perustuvan energiataloudellisen tarkas-

telun perusteella case-hankkeen perusratkaisuja kannattaa parantaa seuraavilla energia-

taloudellisilla lisävalinnoilla:

Rakennetaan vedenkulutuksen asuntokohtainen mittaus.

Asennetaan ikkunat, joiden U-arvo on 1,0 W/m2K.

(U=1,8 W/m2K → U=1,0 W/m

2K )

Lisätään yläpohjan lämmöneristystä 200 mm:stä 250 mm:iin.

Korvataan koneellinen poistoilmanvaihto keskitetyllä koneellisella tulo- ja pois-

toilmanvaihtojärjestelmällä, jossa LTO 50 %.

Lisätään ulkoseinien lisälämmöneristystä 80 mm:stä 100 mm:iin.

Valintakriteerinä kustannus / vuotuinen energiansäästö

Kuvassa 5.4 on esitetty kustannus/vuotuinen energiansäästö –kuvaaja, joka havainnol-

listaa kunkin energiataloudellisen lisävalinnan aiheuttamiin lisäkustannuksiin sijoitetuil-

la euroilla saavutettavaa energiansäästöä. Vaaka-akselilla on ilmoitettu kustan-

nus/vuotuinen energiansäästö –kriteerin perusteella valintajärjestykseen asetettujen lisä-

valintojen aiheuttamat kumulatiiviset lisäkustannukset bruttoneliötä kohden. Pystyakse-

lilla on puolestaan esitetty valintojen tuoma vuosittainen kumulatiivinen energiansäästö

bruttoneliötä kohden. Käyrän kulmakerroin kuvaa valinnan kannattavuutta energian-

Page 32: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

32

säästömielessä: mitä jyrkemmin käyrä nousee, sitä tehokkaammin kyseiseen valintaan

sijoitettu euro tuo säästöä rakennuksen vuosittaiseen energiankulutukseen.

Kuva 5.4. Kustannus/vuotuinen energiansäästö –kuvaaja havainnollistaa energiatalou-

dellisiin lisävalintoihin sijoitettavien eurojen tuomaa vuotuista energiansäästöä. Sekä

valintajärjestyksessä toteutettujen valintojen toteuttamisen aiheuttamat kumulatiiviset

lisäkustannukset että niiden toteuttamisella saavutettavat vuotuiset kumulatiiviset ener-

giansäästöt on ilmoitettu bruttoneliötä kohden. Kuvassa olevan käyrän kulmakerroin

kertoo valinnan kannattavuudesta: mitä jyrkemmin käyrä nousee, sitä suurempi energi-

ansäästö lisävalintaan sijoitetuilla euroilla saavutetaan.

Kuvan 5.4 tarkastelunäkökulma poikkeaa aiemmin esitetystä valintojen sisäiseen kor-

koon perustuvasta tarkastelusta, sillä tässä näkökulmassa valinnan kannattavuutta arvi-

oidaan ainoastaan valinnalla saavutettavan energiansäästön perusteella ja jätetään esi-

merkiksi vaikutukset ylläpitokustannuksiin kokonaan huomiotta. Tämä aiheuttaa case-

kohteen tapauksessa sen, että käyttöveden kulutuksen asuntokohtainen mittaus näyttää

kustannus/vuotuinen energiansäästö –kriteerin perusteella arvioituna selkeästi huonom-

malta investoinnilta kuin aiemmin esitetyssä tarkastelussa, jossa valintakriteerinä oli

sisäinen korko. Syynä tähän on, että vedenkulutuksen vähenemisen myötä tuomat sääs-

töt vesimaksuissa jätetään kustannus/vuotuinen energiansäästö –kriteeriin perustuvassa

tarkastelussa kokonaan huomiotta. Case-kohteen muiden valintojen osalta vaikutukset

valintajärjestykseen ovat kuitenkin vähemmän dramaattiset, kun siirrytään valintakritee-

ristä toiseen.

Valintakriteeri tulee valita tavoitteiden mukaan

Ilmiö valintajärjestyksen suuresta muutoksesta on hyvä esimerkki siitä, kuinka oleelli-

sesti tarkastelunäkökulma voi muuttaa lisävalinnan kannattavuutta. Taulukon 5.2 ja ku-

van 5.4 valintakriteerit tarkastelevat valintojen kannattavuutta erilaisista näkökulmista

0

10

20

30

40

50

60

0 5 10 15 20 25

Ku

mu

lati

ivin

en

en

erg

ian

säästö

[k

Wh

/brm

2, a]

Kumulatiiviset kustannukset [€/brm2]

Kustannus / Vuotuinen energiansäästö

YP1: ERISTYS 200 + 50 mm

(eristemuutos 200 mm → 250 mm)

YP2: ERISTYS 250 + 50 mm

(eristemuutos 250 mm → 300 mm)

IKK: UUSI IKKUNA U=1,0 W/m2K (U=1,8 W/m2K → 1,0 W/m2K)

IV1: KESKITETTY KONEELLINEN TULO- JA

POISTOILMANVAIHTO LTO 50 %

US1: LISÄERISTYS 100 mm

(eristemuutos 80 mm → 100 mm)

VKM: ASUNTOKOHTAINEN KÄYTTÖVEDEN

KULUTUKSEN MITTAUS

Page 33: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

33

ja näin ollen täydentävät toistensa antamaa informaatiota valintojen kannattavuudesta.

Molemmat valintakriteerit ovat käyttökelpoisia ja niiden antamaa tietoa on osattava so-

veltaa asetettujen tavoitteiden mukaan. Sisäisen korkokannan perusteella tehty tarkaste-

lu vastaa paremmin tavoitteita silloin, kun pyritään valitsemaan kokonaistaloudellisesti

kannattavimmat energiataloudelliset lisävalinnat. Kun tavoitteena on saavuttaa parempi

energiatehokkuusluokka mahdollisimman edullisesti, kannattaa energiataloudellisia

lisävalintojen kannattavuutta tarkastella kriteerin kustannus/vuotuinen energiansäästö

avulla.

Toimenpidekokonaisuuksien laskennalliset vaikutukset

Taulukossa 5.3 on esitetty yhteenveto eri korjaustoimenpidekokonaisuuksien toteutta-

misen laskennallisista vaikutuksista case-kohteen rakennusten energiatehokkuuteen sekä

kustannuksiin. Yhteenvedosta nähdään, että pelkät perusratkaisut toteuttamalla raken-

nuksen laskennallinen energiatehokkuusluokka ei muutu paremmaksi. Kun sen sijaan

perusratkaisuja parannetaan sisäisen koron mukaan kannattavilla energiataloudellisilla

lisävalinnoilla, päästään laskennallisesti energiatehokkuusluokkaan C. Taulukko 5.3

osoittaa, että hankkeen kokonaismittakaavassa verrattain pienellä lisäsijoituksella ener-

giataloudellisiin valintoihin voidaan case-kohteen tapauksessa parantaa rakennuksen

energiatehokkuutta merkittävästi. Laskennallisissa tarkasteluissa käytetyjen kustannus-

ten perusteella noin 156 000 euron lisäsijoituksella päästään noin 3-kertaiseen vuosittai-

seen kustannussäästöön energiankulutus- sekä ylläpitokustannuksissa verrattaessa tilan-

teeseen, jossa toteutettaisiin pelkät perusratkaisut. Laskelmissa sähköenergialle on käy-

tetty hintaa 140 €/MWh ja lämmitysenergialle hintaa 60 €/MWh. Käytetyt energian hin-

tatiedot perustuvat julkaisuun Energiatilasto – Vuosikirja 2009 (Tilastokeskus 2010).

Page 34: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

34

Taulukko 5.3. Eri korjaustoimenpidekokonaisuuksien laskennallinen vai-

kutus case-kohteen laskennalliseen energiatehokkuuteen sekä kustannuk-

siin.

Taulukkoa 5.3 luettaessa on hyvä huomata, että perusparannuksen yhteydessä rakennuk-

sia laajennettiin, minkä vuoksi rakennusten vuotuinen kokonaisenergiankulutus pelkki-

en perusratkaisujen jälkeen on korkeampi kuin lähtötilanteessa.

Perusparannuksen vaikutukset energiankulutukseen

Taulukossa 5.4 on esitetty kulutusseurannan avulla selvitetty case-kohteen rakennusten

kokonaisenergiankulutus ennen ja jälkeen peruskorjauksen. Taulukosta 5.4 nähdään,

että kohteen toteutunut perusparannuksen jälkeinen energiatehokkuusluokka on D, kun

laskennallisen tarkastelun mukaan perusparannustoimenpiteillä olisi pitänyt saavuttaa

energiatehokkuusluokka C. Bruttoneliötä kohden laskettu toteutunut vuotuinen energi-

ankulutus laski case-kohteessa 32 kWh, kun laskennallisesti selvitetty säästö oli jopa 81

kWh/brm2, a.

Perusparannushankkeen yhtenä tavoitteena oli, ettei case-kohteen kokonaisenergianku-

lutus nousisi lisärakentamisesta huolimatta, jotta vanhojen kunnallistekniikan liittymien

kapasiteetti olisi riittävä myös perusparannuksen jälkeen. Peruskorjauksen jälkeisessä

tilanteessa rakennusten toteutunut vuotuinen kokonaisenergiankulutus on noin 100

MWh korkeampi kuin lähtötilanteessa, joten perusparannuksen yhteydessä toteutetun

lisärakentamisen vuoksi energiankulutusta ei ole onnistuttu voimakkaista energiansääs-

tötoimenpiteistä huolimatta pitämään aivan lähtötilanteen tasolla. Kuitenkin energianku-

lutuksen nousu on ollut sen verran maltillista, että vanhojen kunnallistekniikan liittymi-

ENNEN KORJAUKSIAPERUSRATKAISUJEN

JÄLKEEN

LISÄVALINTOJEN

JÄLKEEN

ENERGIAN-

KULUTUS

[MWh/a]

1 179 1 334 979

ENERGIANKULUTUS /

HUONEISTONELIÖ

[kWh/hum2/a]

359 287 211

ET-LUKU

[kWh/brm2/a]216 184 135

ET-LUOKKA E E CRAKENNUS-

KUSTANNUKSET0 € 986 108 € 1 142 444 €

VUOSITTAISET

KUSTANNUS-

SÄÄSTÖT

0 € 12 776 € 39 693 €

Page 35: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

35

en kapasiteetti on riittävä ja näin ollen voidaan katsoa, että asetettuun tavoitteeseen on

tältä osin päästy.

Taulukko 5.4. Energiakorjauksen vaikutukset case-kohteen

kokonaisenergiankulutukseen ja energiatehokkuuteen kulu-

tusseurannan avulla selvitettynä.

Lämmitysenergia

Kuvassa 5.5 on esitetty tutkimuskohteen toteutunut lämmitysenergian kulutus kolme

vuotta ennen perusparannusta sekä kolme vuotta perusparannuksen jälkeen. Punainen

pystyviiva erottaa perusparannusta edeltävän ja sen jälkeisen tilanteen kulutukset toisis-

taan. Kulutukset on esitetty vuotuisina kulutuksina huoneneliötä kohden ja yksikkönä

on käytetty kilowattituntia. Esitetyt kulutukset on normeerattu Tampereen normaalivuo-

teen. Ennen perusparannusta tutkimuskohteen lämmitysenergian kulutus on ollut kes-

kimäärin 274 kWh/hum2, a ja peruskorjauksen jälkeen se on laskenut keskimäärin tasol-

le 200 kWh/hum2, a. Prosentuaalisesti tämä tarkoittaa noin 27 % toteutunutta säästöä

lämmitysenergian kulutuksessa.

ENNEN

KORJAUSTA

PERUSPARANNUKSEN

JÄLKEEN

ENERGIAN-

KULUTUS

[MWh/a]

1038 1144

ENERGIANKULUTUS /

HUONEISTONELIÖ

[kWh/hum2/a]

316 246

ET-LUKU

[kWh/brm2/a]190 158

ET-LUOKKA E D

Page 36: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

36

Kuva 5.5. Tampereen normaalivuoteen normeerattu toteutunut lämmitysenergian kulu-

tus case-kohteessa vuosina 2001–2008. Yksikkönä kWh/hum2, a. Punainen pystyviiva

erottaa perusparannusta edeltävän ja perusparannuksen jälkeisen ajan toisistaan.

Kiinteistösähkö

Kuvassa 5.6 on esitetty tutkimuskohteen toteutunut kiinteistösähkön kulutus kolme

vuotta ennen perusparannusta sekä kolme vuotta perusparannuksen jälkeen. Punainen

pystyviiva erottaa perusparannusta edeltävän ja sen jälkeisen tilanteen kulutukset toisis-

taan. Kulutukset on esitetty vuotuisina kulutuksina huoneneliötä kohden ja yksikkönä

on käytetty kilowattituntia. Ennen perusparannusta tutkimuskohteen kiinteistösähkön

kulutus on ollut keskimäärin 20 kWh/hum2, a ja peruskorjauksen jälkeen se on noussut

keskimäärin tasolle 29 kWh/hum2, a. Prosentuaalisesti tämä tarkoittaa noin 45 % nousua

kiinteistösähkön kulutuksessa. Perusparannuksen yhteydessä asennettu lämmöntal-

teenotolla varustettu koneellinen tulo- ja poistoilmanvaihtojärjestelmä selittää kiinteis-

tösähkön kulutuksen nousua.

Page 37: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

37

Kuva 5.6. Kiinteistösähkön toteutunut kulutus case-kohteessa vuosina 2001–2008. Yk-

sikkönä kWh/hum2, a. Punainen pystyviiva erottaa perusparannusta edeltävän ja perus-

parannuksen jälkeisen ajan toisistaan.

Käyttöveden ominaiskulutus

Kuvassa 5.7 on esitetty tutkimuskohteen toteutunut käyttöveden ominaiskulutus kolme

vuotta ennen perusparannusta sekä kolme vuotta perusparannuksen jälkeen. Punainen

pystyviiva erottaa perusparannusta edeltävän ja sen jälkeisen tilanteen ominaiskulutuk-

set toisistaan. Esitetyt kulutukset ilmoittavat yhden asukkaan keskimäärin vuorokaudes-

sa käyttämän käyttöveden määrän litroissa. Ennen perusparannusta tutkimuskohteen

käyttöveden kulutus on ollut keskimäärin 164 l/as, vrk ja peruskorjauksen jälkeen se on

laskenut keskimäärin tasolle 137 l/as, vrk. Prosentuaalisesti tämä tarkoittaa noin 16 %

laskua käyttöveden kulutuksessa.

Page 38: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

38

Kuva 5.7. Toteutunut veden ominaiskulutus case-kohteessa vuosina 2001–2008. Yksik-

könä l/as, vrk. Punainen pystyviiva erottaa perusparannusta edeltävän ja perusparan-

nuksen jälkeisen ajan toisistaan.

Kulutusseurannasta ei saatu tarkempaa tietoa siitä, kuinka suuri osuus tutkimuskohteen

käyttövedestä on ollut lämmintä käyttövettä, mutta Suomen rakentamismääräyskokoel-

man osan D5 mukaan voidaan olettaa lämpimän käyttöveden osuuden olevan 40 % ko-

ko käyttöveden kulutuksesta. Tällä oletuksella lämpimän käyttöveden kulutukseksi en-

nen perusparannusta saadaan 65 l/as, vrk ja perusparannuksen jälkeen 55 l/as, vrk.

Yhteenveto toteutuneista energiankulutusmuutoksista

Kuvaan 5.8 on koottu vielä yhteenveto perusparannuksen keskimääräisistä vaikutuksista

case-kohteen energiankulutukseen. Energiankulutuksen muutoksia on tarkasteltu huo-

neneliötä kohden, sillä sen on katsottu olevan energiankulutuksen muutosta parhaiten

kuvaava yksikkö hankkeessa, jossa tilojen käyttötarkoituksessa tapahtuu merkittäviä

muutoksia. Kuvassa esitetyt luvut perustuvat kulutusseurannasta saatuihin tietoihin.

Kiinteistösähkön kulutus on lisääntynyt perusparannuksen jälkeen 9 kWh/hum2. Prosen-

tuaalisesta tämä vastaa 44 % nousua. Lämmitysenergian kulutuksessa saavutettu vuo-

tuinen säästö on keskimäärin 74 kWh/hum2. Prosentuaalisesti tämä tarkoittaa 27 % sääs-

töä. Kun kulutusseurannan ilmoittamasta käyttöveden kulutuksesta oletetaan Suomen

rakentamismääräyskokoelman osan D5 mukaisesti lämpimän käyttöveden osuudeksi 40

% ja käytetään veden lämmittämiseen tarvittavana energiamääränä 58 kWh/m3, saadaan

käyttöveden lämmittämiseen kuluvan lämmitysenergian vuotuiseksi säästöksi 17

kWh/hum2. Tällöin muun lämmitysenergian vuotuisen säästön osuudeksi jää 57

kWh/hum2.

Page 39: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

39

Kuva 5.8. Yhteenveto perusparannuksen vaikutuksista case-

kohteen energiankulutukseen. Esitetyt luvut perustuvat kulutus-

seurannasta saatuihin tietoihin.

Lämmitysenergian säästö eri tarkastelutapoja käyttäen

Taulukossa 5.5 on tarkasteltu case-kohteen perusparannuksen vaikutuksia kohteen

lämmitysenergian kulutukseen käyttäen kolmea eri tarkastelutapaa. Ensimmäisessä sa-

rakkeessa on selvitetty lämmitysenergian säästö siten, että sekä perusparannusta edeltä-

neen tilanteen että sen jälkeisen tilanteen lämmitysenergian kulutus on otettu kulutus-

seurannasta. Tällöin lämmitysenergian vuotuisen kulutuksen prosentuaaliseksi säästöksi

saadaan 27 %.

Taulukon 5.5 toisessa sarakkeessa perusparannuksen vaikutuksia lämmitysenergian ku-

lutukseen on tarkasteltu täysin laskennallisesti: sekä perusparannusta edeltäneen että sen

jälkeisen tilanteen energiankulutus perustuvat tässä tarkastelutavassa laskennallisesta

energiatodistuksesta saatuihin lukuihin. Tällä tavoin tarkasteltuna vuotuisen lämmi-

tysenergian kulutuksen prosentuaaliseksi säästöksi saadaan 44 %.

Taulukon 5.5 kolmannessa sarakkeessa tarkastelu on tehty siten, että perusparannusta

edeltäneen tilanteen lämmitysenergiankulutus on selvitetty kulutusseurannasta, mutta

perusparannuksen jälkeisen tilanteen vuotuinen lämmitysenergian kulutus on selvitetty

laskennallisesti DOF-Energia –ohjelmalla. Energialaskenta on tehty noudattaen viralli-

sia ohjeita laskennallisen energiatodistuksen laatimisesta. Tällainen tarkastelu antaa

lämmitysenergian kulutuksen vuotuiseksi prosentuaaliseksi säästöksi 31 %.

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

En

erg

ian

ku

lutu

kse

n m

uu

tos

[kW

h/h

um

2, a

]

Energiankulutuksen muutos kulutusseurannan mukaan

Sähkönkulutus

Lämmin käyttövesi

Muu lämmitysenergia

-27 %

+44 %

+9 kWh/hum2, a

-57 kWh/hum2, a

-17 kWh/hum2, a

TOTEUTUNUTLÄMMITYS-ENERGIANKULUTUKSENMUUTOSYHTEENSÄ-74 kWh/hum2, a

Page 40: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

40

Taulukosta 5.5 voidaan havaita, että laskennallisesti selvitetty energiankulutus on pe-

rusparannusta edeltäneessä tilanteessa selvästi toteutunutta kulutusta korkeammalla ta-

solla. Tämä osaltaan johtaa siihen, että laskennallinen tarkastelu antaa perusparannuk-

sen energiataloudellisille lisävalinnoille todellista suuremmat energiansäästöt ja saa ne

näin ollen näyttämään todellista kannattavammilta. Ainakin yhtenä syynä lähtötilanteen

laskennallisen energiankulutuksen toteutunutta suurempaan arvoon voidaan pitää il-

manvaihdon määrää, joka ei vanhoissa rakennuksissa usein yllä Suomen rakentamis-

määräyskokoelman osan D5 asuinkerrostalojen ilmanvaihtomääristä antaman oletuksen

(0,5 1/h) tasolle.

Taulukko 5.5. Case-kohteen perusparannuksen vaikutukset lämmitysenergian kulutuk-

seen eri tarkastelutapoja käyttäen.

Energiataloudellisten lisävalintojen laskennallinen ja toteutunut kannatta-

vuus

Taulukossa 5.6 on vertailtu perusparannushankkeen yhteydessä toteutetun energiansääs-

tötoimenpidekokonaisuuden laskennallista ja toteutunutta kannattavuutta. Tässä esitet-

tävässä vertailussa on mukana ainoastaan lämmitysenergian säästöllä saavutettavat kus-

tannussäästöt. Kannattavuudet paranisivat, mikäli esimerkiksi asuntokohtaisen vedenku-

lutuksen mittauksen asentamisen aikaan saamat säästöt vesimaksuissa huomioitaisiin

tarkastelussa.

Taulukon 5.6 laskelmia tehtäessä on jouduttu käyttämään tiettyjä oletuksia toteutetun

energiansäästötoimenpidekokonaisuuden laskennallisen ja toteutuneen kannattavuuden

vertailun mahdollistamiseksi. Sisäisen koron laskemiseksi kokonaisuuden keskimääräi-

seksi pitoajaksi on oletettu toteutettujen energiataloudellisten valintojen pitoaikojen

keskiarvo (26 a), joka on painotettu valintojen aiheuttamilla investointikustannuksilla.

Koska kaiken toteutuneen energiansäästön ei voida olettaa johtuvan toteutetuista ener-

giataloudellisista valinnoista, on energiansäästön oletettu jakautuvan perusratkaisuille ja

energiataloudellisille lisävalinnoille samoissa prosentuaalisissa osuuksissa kuin lasken-

nallisesti selvitettyjen säästöjen. Tähän perustuen 48 % toteutuneesta energiansäästöstä

on kohdistettu perusratkaisuille ja 52 % energiataloudellisille lisävalinnoille. Laskelmis-

ENNEN: Kulutusseuranta

JÄLKEEN: Kulutusseuranta

ENNEN: Lask. energiatodistus

JÄLKEEN: Lask. energiatodistus

ENNEN: Kulutusseuranta

JÄLKEEN: Lask. energiatodistus

ENNEN

[kWh/hum2,a]

274 339 274

JÄLKEEN

[kWh/hum2,a]200 190 190

SÄÄSTÖ

[kWh/hum2,a]74 149 84

[%] 27 % 44 % 31 %

TARKASTELUTAPA

Page 41: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

41

sa on käytetty lämmitysenergialle hintaa 6 c/kWh. Energiataloudellisten lisävalintojen

aiheuttamat lisäkustannukset on sekä laskennallisen että toteutuneen kannattavuuden

tarkastelussa arvioitu lähinnä alan kustannustietoa käsittelevän kirjallisuuden avulla,

sillä riittävän tarkasti eriteltyä toteutunutta kustannustietoa ei ollut käytettävissä.

Taulukko 5.6. Toteutetun energiansäästötoimenpidekokonaisuuden las-

kennallinen ja toteutunut kannattavuus sekä rakennusten laskennallinen

ja toteutunut energiatehokkuusluokka perusparannuksen jälkeen. Sisäistä

korkoa laskettaessa on käytetty investointikustannuksella painotettua

keskimääräistä pitoaikaa (26 a) ja lämmitysenergialle hintaa 6 c/kWh.

Toteutuneen energiansäästön on oletettu jakautuvan perusratkaisuille ja

energiataloudellisille lisävalinnoille samoissa prosentuaalisissa osuuk-

sissa kuin laskennallisenkin energiansäästön.

Taulukosta 5.6 nähdään, että laskennallisen tarkastelun mukaan energiataloudelliset

lisävalinnat ovat näyttäneet selkeästi kannattavammilta kuin mitä toteutuneeseen kulu-

tukseen perustuva tarkastelu näyttää. Vaikka laskennallista kannattavuutta ei todellisuu-

dessa saavutettukaan, toteutettua energiansäästötoimenpidekokonaisuutta voidaan tau-

lukon lukujen valossa pitää kannattavana, sillä jo 3 % laskentakorkokantaa voidaan pi-

tää voittoa tavoittelemattomalle säätiölle riittävänä tuottovaatimuksena. Tässä tapauk-

sessa energiansäästötoimenpidekokonaisuudelle saavutettu 4 % sisäinen korko on siis

varsin riittävä puoltamaan toteutettujen energiataloudellisten lisävalintojen kannatta-

vuutta. 16 vuoden takaisinmaksuaika puoltaa myös toteutettujen valintojen kannatta-

vuutta, sillä yksittäisten valintojen arvioidut pitoajat ovat pääsääntöisesti tätä ajanjaksoa

huomattavasti pidempiä. Koska rakennuksen perusparannukselle ilmenee tarvetta taval-

lisesti 30–40 välein, voidaan tulkita, että tehdyt energiataloudelliset lisävalinnat ehtivät

kerryttää kustannussäästöjä vielä monta vuotta takaisinmaksuaikansa jälkeen.

Kuvassa 5.9 on esitetty, kuinka toteutetun energiansäästötoimenpidekokonaisuuden

kokonaiskannattavuus muodostuu yksittäisistä energiataloudellisista lisävalinnoista.

Mitä jyrkemmin käyrä nousee, sitä suurempi vuotuisen energiankulutuksen pienenemi-

sestä johtuva kustannussäästö lisävalintaan sijoitetulla eurolla saavutetaan. Vaaka-

akselilla on esitetty valintojen aiheuttama kumulatiivinen lisäkustannus bruttoneliötä

kohden ja pystyakselilla on esitetty valintojen tuomalla energiansäästöllä vuosittain saa-

vutettava euromääräinen säästö bruttoneliötä kohden.

LASKENNALLINEN TOTEUTUNUT

SISÄINEN KORKO 11 % 4 %

TAKAISINMAKSUAIKA 9 a 16 a

ET-LUOKKA C D

Page 42: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

42

Kuva 5.9. Energiansäästötoimenpidekokonaisuuden laskennallisen kokonaiskannatta-

vuuden muodostuminen yksittäisistä energiataloudellisista valinnoista.

Sitä kuinka hyvin kuvan 5.9 käyrä vastaa muodoltaan toteutunutta tilannetta, voidaan

vain arvailla. Jotta laskennallisten tarkastelujen tarkkuutta saataisiin parannettua pa-

remmin todellisuutta vastaavaksi sekä laskentamenetelmiä testattua ja kehitettyä yhä

paremmin käytännön työkaluiksi soveltuviksi, olisi tärkeä saada tutkimuskäyttöön tar-

kemmin eriteltyä tietoa toteutuneesta energiankulutuksesta sekä kustannuksista.

Johtopäätöksiä

Case-kohteen energiatalouteen liittyvien laskennallisten ja toteutuneeseen kulutukseen

perustuvien tietojen vertailu osoitti, että laskennallisten ja toteutuneiden energiansäästö-

jen välillä on huomattavaa hajontaa. Epätarkkuutta laskennalliseen tarkasteluun aiheutti

ainakin se, että laskelmissa tarvittavien riittävän tarkkojen lähtötietojen selvittäminen oli

hankalaa. Tämän seurauksena jouduttiin käyttämään karkeita oletuksia, joista voi aiheu-

tua virhettä laskennan tuloksiin. Esimerkiksi kaikille seinärakenteille käytettiin yhtä

keskimääräistä U-arvoa, vaikka rakennuksissa oli useita U-arvoltaan poikkeavia seinä-

tyyppejä. Eri seinätyyppien neliömäärien määrittäminen ei kuitenkaan olisi ollut käytet-

tävissä olevilla lähtötiedoilla edes mahdollista, joten keskimääräisen seinärakenteen

valitseminen nähtiin järkevämmäksi vaihtoehdoksi. Näin ollen esimerkiksi perusparan-

nuksen yhteydessä rakennetut ulkonevat saunaerkkerit jäivät ilman erillistä huomiota

energiankulutustarkasteluissa. Huomattava on myös, että on mahdollista, ettei laskel-

missa oletettuja energiataloudellisia lisävalintoja ole toteutettu täysin tutkimuskäytössä

Page 43: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

43

olleiden suunnitelmien ja tietojen mukaisesti, mikä on osaltaan voinut aiheuttaa eroa

laskennallisen ja toteutuneen energiansäästön välille.

Eräs tuntematon tekijä case-kohteen rakennusten osalta oli ilmanvuotoluku n50, jonka

arvoista voi esittää ainoastaan arvauksia, koska tiiviysmittauksia ei tehty perusparan-

nushankkeen yhteydessä. Näin ollen energiankulutuslaskelmissa on käytetty Suomen

rakentamismääräyskokoelman osan D5 ohjeen mukaista ilmanvuotoluvun arvoa 4,00.

Jotta ilmanvuotoluvun osalta saataisiin todellista ja luotettavaa tietoa, olisi perusparan-

nushankkeiden yhteydessä syytä toteuttaa tiiviysmittaukset sekä ennen että jälkeen ti-

lanteessa. Lisäksi lämpökamerakuvausten sisällyttäminen osaksi parvekeovien ja ikku-

noiden asentamisen laadunvarmistusta olisi tärkeää, sillä niiden asennuksen onnistumi-

sella on rakennuksen ilmanpitävyyden kannalta erittäin suuri merkitys.

Laskennallisen ja todellisen ilmanvaihtomäärän suuruudessa on todennäköisesti eroa,

mikä voi olla yksi merkittävä erojen aiheuttaja laskennallisten ja todellisten energianku-

lutusten välillä. Koska ilmanvaihtomääristä ei saatu tarkempaa tietoa, tehtiin laskelmis-

sa Suomen rakentamismääräyskokoelman osan D5 mukaisia oletuksia: D5:n mukaan

ilmanvaihtomäärän voidaan olettaa olevan välillä 0,5–0,7 1/h. Tässä yhteydessä laskel-

missa on tehty niin, että lähtötilanteessa ilmanvaihdon määrän oletettiin olevan 0,5 1/h

ja peruskorjauksen jälkeen sen oletettiin lisääntyneen arvoon 0,7 1/h. Lähtötilanteen

ilmanvaihtomäärä on kuitenkin todennäköisesti ollut oletusta pienempi. Ilmanvaihto-

määrän lisääntyminen D5:n ohjearvon ylärajaan peruskorjauksen jälkeen on perusteltua,

sillä peruskorjauksen on oletettu rakenteiden läpi kulkevan ilman määrää, mikä lisää

ilmanvaihtolaitteen kautta tapahtuvan ilmanvaihdon määrän tarvetta. Koneellisen pois-

toilmanvaihtojärjestelmän korvaaminen lämmöntalteenotolla varustetulla koneellisella

tulo- ja poistoilmanvaihtojärjestelmällä voi osaltaan vaikuttaa ilmanvaihtomäärää lisää-

vänä tekijänä. Yhtenä syynä uuden iv-järjestelmän asentamisen ja muiden energiatalou-

dellisten lisävalintojen todellista suurempiin laskennallisiin energiansäästöihin voidaan

olettaa olevan sen, että lähtötilanteen laskennallinen energiankulutus oli todellista suu-

rempi, jolloin energiansäästöt näyttävät helposti todellista suuremmilta. Edellä maini-

tuista seikoista johtuen koneellisen tulo- ja poistoilmanvaihtojärjestelmän asentamisella

saavutettavaksi arvioitu laskennallinen energiansäästö on todennäköisesti ollut todellista

suurempi.

Energiankulutuslaskelmien kannalta on ongelmallista, että asukkaiden merkitys talojen

kokonaisenergiankulutukseen on huomattavan suuri. Laskelmissa tällaisen asukkaiden

tottumuksista riippuvien vaikutusten merkityksen arvioiminen rakennuksen energianku-

lutukseen on hyvin hankalaa. Esimerkiksi jos asukkaat viihtyvät lämpimämmässä kuin

laskelmissa käytetty lämpötila 21˚C, lämmitykseen tarvittavan energian kulutus nousee

huomattavasti. Jo 1˚C:een lisäys lämpötilassa lisää lämmityskustannuksia noin 5 %.

Näin ollen merkitys on huomattava, jos esimerkiksi kaikkien asuntojen lämpötila 23˚C

laskelmissa käytetyn 21˚C sijaan. Lisäksi asukkaat saattavat tuulettaa ensin kuumaksi

lämmitettyä asuntoa, jolloin lämpöä menee hukkaan ja energiankulutus lisääntyy. On-

Page 44: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

44

gelmallista on myös, että ilmanvaihtojärjestelmän huoltotoimenpiteet on suurelta osin

jätetty asukkaiden oman aktiivisuuden varaan, vaikka pääsääntöisesti vuokratalojen

asukkaat eivät ole kovin perehtyneitä ilmanvaihtojärjestelmän huoltoon. Tietämättö-

myydestä tai piittaamattomuudesta johtuva puutteellinen huolto voi johtaa siihen, ettei

ilmanvaihtojärjestelmä toimi kunnolla.

Lämpötilan lisäksi asukkailla on suuri merkitys lämpimän käyttöveden kulutukseen.

Aiemmin esitettyjen tarkastelujen valossa näyttäisi kuitenkin siltä, että case-kohteessa

asuntokohtaisen vedenkulutuksen mittauksen asentaminen on vaikuttanut varsin suo-

tuisasti asukkaiden kulutustottumuksiin ja näin toiminut varsin tehokkaana ohjauskei-

nona.

Jo se, että energialaskennassa joudutaan käyttämään monelta osin melko karkeita ole-

tuksia, aiheuttaa eroja todellisen ja toteutuneen kulutuksen välille. Kuitenkin on myös

huomattava, että ilman Suomen rakentamismääräyskokoelman osan D5 mukaisia ole-

tuksia tässä raportissa esitettyjä tarkasteluja ei olisi voitu tehdä ja näin ollen laskelmia

tehtäessä on hyväksyttävä tietty epätarkkuus. Toisaalta tarkempia lähtötietoja keräämäl-

lä voidaan tehtävien oletusten määrää vähentää ja siten tarkentaa laskelmien tulosta.

Laskennallisten menetelmien testaamisen ja kehittämisen tueksi olisi jatkossa tarpeen

kerätä tarkemmin eriteltyä toteutunutta kustannustietoa.

Siitä huolimatta, että tutkimuskohteen toteutuneessa kulutuksessa ei saavutettu lasken-

nallisia säästöjä, vaikuttaisi kuitenkin siltä, että perusparannuksen yhteydessä toteutettu

energiataloudellisten lisävalintojen kokonaisuus oli kannattava. Näin ollen energian-

säästötoimenpiteiden tekemisen perusparannushankkeen yhteydessä voidaan todeta ole-

van kannattavaa, sillä perusparannusvaiheessa tehdyt lisäinvestoinnit tuottavat säästöinä

lisätuottoja vielä takaisinmaksuaikansa jälkeenkin. Koska taloudelliset resurssit ovat

aina niukkoja, on hankkeen suunnitteluvaiheessa syytä tarkastella energiataloudellisia

valintoja systemaattisesti, jotta käytettävissä olevilla euroilla saavutettaisiin mahdolli-

simman suuri hyöty.

Page 45: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

45

LIITE 5. Energiansäästöpotentiaalit Ruotsin rakennuskan-nassa (Kurvinen)

Energieffektiviseringsutredningen (EnEff), jonka loppumietintö julkaistiin marraskuussa

2008, on viimeisin arvio Ruotsin energiansäästöpotentiaaleista. Selvityksessä tarkastel-

laan rakennuskannan osalta teknis-taloudellisesti kannattavaa säästöpotentiaalia sekä

säästöpotentiaalia, jonka toteutumisen katsotaan olevan käytännössä mahdollista. (Ja-

gemar & Pettersson 2009, s. 14.) Tässä esitetyt tiedot Ruotsin energiansäästöpotentiaa-

leista perustuvat EnEff-selvitykseen liittyvään ja sen perustana käytettyyn aineistoon.

EnEff-selvityksen taustalla on ollut tarve selvittää, miten Euroopan parlamentin ja neu-

voston direktiivin 2006/32/EY energian loppukäytön tehokkuudesta ja energiapalveluis-

ta sekä neuvoston direktiivin 93/76/ETY kumoamisesta asettamien vaatimusten toteut-

taminen onnistuu käytännössä.

EnEff-selvityksessä esitetyt energiansäästöpotentiaalit perustuvat Göransson & Petters-

sonin (2008) raporttiin ”Effektiviseringspotential i bostäder och lokaler – Med fokus på

effektiviseringsåtgärder 2005–2016”, jonka energiansäästöpotentiaalien laskenta perus-

tuu Chalmers EnergiCentrumin (CEC) vuonna 2005 julkaisemasta raportista ”Åtgärder

för ökad energieffektivisering i bebyggelsen” kerättyyn lähdeaineistoon. CEC:n (2005)

raportti puolestaan pohjautuu energiakomission vuonna 1995 toteuttamiin perusteelli-

siin, koko Ruotsin rakennuskannan käsittäviin tutkimuksiin. (Göransson & Pettersson

2008, s. 6–7.) Kritiikkinä voidaankin todeta, että puutteena saatavilla olevassa julkais-

tussa energiansäästöpotentiaaleja käsittelevässä materiaalissa on arvioitujen säästöpo-

tentiaalien perustuminen aineistoon, joka perustuu alun perin vuoden 1995 energiako-

mission johtopäätöksiin. Koska asutuksen ja teollisuuden infrastruktuuri ja käytettävien

energialajien osuudet ovat kuitenkin muuttuneet tuosta ajasta jokseenkin paljon, vaadit-

taisiin ajantasaisten arvioiden tekemiseen perusteellisia tutkimuksia, joiden pohjalla

olisi uusi ajantasainen perusaineisto rakennuskannan tilasta. (Jagemar & Pettersson

2009, s.14.)

Esitettävät säästöpotentiaalit on laskettu siten, että säästöjä on verrattu niin sanottuna

perusvuotena käytettyyn Ruotsin vuosien 2001–2005 keskimääräiseen energiankäyt-

töön. Sektorilla ”asunnot ja palvelut ym.” perusvuoden energian loppukäyttö on 151

TWh. Primäärienergiakertoimilla painotettuna sektorin energiankulutus perusvuotena

on puolestaan 191 TWh. (Jagemar & Pettersson 2009, s. 5, 14.) EnEff-selvityksessä

käytetyt primäärienergiakertoimet on esitetty taulukossa 6.1.

Page 46: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

46

Taulukko 6.1. EnEff-selvityksessä käytetyt primäärienergiakertoimet. (Göransson &

Pettersson 2008, s. 4.)

Energian säästön bruttopotentiaali

Kuvassa 6.1 on esitetty energian loppukäytön bruttosäästöpotentiaali Ruotsissa sektoril-

la ”Asunnot ja palvelut ym.”, mikäli kaikki teknis-taloudellisesti kannattavat toimenpi-

teet toteutettaisiin. Ruotsissa toteutuvaa toimenpideosuutta kuvaamaan käytetään usein

käsitettä ”acceptans”, josta on tässä yhteydessä käytetty vapaata, mahdollisimman hy-

vin kuvaavaa käännöstä ”toteuttamisaste”. Tässä tarkastelussa toimenpiteiden toteutta-

misasteen oletetaan olevan 100 %. Näin tarkasteltuna säästöpotentiaaliksi vuoteen 2020

mennessä saadaan 41 TWh, mikä tarkoittaa perusvuoteen verrattuna 27 % säästöä.

Kuva 6.1. Energian loppukäytön bruttosäästöpotentiaali Ruotsissa sektorilla ”Asunnot

ja palvelut ym.” vuosina 2008–2010. Tarkastelussa teknis-taloudellisesti kannattavien

energiansäästötoimenpiteiden toteuttamisasteeksi on oletettu 100 %. (SOU 2008:25, s.

158; Göransson & Pettersson 2008, s. 4.)

0

5

10

15

20

25

30

35

40

45

2008 2010 2013 2016 2020

TWh

/vu

osi

Energiansäästön kumulatiivinen bruttopotentiaali Ruotsissa sektorilla "Asunnot ja palvelut ym."

(toteuttamisaste 100 %, energian loppukäyttö ilman painokertoimia)

Toimitilarakennukset, kiinteistösähkö, käyttösähkö

Asuinkerrostalot, taloussähkö, kiinteistösähkö

Pientalot, taloussähkö

Toimitilarakennukset, sähkölämmitys

Asuinkerrostalot, sähkölämmitys

Pientalot, sähkölämmitys

Toimitilarakennukset, kaukolämpö/polttoaine

Asuinkerrostalot, kaukolämpö/polttoaine

Pientalot, kaukolämpö/polttoaine

7,2 %10,9 TWh

11,4 %17,3 TWh

17,2 %26,0 TWh

21,7 %32,8 TWh

26,8 %40,6 TWh

Page 47: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

47

Kuvassa 6.2 on esitetty primäärienergian bruttosäästöpotentiaali Ruotsissa sektorilla

”Asunnot ja palvelut ym.”, mikäli kaikki teknis-taloudellisesti kannattavat toimenpiteet

toteutettaisiin. Tässä tarkastelussa toimenpiteiden toteuttamisasteen oletetaan olevan

100 %. Näin tarkasteltuna säästöpotentiaaliksi vuoteen 2020 mennessä saadaan 68

TWh, mikä tarkoittaa perusvuoteen verrattuna 36 % säästöä. EnEff-selvityksessä käyte-

tyt primäärienergiakertoimet on esitetty taulukossa 6.1.

Kuva 6.2. Primäärienergian bruttosäästöpotentiaali Ruotsissa sektorilla ”Asunnot ja

palvelut ym.” vuosina 2008–2010. Tarkastelussa teknis-taloudellisesti kannattavien

energiansäästötoimenpiteiden toteuttamisasteeksi on oletettu 100 %. EnEff-

selvityksessä käytetyt primäärienergiakertoimet on esitetty taulukossa 7.1. (SOU

2008:25, s. 159; Göransson & Pettersson 2008, s. 4.)

Realistinen energiansäästöpotentiaali

Todellisuudessa vain pieni osa kannattavien toimenpiteiden bruttopotentiaalista toteu-

tuu. CEC:n (2005) raportissa analysoitiin toteuttamisastetta vuosien 1993–2003 todelli-

sen kehityksen perusteella. Analysoinnin lopputulokseksi saatiin, että toimenpiteiden

todellinen toteuttaminen on ollut merkittävästi vähäisempää kuin mitä vuoden 1995

energiakomission tekemä varovaisinkaan arvio antoi olettaa. Näin siitäkin huolimatta,

että taloudelliset edellytykset olivat arviotilannetta edullisemmat. CEC:n (2005) rapor-

tissa arvioitiin toteuttamisasteen olevan jatkossa välillä 10–30 % riippuen energian hin-

tojen kehityksestä sekä ohjauskeinojen yms. tehokkuudesta. CEC:n (2008) raportissa on

arvioitu toteuttamisasteen järkeväksi oletukseksi 15 %, kun huomioidaan rakennusten

eri omistajatyyppien valmius toteuttaa kannattavia säästötoimenpiteitä, nykyinen ener-

0

10

20

30

40

50

60

70

80

2008 2010 2013 2016 2020

TWh

/vu

osi

Primäärienergian säästön kumulatiivinen bruttopotentiaali

Ruotsissa sektorilla "Asunnot ja palvelut ym."(toteututtamisaste 100 %, painotettu primäärienergiakertoimilla)

Toimitilarakennukset, kiinteistösähkö, käyttösähkö

Asuinkerrostalot, taloussähkö, kiinteistösähkö

Pientalot, taloussähkö

Toimitilarakennukset, sähkölämmitys

Asuinkerrostalot, sähkölämmitys

Pientalot, sähkölämmitys

Toimitilarakennukset, kaukolämpö/polttoaine

Asuinkerrostalot, kaukolämpö/polttoaine

Pientalot, kaukolämpö/polttoaine

14,9 %28,4 TWh

22,3 %42,6 TWh

28,5 %54,3 TWh

35,6 %67,9 TWh

9,5 %18,1 TWh

Page 48: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

48

gian hintataso sekä käytössä olevat ohjauskeinot. Tätä oletusta on käytetty tässä yhtey-

dessä arvioitaessa realistista energiansäästöpotentiaalia Ruotsissa. (Göransson & Pet-

tersson 2008, s. 14, 21.)

Mahdollisia syitä siihen, että vain osa toimenpiteistä toteutetaan, on useita. Syiksi on

arvioitu ainakin, että

energiansäästömahdollisuuksista on puutteellista tietoa

tiettyjen toimenpiteiden sopivuudesta on epäilyksiä

todelliset kannattavuusvaatimukset saattavat olla arviota korkeammat

rahoituksen kanssa voi olla ongelmia

kannattavuus saatetaan laskea liian kriittisesti tai liian lyhytnäköisesti

toiminnan säilyminen nykyisessä muodossa saattaa epäilyttää

ei ole aikaa käsitellä tämäntyyppisiä kysymyksiä tai perusteita ei esitetä riittävän

selkeästi

organisaatiossa ei ole riittävää pätevyyttä tai keskitytään muihin kysymyksiin

jne.

Syytä on myös huomioida, että energiansäästöpotentiaalin toteuttaminen käyttäjäpuolel-

la vaatii kokonaisuudessaan miljoonittain päätöksiä miljoonilta pientalon omistajilta,

vuokralaisilta sekä omistaja- ja hallitsijaorganisaatioissa toimivilta henkilöiltä, joille

energia-asiat ovat vain pieni osa kaikista niistä kysymyksistä, joita he joutuvat käsitte-

lemään. (Göransson & Pettersson 2008, s. 14.)

Kuvassa 6.3 on arvioitu sektorin ”Asunnot ja palvelut ym.” energiansäästöpotentiaalia

Ruotsin energian loppukäytössä vuosina 2008–2020 perusvuoteen verrattuna. Toteutta-

misasteena tässä arviossa on käytetty 15 % teknis-taloudellisesti kannattavista energian-

säästötoimenpiteistä. Säästöpotentiaalin vuoteen 2020 mennessä on arvioitu olevan 6

TWh, mikä tarkoittaa noin 4 % säästöä perusvuoteen verrattuna.

Page 49: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

49

Kuva 6.3. Energian loppukäytön arvioitu realistinen säästöpotentiaali sektorilla

”Asunnot ja palvelut ym.”. Teknis-taloudellisesti kannattavista energiansäästötoimen-

piteistä on arvioitu toteutuvan 15 %. (Göransson & Pettersson 2008, s. 31.)

Kuvassa 6.4 on arvioitu sektorin ”Asunnot ja palvelut ym.” primäärienergian säästöpo-

tentiaalia Ruotsissa vuosina 2008–2020 perusvuoteen verrattuna. Toteuttamisasteena

tässä arviossa on käytetty 15 % teknis-taloudellisesti kannattavista energiansäästötoi-

menpiteistä. Säästöpotentiaalin vuoteen 2020 mennessä on arvioitu olevan 10 TWh,

mikä tarkoittaa noin 5 % säästöä perusvuoteen verrattuna. EnEff-selvityksessä käytetyt

primäärienergiakertoimet on esitetty aiemmin taulukossa 6.1.

0

1

2

3

4

5

6

7

2008 2010 2013 2016 2020

TWh

/vu

osi

Arvioitu realistinen energiansäästöpotentiaali Ruotsissa sektorilla "Asunnot ja palvelut ym."

(toteuttamisaste 15 %, energian loppukäyttö ilman painokertoimia)

Toimitilarakennukset, sähkö

Asuinkerrostalot, sähkö

Pientalot, sähkö

Toimitilarakennukset, kaukolämpö/polttoaine

Asuinkerrostalot, kaukolämpö/polttoaine

Pientalot, kaukolämpö/polttoaine

1,1 %1,7 TWh

1,7 %2,6 TWh

2,6 %4,0 TWh

3,3 %5,0 TWh

4,1 %6,2 TWh

Page 50: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

50

Kuva 6.4. Primäärienergian arvioitu realistinen säästöpotentiaali sektorilla ”Asunnot

ja palvelut ym.”. Teknis-taloudellisesti kannattavista energiansäästötoimenpiteistä on

arvioitu toteutuvan 15 %. EnEff-selvityksessä käytetyt primäärienergiakertoimet on

esitetty taulukossa 6.1. (Göransson & Pettersson 2008, s. 31.)

Asuinrakennuksille suositellut energiansäästötoimenpiteet

Taulukossa on 6.2 on esitetty sellaiset energiansäästötoimenpiteet, jotka on katsottu

teknis-taloudellisesti kannattaviksi toimenpiteiksi asuinrakennuksille. Esitetyt toimenpi-

teet perustuvat CEC:n (2005) raportissa esitettyihin toimenpiteisiin. Toimenpiteet on

jaettu rakennuksen vaippaan kohdistuviin toimenpiteisiin, taloteknisiin toimenpiteisiin

sekä sähkölaitteisiin kohdistuviin toimenpiteisiin. (Dalenbäck et al. 2005, s. 42.)

Rakennusvaipan osalta on käsitelty erikseen yläpohjaan, julkisivuun sekä ikkunoihin

kohdistuvia toimenpiteitä. Taloteknisten järjestelmien osalta on tarkasteltu tarkemmin

lämmitysjärjestelmään, ilmanvaihtoon, lämpimän käyttöveden mittaukseen sekä valvon-

tajärjestelmiin kohdistuvia toimenpiteitä. Sähkölaitteita on käsitelty taulukossa yleisellä

tasolla. (Dalenbäck et al. 2005, s. 42.)

0

2

4

6

8

10

12

2008 2010 2013 2016 2020

TWh

/vu

osi

Arvioitu realistinen primäärienergian säästöpotentiaali Ruotsissa sektorilla "Asunnot ja palvelut ym."

(toteuttamisaste 15 %, painotettu primäärienergiakertoimilla)

Toimitilarakennukset, sähkö

Asuinkerrostalot, sähkö

Pientalot, sähkö

Toimitilarakennukset, kaukolämpö/polttoaine

Asuinkerrostalot, kaukolämpö/polttoaine

Pientalot, kaukolämpö/polttoaine

1,4 %2,7 TWh

2,3 %4,3 TWh

3,4 %6,4 TWh

4,3 %8,2 TWh

5,3 %10,2 TWh

Page 51: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

51

Taulukko 6.2. Asuinrakennuksille ehdotetut energiansäästötoimenpiteet (Dalenbäck et

al. 2005, s. 42).

Tyyppi Lyhyt kuvaus

Vaippa (lämpöenergia)

- Yläpohja - Sisä- ja ulkopuolinen yläpohjan lisäeristys sekä lämmitetyn

ullakon lisäeristys.

- Julkisivu - Ulkoseinien ulkopuolinen lisäeristys mukaan lukien

maanpinnan ylä- ja alapuoliset kellariseinät.

- Ikkunat - Ovien ja ikkunoiden karmien sekä kattojen, seinien ja

lattioiden liitoskohtien tiivistäminen.

- Vanhojen ikkunoiden lasien vaihtaminen tai ikkunoiden

vaihtaminen energiatehokkaampiin, ikkuna pinta-alan

pienentäminen

Talotekniset toimenpiteet

(lämpö- ja sähköenergia)

- Lämmitysjärjestelmä - Polttimen vaihto ja säätimien asennus.

- Termostaattiventtiilien asennus, keskitetty lämmönsäätö

(pientalot) ja järjestelmän säätöjen tarkistus.

- Ilmanvaihto - Ilmanvaihtotarpeen, laitteiden sekä käyttöaikojen

tarkistaminen, siirtyminen yksittäiskäyttöisiin puhaltimiin.

- Säätöjen tarkistus, käyttöajan sekä kierrosluvun säätö ja

ohjaus

- Lämmöntalteenotto lämmönvaihtimella tai vaihtoehtoisesti

poistoilmalämpöpumppu veden lämmittämiseen.

- Tuloilman lämpötilan säätäminen sopivaksi.

- Lämmin käyttövesi - Lämpötilan ja virtauksen rajoittaminen (vähän vettä

kuluttavat kylpyhuonekalusteet)

- Valvontajärjestelmä - Keskitetyn ohjaus- ja valvontajärjestelmän sekä

asuntokohtaisen sähkön, lämpimän käyttöveden ja

lämmitysenergian mittauksen asentaminen (kerrostalot).

Sähkölaitteet (sähköenergia)

- Kodinkoneiden valitseminen A-energialuokasta.

- Lämminvesijärjestelmään liitettävän pesukoneen ja

kuivaushuoneen laitteiden käyttöönotto.

- Valaistuksen ja paikallaolo-ohjauksen tarpeen tarkistaminen

tai vaihtoehtoisesti aikakytkimen asentaminen yhteistiloihin

ja ulos, energiatehokkaampien valaisimien vaihtaminen.

- Laitteiden valmiustilan ja auton lämmityspaikkojen

hukkakulutuksen tarkistaminen ja minimointi.

Page 52: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

52

KIRJALLISUUS

Aho, K., Matilainen, J. & Hekkanen, M. 2009. Energiakorjausten pitkäaikaistoimivuus

asuinkerrostalossa. KOY Kaari-Salpa, Oulainen. Oulunseudun ammattikorkeakoulu. 43

s.

Dalenbäck, J., Göransson, A., Jagemar, L., Nilsson, A., Olsson, D. & Pettersson, B.

2005. Åtgärder för ökad energieffektivsering i bebyggelse. Göteborg, Chalmers Univer-

sity of Technology, Chalmers EnergiCentrum (CEC). CEC rapport 2005:1. 105 s. + liitt.

59 s.

Göransson, A. & Pettersson, B. 2008. Energieffektiviseringspotential i bostäder och

lokaler - Med fokus på effektiviseringsåtgärder 2005–2016. Göteborg, Chalmers tek-

niska högskola, Chalmers EnergiCentrum (CEC). CEC rapport 2008:3. 26 s. + liitt. 5 s.

Heljo, J. & Peuhkurinen, T. 2004. Asuinkerrostalon perusparantamisen ja laajuusmuu-

tosten vaikutus energiankulutukseen ja elinkaarikustannuksiin. SUREURO-projektin

osatutkimus. Tampere, Tampereen teknillinen yliopisto. Rakentamistalouden laitos.

Raportti 2004:5.

Heljo, J. & Vihola, J. 2010. Toteutettavissa olevat energiansäästöpotentiaalit Helsingin

kaupungin asuinkiinteistöissä. Osaselvitys liittyen Helsingin kaupungin asuinkiinteistö-

jen AESS-sopimusten mukaisen toimenpideohjelman laatimiseen. Tampere, Tampereen

teknillinen yliopisto. Rakennustekniikan laitos. Julkaisematon. 20 s. + liitt. 6 s.

Jagemar, L & Pettersson, B. 2009. Energieffektivisering - möjligheter och hinder.

[PDF].[Viitattu:27.8.2010].Saatavissa:

http://www.iva.se/PageFiles/8960/4_ENERGIEFFEKTIVISERING_web.pdf. Stock-

holm, IVA. ISBN/ISSN: 978-91-7082-802-7. 36 s.

Karjalainen, K. & Kimari, P. 1999. Koulujen sisäilma ja energiatalous. Helsinki, Suo-

men Talotekniikan Kehityskeskus (TAKE).

Kurvinen, A. 2010. Korjaustoiminnan energiataloudellisten valintojen systematiikka.

Saatavissa: http://www.ara.fi/download.asp?contentid=23983&lan=fi. Diplomityö.

Tampere, Tampereen teknillinen yliopisto. Rakennustekniikan laitos. 109 s. + liitt. 32 s.

Leskinen, M., Heljo, J., Holopainen, R. & Haakana, M. 2001. Perusparannusten ener-

giavaikutukset julkisissa rakennuksissa. Helsinki, LINKKI 2 Energiansäästön päätök-

senteon ja käyttäytymisen tutkimusohjelman julkaisu 20/2001. 65 s. + liitt. 30 s.

Page 53: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

53

SOU 2008:110. 2008. Vägen till ett energieffektivare Sverige – Slutbetänkande av

Energieffektiviseringsutredningen (EnEff). Statens offentliga utredningar. Stockholm

2008. [PDF]. Saatavissa:

http://www.sweden.gov.se/content/1/c6/11/58/55/94065b3d.pdf. 557 s. + liitt. 155 s.

SOU 2008:25. 2008. Ett energieffektivare Sverige – Delbetänkande av Energieffektivi-

seringsutredningen (EnEff). Statens offentliga utredningar. Stockholm 2008. [PDF].

Saatavissa: http://www.sweden.gov.se/content/1/c6/10/01/76/9e6cf104.pdf. 320 s. +

liitt. 119 s.

Suomen Kiinteistöliitto. 2010. Kestävä korjausrakentaminen Euroopassa: SUREURO-

hankkeen esittelysivu verkossa. [WWW]. [Viitattu 23.4.2010]. Saatavissa:

http://www.kiinteistoliitto.fi/tutkimus/toteutuneet/sureuro/

Tilastokeskus. 2010. Energiatilasto – Vuosikirja 2009.

Page 54: Energiansäästömahdollisuudet rakennuskannan korjaustoiminnassa (liiteraportti)

www.tut.fi/ee