Κώστας Τσιαντής- Συνθήκες Μετάβασης στο Χάος των μη...

Preview:

DESCRIPTION

Θεωρία του Χάους και ο ρόλος των αρχικών συνθηκών

Citation preview

  • 1

    . , ,

    :

    .

    . xn+1 =xn2 +a

    Chua.

    , Hopf,

    ( )

    ..

    .

    1.

    . . (York 1975) 1, , , , . (state-space), Hamilton Jacobi, ( ) (Poincare, Andronov, Hopf) 2. 1960 Edward Lorentz, 3, 70 Feigenbaum Los Alamos (). ( ) 4. , . .( Chua, Colpitts, Van der Pol)

    5 , ,

    .

    : ; ; ; ; . Poincare-Bendixon,

    x = (x) , t () {f(x)=0}, ) , ) {x(t)=x (t+T)}6,7.

    ,

    . ? (nonperiodic)

    (nonexplosive) , , ,

    (nonpredictable)! Sheinerman 8.

  • 2

    . , , . . : : (1) H 9, (2) H (intermittency)

    10, (3) (- ) 11.

    2.

    12 , , ()

    () (continuos time) (discrete time)

    x = f (x) [ x =f(x,y) y =g(x,y)] x (k+1)= f (x(k)) xk+1 =f (xk)

    x(t0)=x0 x(k0)=x0

    , x=[x1,x2, xn] , f g t (x0,y0), k : 0,1,...n.

    (fixed point) x

    f( x) = x (1)

    x (stable), f ( x ) 1 (2)

    T x (unstable), f ( x ) 1 (3)

    .

    x(k)=f k (x) (4)

    f k (x)

    f k

    (x) =f[f[f[..f[x]..]]] k (5)

    f , k, x, f[x], f[f[x]]......

    x

    f k( x ) = x (6)

    k (7) x.

    f 2k

    (x) = f k

    [f k (x)] =f

    k (x)= x (7)

    , x k, 2k, 3k,

    4k, .

    x (prime period), k

    (7) x.

    4. . f(x) x, f 2 (x) x , f 3 (x) x, f 4 (x) = x.

    Sarkovskii13, f 3, f

    k k.

  • 3

    p, p. A

    f (p) 1 p, {p, f(p), f2(p),

    f3(p),...f

    k-1(p)}. A . f (p) 1, {p, f(p),

    f2(p), f

    3(p),...f

    k-1(p)}

    ( ), 14.

    3. f[x]=x2+a

    3.1 ()

    f(x)= x2+a .

    : 1) o (fixed

    points) f(x)=x , 2) (. f(x) ).

    x2+=x (1+ 1-4)/2 (1- 1-4)/2,

    1/4. 2x f(x) .

    1+ 1-4 1, ,

    1- 1-4 1, -3/4

    1/4. , 1-4 2. x (x ) , =1/4 ( .1)

    , =1/4 , 1/4.

    (bifurcation), f(x) =1/4

    y=x (saddle node bifurcation).

    , (fixed points) ,

    (stable) : -3/4 1/4

    3.2.

    , -3/4,

    , . = -3/4 .

    3/4 1, 2.

    1.5 1 0.5 0 0.5

    2

    0

    2

    2.0

    2.0

    y1

    i

    z1

    i

    y2

    i

    z2

    i

    0.51.5 a

    i

  • 4

    , : ? Mathcad xn+1 =xn

    2 +a

    n (. 2), x0 = -0.5 = -0.8.

    (n 100) xn+1. K Nest [f,-0.50, n] Mathematica x0 n=110 -0.276502, n=111 0.723547, n=112 0.27648, n=113 0.723559. , . n=1000 0.276393, n=1001 0.723607, n=1002 0276393, n=1003 0.723607.

    x0 = -0.5, = -0.8 n , xn+1

    .

    f 2k (x) = f k [f k (x)] =f k (x)= x. f[f[x]]=x f[f[-0.276393]]=f[-0.723607]=-0.276393,

    x=-0.276393 k=2.

    2k, 3k, 4k, . 0.723607. ,

    = -3/4

    (period-doubling pitchfork bifurcation). 2, f[f[x]]=x.

    (x^2+)^2+ = x

    (1+ 1-4)/2, (1- 1-4)/2, (-1+ -3-4)/2 (-1- -3-4)/2.

    f[x]=x. 1 2 2, ,

    -3/4.

    1, 2 , f[f[x]] . 1, f[1]=2 f[2]=1,

    f[f[x]] (1)=f [f[1]]*f [1]=f [2]*f [p1]=22*21=(-1- -3-4)* (-1+ -3-4)=4+4

    4+4 1 -5/4 -3/4 2, .

    0 50 100 150

    0.6

    0.4

    xn

    n

    0.6 0.4

    0.6

    0.4

    xn 1

    xn

  • 5

    3.3. 4

    1 2 5/4 4, 2 2 .. xn+1 =xn

    2 +a

  • 6

    ( n=1000:1017 x0 =0.50)

    [0.447814, -1.19046, 0.0262008, -1.39031,

    0.541972, -1.09727, -0.187006, -1.35603,

    0.447814, -1.19046, 0.0262008, -1.39031,

    0.541972, -1.09727, -0.187006, -1.35603,

    0.447814, -1.19046]

    ( n=1000:1020 x0 =0.50)

    [0.444978, -1.19599, 0.036404, -1.39267,

    0.545543, -1.09638, -0.191945, -1.35716,

    0.447876, -1.19341, 0.0302208, -1.39309,

    0.546691, -1.09513, -0.194692, -0.194692,

    -1.3561, 0.444994, -1.19598,0.036368,-1.39268]

    =-1.40 ( n=1000:1017 x0 =0.50) xn+1 32 f 32

    (x)= x

    [0.46702, -1.18189, -0.00313082, -1.39999, 0.559973, -1.08643, -0.219668, -1.35175,

    0.427217, -1.21749, 0.0822715, -1.39323, 0.541094, -1.10722, -0.174069, -1.3697,

    0.476078, -1.17335, -0.0232501, -1.39946, 0.558487, -1.08809, -0.216055, -1.35332,

    0.431476, -1.21383, 0.073379, -1.39462, 0.544952, -1.10303, -0.183332, -1.36639,

    0.46702, -1.18189]

    2, 4, 8, 16, 32, 64 . ( = 1.4)

    . = -1.5 = -2

    . :

    =-1.75

    0.5, -1.5, 0.5,- 1.5, 0.5

    2

    =-1.76

    1.3356, 0.0238308, -1.75943,

    1.3356, 0.0238308, -1.75943,13356

    3

    =-1.77

    0.0828164, -1.76314, 1.33867, 0.0220113,

    -1.76951, 1.36118, 0.0828164, -1.76314, 1.33867

    6

    =-1.63

    1.01663,-059646,-1.27424,-0.00632493,

    -1.62996,1.02677,-0.575744,-1.29852,

    0.0561505,-1.62685,1.01663,-0.59646,..

    10

    =-1.48

    0.706669,-0.980619,-0.518386,-1.21128,

    -0.0218103,-1.47986,0.709914,-0.976022,-0.527382,

    -1.20187,-0.0355118,-1.47874, 0.706669,-0.980619..

    12

    3.4. x0

    >-2 , , x0

    [-2, 2] f (x) n

    [-2, 2].

  • 7

    f(x) . f . , , f 15

    a = -1.95 x0= -0.50 xn+1 = xn

    2 +a ( ),

    xn+1 .

    (pattern), ( ) . . x0 , .. [-0.50 -0,50001] f[-0,5]-f[-0.50001] (..20) .

    , xn+1 ( ) f (x) ( )

    x. (.4) n 1000 1019 .

    ( n, ) , - ( Lorenz). . , / n, ! ( Cantor), .

    4. Hopf

    4.1.

    x1 = x1 + x2 - x13

    x2 = - x1 (8)

    x: f[-0,5]-f[-0,50001]

    20 n=[1000,1019]

    -4

    -2

    0

    2

    4

    1 4 7

    10

    13

    16

    19

  • 8

    x =[ x1 x2 ] T

    , (fixed points) f(x)=0.

    x = 0. Df =[Df1 Df2]

    T,

    Df1=[ f1/ x1 f1/ x2]

    Df2=[ f2/ x1 f2/ x2]

    Df(0), 1/2*(1+i 3), 1/2*(1-i 3),

    , . f( x )=0, .

    V(x)=x12 + x2

    2, V(x) 0, x 0.

    V(x) Lyapunov, 0 . ?

    dV(x)/dt = ( V/ x1)( x1/dt)+ ( V/ x2)( x2/dt) = 2x1

    2 (1-x1

    2 ) (9)

    dV(x)/dt 0. x1 1. , x1

    , 0. 0 .

    . , x(t) , x1. 0 . . 16.

    4.2.

    ? (8),

    ax0 ., x=0.

    ? , ,

    1/2*(+ 2-4), 1/2*(- 2-4). , ,

    x=0 . , 0 . Lyapunov 2x1

    2(a-x1

    2). a

    , Lyapunov, 0, . , V(x) Lyapunov, . , Poincare-Bendixson, . . . (0.5, 0.5) , 0. , ., - + , 0, , =0 1,

    . 0 ,

    , Hopf. Hopf . , . , Hopf =2, . (torus), .17

    4.3. . .

  • 9

    . Mathcad ( Runge-Kutta), [0.0001,0.0031] x n=1000 0 40.

    [x1 , x2] , [zn,1, zn,2],

    [zn,1, zn,2]. 0 ( x0),

    (5):

    5. CUA:

    .

    Hopf . Hopf , ( Van der Pol, Colpitts

    18,19

    .) Chua 20, 21, 22, 23, 24. , , . 25.

    m 0.1 x0.5

    0.5n ..0 500

    D( ),t x

    .m x0

    x1

    x0

    3

    x0 Z rkfixed( ),,,,x 0 20 500 D

    0 200 400

    0

    1

    Z,n 2

    n

    0 200 400

    0

    1

    Z,n 1

    n

    0.5 0 0.50.5

    0

    0.5

    Z,n 1

    Z,n 2

  • 10

    , , 26. 27:

    x=c1*(y-x-g(x)) (10) y=c2*(x-y+z) (11) z= -c1*y (12)

    g(x)=m1*x+0.5*(m0-m1)*( x+1 - x-1 )

    H g(x) - . c1, c2, c3, m0, m1 . . Chua Mathcad.( [x,y,z] [x0, x1, x2]) . [1, 1, 1] [0, 0, 1]. [x0, x1, x2] ( [z1, z2 ,z3]) .

    [1,1,1]

    . 0.0000002 c3, . , (.6, .7). c3=41.90 o , c3=42.90 , c3=43.90 , c3=44.90 , c3=45.90 , c3 =46.90 , c3 =47.90 , c3 =47.90 . c3 =44.90 c3 =47.90 . . H .

    c1 15.6 c2 1.0 c3 64.4683668m0

    8

    7m1

    5

    7

    g( )x .m1 x0

    .m0 m1

    2x0

    1 x0

    1x

    1

    1

    1

    n ..0 25000

    D( ),t x

    .c1 x1

    .c1 x0

    .c1 g( )x

    .x0

    x1

    x2

    c2

    .c3 x1

    Z rkfixed( ),,,,x 0 40 25000D D1

    Z,n 1

    D2

    Z,n 2

    D3

    Z,n 3

  • 11

    0 5000 1 104

    1.5 10410

    0

    10

    Z,n 3

    n

    2 0 2

    0Z ,n 1

    Z,n 2

    5 0 52

    0

    2

    Z,n 2

    Z,n 3

    2 0 210

    0

    Z,n 3

    Z,n 1

    3 2 1 0 1 2 34

    3

    2

    1

    0

    1

    2

    3

    Z,n 3

    Z,n 1

  • 12

    0,0000002 c3 ( c3=64.4683666 (. 7).

    [0, 0, 1]

    c3 , (1) (c3=50), (2) (c3=33.8), (3) (c3=33), (4) (c3=25.59)`.

    3 2 1 0 1 2 34

    3

    2

    1

    0

    1

    2

    3

    Z,n 3

    Z,n 1

  • 13

    1 0.5 0 0.5 1 1.5 2 2.5 34

    3

    2

    1

    0

    1

    2

    Z,n 3

    Z,n 1

    1 0.5 0 0.5 1 1.5 2 2.5 34

    3

    2

    1

    0

    1

    2

    Z,n 3

    Z,n 1

  • 14

    1 0.5 0 0.5 1 1.5 2 2.5 34

    3

    2

    1

    0

    1

    2

    Z,n 3

    Z,n 1

    2 1 0 1 2 34

    3

    2

    1

    0

    1

    2

    3

    Z,n 3

    Z,n 1

  • 15

    6.

    . -, . , . . . . , , .

    1 J Gleick, Chaos, (Viking, New York, 1987), . 65.

    2 J.L. Moiola & G. Chen, Hopf bifurcation analysis: A frequency domain approach. Singapore, Ney Jersey: World

    Scinetific Series of Nonlinear Science (Ed. L.O. Chua), 1996. 3 . . Lorentz, J. Almos, Science, 20 , (1963), 130.

    4 A. , , (.

    . ), . , : . .. , 1989, .61. 5 H. K. Khalil, Nonlinear Systems, 2

    nd ed. New Jersey, Prentice Hall, 1996.

    6 . R Scheinerman, Invitation to Dynamical Systems, New Jersey: Prentice Hall, 1966, .153.

    7 H. K. Khalil, Nonlinear Systems, 2

    nd ed. New Jersey, Prentice Hall, 1996.

    8 . R Scheinerman, Invitation to Dynamical Systems, New Jersey: Prentice Hall, 1966, .153.

    9 M. Feigenbaum, Journal of Statistical Physics, 19, 25 (1978), J. Stat. Phys 21, 669(1979).

    10 Y. Pomeau & P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Commun.

    Math. Phys. 74, 189 (1980). 11

    D. Ruelle & F. Takens, On the nature of turbulence, Commun. Math. Phys, 20, 167 (1971). 12

    , .. -. 2001 13

    . R Scheinerman, Invitation to Dynamical Systems, New Jersey: Prentice Hall, 1966, . 188-199. 14

    . . . 174. 15

    O....202-216 16

    .. . 158-160. 17

    A. , .., .117. 18

    M. P. Kennedy, Chaos in the Colpitts oscillator IEEE Trans. Circuits Syst. I. 1994, 41, (11), . 771-774. 19

    .P. Kennedy, On the relationship between the chaotic Colpitts oscillatos and Chuas oscillator, IEEE Trans.

    Circuits Sust. I, 1995, 42, (6), . 376-379. 20

    L. O. Chua, Chuas circuit: an overview ten years later, J. Circuits Syst. Comput. 1994, 4, (2), 117-159. 21

    L.O. Chua, M. Itoh, L. Kocarev & K. Eckert, Chaos synchronization in Chua circuit, R.N. Madam (E.):

    Chuas circuit: A paradigm for Chaos, World Scientific Publ. Co, Singapore, 1993, . 309-324. 22

    L.O Chua, Global unfolding of Chuas circuit , IEIECE Trans. Fundamentals Electronics, Communications and

    Computer Sciences, vol. E76-A, no. 5, 704-734, May 1993. 23

    M.P.Kennedy, Robust Op Amp Implementation of Chuas Circuit, Frequenz, vol. 46, n0. 3-4, pp. 66-80, 1992. 24

    M.T. Abuelma Atti, Chaos in an autonomus active-R circuit, IEEE Trans. Circuits Syst. I: Fundam. Theory appl.,

    1995, 42, (1), . 1-5. 25

    , 7-8/94, . 109-110 26

    X. Rodet, Sound and Music from Chuas Circuit, Journal of Circuits, Systems and Computers, vol. 3, n0. 2, 49-61,

    1992. 27

    ..Alligood, T.D. Sauer & J.A. Yorke, Chaos: An introduction to dynamic systems, New York, Spinger, 1977,

    .375

Recommended