CISE301_Topic7KFUPM1 SE301: Numerical Methods Topic 7 Numerical Integration Lecture 24-27 KFUPM Read...

Preview:

Citation preview

CISE301_Topic7 KFUPM 1

SE301: Numerical MethodsTopic 7

Numerical Integration Lecture 24-27

KFUPM

Read Chapter 21, Section 1Read Chapter 22, Sections 2-3

CISE301_Topic7 KFUPM 2

Lecture 24Introduction to

Numerical Integration

Definitions Upper and Lower Sums Trapezoid Method (Newton-Cotes Methods) Romberg Method Gauss Quadrature Examples

CISE301_Topic7 KFUPM 3

IntegrationIntegrationIndefinite Integrals

Indefinite Integrals of a function are functions that differ from each other by a constant.

cx

dxx2

2

Definite Integrals

Definite Integrals are numbers.

2

1

2

1

0

1

0

2

x

xdx

CISE301_Topic7 KFUPM 4

Fundamental Theorem of Fundamental Theorem of CalculusCalculus

:forsolution form closedNo

:for tiveantideriva no is There

) f(x)(x) 'F (i.e., f of tiveantideriva is

, intervalan on continuous is If

2

2

b

a

x

x

b

a

dxe

e

F(a)F(b)f(x)dx

F

[a,b]f

CISE301_Topic7 KFUPM 5

The Area Under the The Area Under the CurveCurve

b

af(x)dxArea

One interpretation of the definite integral is:

Integral = area under the curve

a b

f(x)

CISE301_Topic7 KFUPM 6

Upper and Lower SumsUpper and Lower Sums

a b

f(x)

3210 xxxx

ii

n

ii

ii

n

ii

iii

iii

n

xxMPfUsumUpper

xxmPfLsumLower

xxxxfM

xxxxfm

Define

bxxxxaPPartition

1

1

0

1

1

0

1

1

210

),(

),(

:)(max

:)(min

...

The interval is divided into subintervals.

CISE301_Topic7 KFUPM 7

Upper and Lower SumsUpper and Lower Sums

a b

f(x)

3210 xxxx

2

2 integral theof Estimate

),(

),(

1

1

0

1

1

0

LUError

UL

xxMPfUsumUpper

xxmPfLsumLower

ii

n

ii

ii

n

ii

CISE301_Topic7 KFUPM 8

ExampleExample

14

3

2

1

4

103,2,1,0

4

1

1,16

9,

4

1,

16

116

9,

4

1,

16

1,0

)intervals equalfour (4

1,4

3,

4

2,

4

1,0 :

1

3210

3210

1

0

2

iforxx

MMMM

mmmm

n

PPartition

dxx

ii

CISE301_Topic7 KFUPM 9

ExampleExample

14

3

2

1

4

10

8

1

64

14

64

30

2

1

32

11

64

14

64

30

2

1integraltheofEstimate

64

301

16

9

4

1

16

1

4

1),(

),(

64

14

16

9

4

1

16

10

4

1),(

),(

1

1

0

1

1

0

Error

PfU

xxMPfUsumUpper

PfL

xxmPfLsumLower

ii

n

ii

ii

n

ii

CISE301_Topic7 KFUPM 10

Upper and Lower SumsUpper and Lower Sums• Estimates based on Upper and Lower

Sums are easy to obtain for monotonic functions (always increasing or always decreasing).

• For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

CISE301_Topic7 KFUPM 11

Newton-Cotes Methods In Newton-Cote Methods, the function

is approximated by a polynomial of order n.

Computing the integral of a polynomial is easy.

1

)(...

2

)()()(

...)(

1122

10

10

n

aba

abaabadxxf

dxxaxaadxxf

nn

n

b

a

b

a

nn

b

a

CISE301_Topic7 KFUPM 12

Newton-Cotes Methods Trapezoid Method (First Order Polynomials are used)

Simpson 1/3 Rule (Second Order Polynomials are used)

b

a

b

a

b

a

b

a

dxxaxaadxxf

dxxaadxxf

2210

10

)(

)(

CISE301_Topic7 KFUPM 13

Lecture 25Trapezoid Method

Derivation-One Interval Multiple Application Rule Estimating the Error Recursive Trapezoid Method

Read 21.1

CISE301_Topic7 KFUPM 14

Trapezoid MethodTrapezoid Method

)()()(

)( axab

afbfaf

f(x)

ba 2

)()(

2

)()(

)()()(

)()()(

)(

)(

2

afbfab

x

ab

afbf

xab

afbfaaf

dxaxab

afbfafI

dxxfI

b

a

b

a

b

a

b

a

CISE301_Topic7 KFUPM 15

Trapezoid MethodDerivation-One Interval

2

)()(

)()(2

)()()()()(

2

)()()()()(

)()()()()(

)()()(

)()(

22

2

afbfab

abab

afbfab

ab

afbfaaf

x

ab

afbfx

ab

afbfaaf

dxxab

afbf

ab

afbfaafI

dxaxab

afbfafdxxfI

b

a

b

a

b

a

b

a

b

a

CISE301_Topic7 KFUPM 16

Trapezoid MethodTrapezoid Method

)(bf

f(x)

ba

)()(2

bfafab

Area

)(af

CISE301_Topic7 KFUPM 17

Trapezoid MethodTrapezoid MethodMultiple Application RuleMultiple Application Rule

a b

f(x)

3210 xxxx

s trapezoid theof

areas theof sum)(

...

segments into dpartitione

is b][a, intervalThe

210

b

a

n

dxxf

bxxxxa

n

1212

2

)()(xx

xfxfArea

x

CISE301_Topic7 KFUPM 18

Trapezoid MethodTrapezoid MethodGeneral Formula and Special CaseGeneral Formula and Special Case

)()(2

1)(

...

equal)y necessaril(not segments into divided is interval theIf

11

1

0

210

iiii

n

i

b

a

n

xfxfxxdxxf

bxxxxa

n

1

10

1

)()()(2

1)(

allfor

points) base spacedEqualiy ( CaseSpecial

n

iin

b

a

ii

xfxfxfhdxxf

ihxx

CISE301_Topic7 KFUPM 19

Example

Given a tabulated values of the velocity of an object.

Obtain an estimate of the distance traveled in the interval [0,3].

Time (s) 0.0 1.0 2.0 3.0

Velocity (m/s) 0.0 10 12 14

Distance = integral of the velocity

3

0)(Distance dttV

CISE301_Topic7 KFUPM 20

Example 1Example 1Time (s) 0.0 1.0 2.0 3.0

Velocity (m/s)

0.0 10 12 14

29)140(2

112)(101 Distance

)()(2

1)(

1

0

1

1

1

n

n

ii

ii

xfxfxfhT

xxh

MethodTrapezoid

3,2,1,0are points Base

lssubinterva3 into

divided is interval The

CISE301_Topic7 KFUPM 21

Estimating the Error Estimating the Error For Trapezoid MethodFor Trapezoid Method

?accuracy digit decimal 5 to

)sin( compute toneeded

are intervals spacedequally many How

0

dxx

CISE301_Topic7 KFUPM 22

Error in estimating the Error in estimating the integralintegralTheoremTheorem

)(''max12

)(12

then)( eapproximat

toused is Method Trapezoid If :Theorem

) (width intervals Equal

on continuous is)('' :Assumption

],[

2

''2

a

xfhab

Error

[a,b]wherefhab

Error

dxxf

h

[a,b]xf

bax

b

CISE301_Topic7 KFUPM 23

ExampleExample

52

52

],[

2

5

0

106

102

1

121)(''

)sin()('');cos()(';0;

)(''max12

102

1 error ,)sin(

h

hErrorxf

xxfxxfab

xfhab

Error

thatsohfinddxx

bax

CISE301_Topic7 KFUPM 24

ExampleExample

)()(2

1)(),(

, allfor :

)()(2

1),(

)(:compute tomethod Trapezoid Use

0

1

1

1

11

1

0

3

1

n

n

ii

ii

iiii

n

i

xfxfxfhPfT

ixxhCaseSpecial

xfxfxxPfTTrapezoid

dxxf

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

CISE301_Topic7 KFUPM 25

ExampleExample

9.5

7.21.22

18.24.32.35.0

)()(2

1)()( 0

1

1

3

1

n

n

ii xfxfxfhdxxf

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

CISE301_Topic7 KFUPM 26

Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

haa

)()(2

)0,0(R

:interval oneon based Estimate

bfafab

abh

CISE301_Topic7 KFUPM 27

Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

hahaa 2

)()0,0(2

1)0,1(

)()(2

1)(

2)0,1(R

2

:intervals 2on based Estimate

hafhRR

bfafhafab

abh

Based on previous estimate

Based on new point

CISE301_Topic7 KFUPM 28

Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

)3()()0,1(2

1)0,2(

)()(2

1

)3()2()(4

)0,2(R

4

hafhafhRR

bfaf

hafhafhafab

abh

hahaa 42 Based on previous estimate

Based on new points

CISE301_Topic7 KFUPM 29

Recursive Trapezoid Recursive Trapezoid MethodMethodFormulasFormulas

n

k

abh

hkafhnRnR

bfafab

n

2

)12()0,1(2

1)0,(

)()(2

)0,0(R

)1(2

1

CISE301_Topic7 KFUPM 30

Recursive Trapezoid Recursive Trapezoid MethodMethod

)1(

2

2

1

2

13

2

12

1

1

)12()0,1(2

1)0,(,

2

..................

)12()0,2(2

1)0,3(,

2

)12()0,1(2

1)0,2(,

2

)12()0,0(2

1)0,1(,

2

)()(2

)0,0(R,

n

kn

k

k

k

hkafhnRnRab

h

hkafhRRab

h

hkafhRRab

h

hkafhRRab

h

bfafab

abh

CISE301_Topic7 KFUPM 31

Advantages of Recursive TrapezoidRecursive Trapezoid: Gives the same answer as the standard

Trapezoid method. Makes use of the available information to

reduce the computation time. Useful if the number of iterations is not

known in advance.

CISE301_Topic7 KFUPM 32

Lecture 26Romberg Method

Motivation Derivation of Romberg Method Romberg Method Example When to stop?

Read 22.2

CISE301_Topic7 KFUPM 33

Motivation for Romberg Motivation for Romberg MethodMethod

Trapezoid formula with an interval h gives an error of the order O(h2).

We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.

CISE301_Topic7 KFUPM 34

Romberg MethodRomberg Method

First column is obtained using Trapezoid Method

dx f(x) ofion approximat theimprove tocombined are

4h,8h,... 2h, h, size of intervals with method Trapezoid using Estimatesb

a

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)The other elements are obtained using the Romberg Method

CISE301_Topic7 KFUPM 35

First Column First Column Recursive Trapezoid MethodRecursive Trapezoid Method

n

k

abh

hkafhnRnR

bfafab

n

2

)12()0,1(2

1)0,(

)()(2

)0,0(R

)1(2

1

CISE301_Topic7 KFUPM 36

Derivation of Romberg Derivation of Romberg MethodMethod

...)0,1()0,(3

1)0,()(

2*41

)2(...64

1

16

1

4

1)0,()(

R(n,0)by obtained is estimate accurate More

)1(...)0,1()(

2 method Trapezoid)()0,1()(

66

44

66

44

22

66

44

22

12

hbhbnRnRnRdxxf

giveseqeq

eqhahahanRdxxf

eqhahahanRdxxf

abhwithhOnRdxxf

b

a

b

a

b

a

n

b

a

CISE301_Topic7 KFUPM 37

Romberg MethodRomberg Method

1,1

)1,1()1,(14

1)1,(),(

)12()0,1(2

1)0,(

,2

)()(2

)0,0(R

)1(2

1

mnfor

mnRmnRmnRmnR

hkafhnRnR

abh

bfafab

m

k

n

n

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)

CISE301_Topic7 KFUPM 38

Property of Romberg Property of Romberg MethodMethod

)(),()(

Theorem

22 mb

a

hOmnRdxxf

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)

)()()()( 8642 hOhOhOhOError Level

CISE301_Topic7 KFUPM 39

Example 1Example 1

3

1

2

1

8

3

3

1

8

3)0,0()0,1(

14

1)0,1()1,1(

1,1

)1,1()1,(14

1)1,(),(

8

3

4

1

2

1

2

1

2

1))(()0,0(

2

1)0,1(,

2

1

5.0102

1)()(

2)0,0(,1

Compute

1

1

0

2

RRRR

mnfor

mnRmnRmnRmnR

hafhRRh

bfafab

Rh

dxx

m

0.5

3/8 1/3

CISE301_Topic7 KFUPM 40

Example 1 (cont.)Example 1 (cont.)

3

1

3

1

3

1

15

1

3

1)1,1()1,2(

14

1)1,2()2,2(

3

1

8

3

32

11

3

1

32

11)0,1()0,2(

14

1)0,1()1,2(

)1,1()1,(14

1)1,(),(

32

11

16

9

16

1

4

1

8

3

2

1))3()(()0,1(

2

1)0,2(,

4

1

2

1

RRRR

RRRR

mnRmnRmnRmnR

hafhafhRRh

m

0.5

3/8 1/3

11/32 1/3 1/3

CISE301_Topic7 KFUPM 41

When do we stop?When do we stop?

R(4,4)at STOP example,for

steps, ofnumber given aAfter

or

)1,(),( mnRmnR

ifSTOP

CISE301_Topic7 KFUPM 42

Lecture 27Gauss Quadrature

Motivation General integration formula

Read 22.3

CISE301_Topic7 KFUPM 43

MotivationMotivation

nandih

nihcwhere

xfcdxxf

xfxfxfhdxxf

i

n

iii

b

a

n

ini

b

a

05.0

1,...,2,1

)()(

:as expressed becan It

)()(2

1)()(

:Method Trapezoid

0

1

10

CISE301_Topic7 KFUPM 44

General Integration General Integration FormulaFormula

integral? theofion approximat good a gives

formula e that thsoselect wedo How

:Problem

::

)()(0

ii

ii

n

iii

b

a

xandc

NodesxWeightsc

xfcdxxf

CISE301_Topic7 KFUPM 45

Lagrange InterpolationLagrange Interpolation

b

a ii

n

iii

b

a

b

a i

n

ii

b

a n

b

a

n

n

b

a n

b

a

dxxcwherexfcdxxf

dxxfxdxxPdxxf

xxx

xPwhere

dxxPdxxf

)()()(

)()()()(

,...,, :nodes at the

f(x) esinterpolat that polynomial a is )(

)()(

0

0

10

CISE301_Topic7 KFUPM 46

QuestionQuestion

What is the best way to choose the nodes and the weights?

CISE301_Topic7 KFUPM 47

Theorem Theorem

1.2norder of spolynomial allfor exact be willformula The

)()()(

: then)( of zeros theare,...,,,Let

00)(

:such that 1n degree of polynomial nontrivial a be Let

0

210

dxxcwherexfcdxxf

xqxxxx

nkdxxqx

q

i

b

ai

n

iii

b

a

n

kb

a

CISE301_Topic7 KFUPM 48

Weighted Gaussian Weighted Gaussian QuadratureQuadratureTheoremTheorem

12norder of

polynomial a isnever exact whe be willformula The

)(,)()(

:)()()(

: then)( of zeros theare,...,,,Let

00)()(

:such that 1 degree of polynomial nontrivial a be Let

0

0

210

f(x)

xx

xxxdxxwxc

wherexfcdxxwxf

xqxxxx

nkdxxwxqx

nq

n

ijj ji

jii

b

ai

n

iii

b

a

n

kb

a

CISE301_Topic7 KFUPM 49

Determining The Weights and Determining The Weights and NodesNodes

?5order of

spolynomial allfor exact is formula that theso

weights theand nodes select the wedo How

)()()()( 221100

1

1

xfcxfcxfcdxxf

CISE301_Topic7 KFUPM 50

Determining The Weights and Determining The Weights and NodesNodesSolutionSolution

5,3,0solution possible One

0)(

0)(

0)(

:satisfymust )(

)(

3120

1

1

2

1

1

1

1

33

2210

aaaa

dxxxq

xdxxq

dxxq

xq

xaxaxaaxqLet

CISE301_Topic7 KFUPM 51

Determining The Weights and Determining The Weights and NodesNodesSolutionSolution

5

30

5

3)(

use we weightsobtain the To

5

3 0,,

5

3are nodes The

5

3 0, are)(

53)(

210

1

1

210

3

fAfAfAdxxf

xxx

xqofroots

xxxqLet

CISE301_Topic7 KFUPM 52

Determining The Weights and Determining The Weights and NodesNodesSolutionSolution

5

3

9

50

9

8

5

3

9

5)(

2)(n Quadrature Gauss The

9

5 ,

9

8,

9

5are weightsThe

5

3 0,,

5

3are nodes The

1

1

210

210

fffdxxf

AAA

xxx

CISE301_Topic7 KFUPM 53

Gaussian QuadratureGaussian QuadratureSee more in Table 22.1 (page 626)See more in Table 22.1 (page 626)

236926.0,478628.0,568889.0,478628.0,236926.0

906179.0,538469.0,00000.0,538469.0,906179.04

34785.0,65214.0,65214.0,34785.0

86113.0,33998.0,33998.0,86113.03

555556.0,888889.0,555556.0

774596.0,000000.0,774596.02

1,1

57735.0,57735.01

)()(

43210

43210

3210

3210

210

210

10

10

0

1

1

ccccc

xxxxxn

cccc

xxxxn

ccc

xxxn

cc

xxn

xfcdxxfn

iii

CISE301_Topic7 KFUPM 54

Error Analysis for Gauss Error Analysis for Gauss QuadratureQuadrature

12norder of spolynomial allfor exact be willformula The

]1,1[),()!22()32(

)!1(2Error

:satisfieserror true theThen,

formula, Quadrature Gauss the

toaccording selected are

)()(

:by edapproximat be)( integral theLet

)22(3

432n

0

n

ii

n

iii

b

a

b

a

fnn

n

xandcwhere

xfcdxxf

dxxf

CISE301_Topic7 KFUPM 55

ExampleExample

1.n with QuadratureGaussian using1

0

2

dxeEvaluate x

b? and a arbitrary for

)(:compute toformula theuse wedo How

3

1

3

1)(

1

1

b

adxxf

ffdxxf

1

1 222)( dt

abt

abf

abdxxf

b

a

CISE301_Topic7 KFUPM 56

ExampleExample

22

22

5.3

15.05.

3

15.0

1

15.5.1

0

2

1

2

1

ee

dtedxe tx

CISE301_Topic7 KFUPM 57

Improper IntegralsImproper Integrals

1

0 221 2

1

1 2a

1

111 :

function. new on the method apply the and

)0 assuming(,11

)(

following thelikeation transforma Use

)or is limits theof (one integralsimproper eapproximat

todirectly used benot can earlier discussed Methods

dt

t

tdx

xExample

abdtt

ft

dxxf a

b

b

Recommended