HAPTER 6. LAPLACE TRANSFORMSocw.snu.ac.kr/sites/default/files/NOTE/08 Laplace... · 2018-09-13 ·...

Preview:

Citation preview

Seoul NationalUniv.

1Engineering Math, 6. Laplace Transforms

CHAPTER 6. LAPLACE TRANSFORMS

2018.6서울대학교

조선해양공학과

서 유 택

※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다.

Seoul NationalUniv.

2Engineering Math, 6. Laplace Transforms

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

Laplace Transform (라플라스 변환):

- 적분 과정을 통해 주어진 함수를 새로운 함수로 변환하는 것

Inverse Transform (역 변환):

0

stF s f e f t dt

L

1 F f t L

Ex.1 Let f (t) = 1 when t ≥ 0. Find F(s).

Ex.2 Let f(t) = eat when t ≥ 0, where a is a constant. Find L( f ).

00

1 11 0st stf e dt e s

s s

L L

00

1 1

s a tat st ate e e dt ea s s a

L

Seoul NationalUniv.

3Engineering Math, 6. Laplace Transforms

Theorem 1 Linearity of the Laplace Transform

The Laplace transform is a linear operation;

that is, for any functions f(t) and g(t) whose transforms exist and any constants a

and b, the transform of af(t) + bg(t) exists, and

af t bg t a f t b g t L L L

Ex.3 Find the transform of cosh at and sinh at.

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

2 2

1 1 1 1cosh , inh

2 2

1 1 1 1 cosh

2 2

1 sinh

2

at at at at at at

at at

at

at e e at e e e , es a s a

sat e e

s a s a s a

at e

L L

L

L

L L

L L 2 2

1 1 1

2

at ae

s a s a s a

s

Seoul NationalUniv.

4Engineering Math, 6. Laplace Transforms

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

Seoul NationalUniv.

5Engineering Math, 6. Laplace Transforms

Theorem 2 First Shifting Theorem (제 1 이동정리), s-shifting (S-이동)

If f (t) has the transform F(s) (where s > k for some k),

then eatf (t) has the transform F(s ‒ a) (where s – a > k). In formulas,

or, if we take the inverse on both sides, . 1at -e f t F s a L

Proof) We obtain F(s‒a) by replacing s with s ‒ a in the integral, so that

ate f t F s a L

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

00

)( )}({)]([)()( tfedttfeedttfeasF atatsttas L

Seoul NationalUniv.

6Engineering Math, 6. Laplace Transforms

1at -e f t F s a L Ex. 5 Formulas 11 and 12 in Table 6.1,

For instance, use these formulas to find the inverse of the transform.

2 22 2cos , sinat ats a

e t e ts a s a

L L

2

3 137

2 401

sf

s s

L

1 1 1

2 2 2

3 1 140 1 203 7 3cos 20 7sin 20

1 400 1 400 1 400

ts s

f e t ts s s

L L L

ate f t F s a L

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

(a = -1, = 20)

Seoul NationalUniv.

7Engineering Math, 6. Laplace Transforms

Theorem 3 Existence Theorem for Laplace Transform

If f (t) is defined and piecewise continuous on every finite interval on the semi-

axis t ≥ 0

and satisfies | f(t) | ≤ Mekt for all t ≥ 0 and some constants M and k,

that is, f (t) does not grow too fast (“growth restriction (증가제한)”),

then the Laplace transform L ( f ) exists for all s > k.

6.1 Laplace Transform. Linearity. First Shifting Theorem (s-Shifting)

0 0

0

| ( ) | ( ) ( )st st

kt st

f e f t dt f t e dt

MMe e dt

s k

L

Proof) Piecewise continuous → e-st f (t) is

integrable over any finite interval on t-axis.

2

(1) ( ) cosh , (2) ( ) , (3) ( )n t f t t f t t f t e

2 3

0

1 !! 2! 3! !

n nt t n t

n

t x x te x e t n e

n n

1 1

cosh2 2

t t t t tt e e e e e

| f(t) | ≤ Mekt for all t ≥ 0 ?2

cosh , ! , ?t n t tt e t n e e

2t kte Me (not satisfied)

Seoul NationalUniv.

8Engineering Math, 6. Laplace Transforms

Theorem 1 Laplace Transform of Derivatives (도함수의 라플라스 변환)

6.2 Transform of Derivatives and Integrals. ODEs

2

' 0

'' 0 ' 0 .

f s f f ,

f s f sf f

L L

L L

00 0{ ( )} ( ) ( ) ( )

(0) { ( )}

st st stf t e f t dt e f t s e f t dt

f s f t

L

L

{ ( )} (0)f t s f f L L

00 0{ ( )} ( ) ( ) ( )

(0) { ( )}

[ (0)] (0)

st st stf t e f t dt e f t s e f t dt

f s f t

s s f f f

L

L

L

2{ ( )} (0) (0)f t s f sf f L L

3 2{ ( )} (0) (0) (0)f t s f s f sf f L L

Proof)

000

000

)()()(

)()()(

)()()(

dttfedttfsetfe

dttfedttfsetfe

tfetfsetfe

ststst

ststst

ststst

dttftgtftgdttftg )()()()()()(

(integration by parts)

Seoul NationalUniv.

9Engineering Math, 6. Laplace Transforms

6.2 Transform of Derivatives and Integrals. ODEs

Ex. 1 Let f (t) = tsinωt. Find the transform of f (t).

2

2 2

2 2

22 2

0 0,

' sin cos , ' 0 0,

'' 2 cos sin

'' 2 (0) (0)

2 sin

f

f t t t t f

f t t t t

sf f s f sf f

s

sf t t

s

L L L

L L

Theorem 2 Laplace Transform of Derivatives

Let be continuous for all t ≥ 0 and satisfy the growth restriction

| f(t) | ≤ Mekt.

Furthermore, let f (n) be continuous on every finite interval on the semi-axis t

≥ 0. 11 20 ' 0 0n nn n nf s f s f s f f

L L

)1(,....,, nfff

Seoul NationalUniv.

10Engineering Math, 6. Laplace Transforms

Theorem 3 Laplace Transform of Integral (적분의 라플라스 변환)

Let F(s) denote the transform of a function f(t) which is piecewise

continuous for all t ≥ 0

and satisfies a growth restriction | f(t) | ≤ Mekt. Then, for s > 0, s > k, and t >

0,

1

0 0

1 1

t t

-f t F s f d F s , f d F ss s

L L L

6.2 Transform of Derivatives and Integrals. ODEs

t

dftg0

)()( Proof)

→ g(t) also satisfies a growth restriction.

g'(t) = f (t), except at points at which f(t) is discontinuous.

g'(t) is piecewise continuous on each finite interval.

g(0) = 0.

)}({)0()}({)}('{)}({ tgsgtgstgtf LLLL

0 0 0| ( ) | ( ) ( ) ( 1) ( 0)

t t tk kt ktM M

g t f d f d M e d e e kk k

1{ ( )} { ( )}g t f t

s L L

From Theorem 1

Seoul NationalUniv.

11Engineering Math, 6. Laplace Transforms

Theorem 3 Laplace Transform of Integral

Ex. 3 Find the inverse of and . 2 2 2 2 2

1 1

s s s s

1

2 2

1 1sin t

s

L

1

0 0

1 1

t t

-f t F s f d F s , f d F ss s

L L L

6.2 Transform of Derivatives and Integrals. ODEs

22}{sin

stL

1

22 2

0

1 sin 1 1 cos

t

d ts s

L

1

2 2 32 2 2

0

1 1 sin 1 cos

tt t

ds s

L

2 2{cos }

st

s

L

Seoul NationalUniv.

12Engineering Math, 6. Laplace Transforms

Differential Equations, Initial Value Problems:

Step 1 Setting up the subsidiary equation (보조방정식).

Step 2 Solution of the subsidiary equation by algebra.

Transfer Function (전달함수):

Solution of the transfer function:

Step 3 Inversion of Y to obtain y.

y(t) = L -1 (Y).

0 1'' ' , 0 , ' 0y ay by r t y K y K

, Y y R r L L

2 20 ' 0 0 0 ' 0s Y sy y a sY y bY R s s as b Y s a y y R s

22

2

1 1

1 1

2 4

Q ss as b

s a b a

0 ' 0Y s s a y y Q s R s Q s

6.2 Transform of Derivatives and Integrals. ODEs

Seoul NationalUniv.

13Engineering Math, 6. Laplace Transforms

Ex. 4 Solve

Step 1

Step 2

Step 3

'' , 0 1, ' 0 1y y t y y

2 2

2 2

1 10 ' 0 1 1s Y sy y Y s Y s

s s

2 2 2 2 22 2

1 1 1 1 1 1 1 1

1 1 1 11

sQ Y s Q Q

s s s s s ss s

1 1 1 1

2 2

1 1 1sinh

1 1

ty t Y e t ts s s

L L L L

6.2 Transform of Derivatives and Integrals. ODEs

Seoul NationalUniv.

14Engineering Math, 6. Laplace Transforms

Ex. 5 Solve

Step 1

Step 2

Step 3

6.2 Transform of Derivatives and Integrals. ODEs

0)0(16.0)0(.09 yyyyy

4

35)2/1(

08.0)2/1(16.0

9

)1(16.0

22

s

s

ss

sY

/2

/2

35 0.08 35( ) ( ) 0.16cos sin

2 235 / 2

0.16cos 2.96 0.027sin 2.96

t

t

y t Y e t t

e t t

L -1

)1(16.0)9(.0916.016.0 22 sYssYsYsYs

(a = -1/2, = 35

4)

Seoul NationalUniv.

15Engineering Math, 6. Laplace Transforms

6.2 Transform of Derivatives and Integrals. ODEs

37 12 21 , (0) 3.5, (0) 10ty y y e y y

Q? Solve

Seoul NationalUniv.

16Engineering Math, 6. Laplace Transforms

6.2 Transform of Derivatives and Integrals. ODEs

[ Relation of Time domain and s-Domain ]

Time domain analysis

(differential equation)

Problem Answer

Laplace Transform

S-domain analysis

(algebraic equation)

Inverse Transform

Seoul NationalUniv.

17Engineering Math, 6. Laplace Transforms

The process of solution consists of three steps.

Step 1 The given ODE is transformed into an algebraic equation (“subsidiary

equation”).

Step 2 The subsidiary equation is solved by purely algebraic manipulations.

Step 3 The solution in Step 2 is transformed back, resulting in the solution of

the given problem.

IVP

Initial Value

Problem

(초기값문제)

AP

Algebraic

Problem

(보조방정식)

①Solving

AP

by Algebra

②Solution

of the

IVP

Solving an IVP by Laplace transforms

6.2 Transform of Derivatives and Integrals. ODEs

Seoul NationalUniv.

18Engineering Math, 6. Laplace Transforms

6.2 Transform of Derivatives and Integrals. ODEs

Advantages of the Laplace Method

1. Solving a nonhomogeneous ODE does not require first solving the

homogeneous ODE.

2. Initial values are automatically taken care of.

3. Complicated inputs can be handled very efficiently.

Seoul NationalUniv.

19Engineering Math, 6. Laplace Transforms

6.3 Unit Step Function (Heaviside Function).Second Shifting Theorem (t-Shifting)

Unit Step Function (단위 계단 함수)

• Unit Step Function (Heaviside function):

• Laplace transform of unit step function:

0

1

t au t a

t a

s

e

s

edtedtatueatu

as

at

st

a

stst

1)()(0

L

“on off function”

Seoul NationalUniv.

20Engineering Math, 6. Laplace Transforms

6.3 Unit Step Function (Heaviside Function).Second Shifting Theorem (t-Shifting)

Unit Step Function

Seoul NationalUniv.

21Engineering Math, 6. Laplace Transforms

6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

Theorem 1 Second Shifting Theorem (제 2이동 정리); Time Shifting

1 , as - asf t F s f t a u t a e F s f t a u t a e F s L L L

dtdatta ,thus,

at

at

atfatuatftf

if

if

)(

0)()()(ˆ

0

)(

0)()()( dfedfeesFe assasas

0 0

( ) ( )

ˆ( ) ( ) ( )

as st

a

st st

e F s e f t a dt

e f t a u t a dt e f t dt

Proof)

s

e

s

edtedtatueatu

as

at

st

a

stst

1)()(0

L

0

stF s f e f t dt

L

Seoul NationalUniv.

22Engineering Math, 6. Laplace Transforms

Ex. 1 Write the following function using unit step functions and find its

transform.

Step 1 Using unit step functions:

2

2 0 1

12 2

cos2

t

tf t t

t t

21 1 12 1 1 1 cos

2 2 2f t u t t u t u t t u t

6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

𝜋

2

Seoul NationalUniv.

23Engineering Math, 6. Laplace Transforms

Ex. 1 Write the following function using unit step functions and find its

transform.

Step 1 Using unit step functions:

Step 2

21 1 12 1 1 1 cos

2 2 2f t u t t u t u t t u t

6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

22

3 2

1 1 1 1 1 11 1 1 1

2 2 2 2

st u t t t u t es s s

L L

2 2 22 2

3 2

1 1 1 1 1 1 1

2 2 2 2 2 2 8 2 2 8

s

t u t t t u t es s s

L L

22

1 1 1 1cos sin

2 2 2 1

s

t u t t u t es

L L

2

2 23 2 3 2 2

2 2 1 1 1 1 1

2 2 8 1

s ss sf e e e e

s s s s s s s s s

L

asf t a u t a e F s L

1

!n

n

nt

s L

Seoul NationalUniv.

24Engineering Math, 6. Laplace Transforms

Ex. 2 Find the inverse transform f(t) of

2 3

22 2 2 22

s s se e eF s

s s s

2 31 1 sin 1 1 sin 2 2 3 3

tf t t u t t u t t e u t

1

2 2

1 sin t

s

L

1 1 2

22

1 1

2

tt tes s

L L

6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

2 3

0 0 t 1

sin 1 t 2

0 2 t 3

3 t 3t

t

t e

1

2 2

21

2 2

1 sin 1 1

1 sin 2 2

s

s

et u t

s

et u t

s

L

L

asf t a u t a e F s L

22}{sin

stL

Time shifting

ate f t F s a L

S-shifting

where, sin 1 sin sin ,sin 2 sin 2 sint t t t t t

Seoul NationalUniv.

25Engineering Math, 6. Laplace Transforms

6.3 Unit Step Function (Heaviside Function). Second Shifting Theorem (t-Shifting)

3 2 1 if 0 1 and 0 1

(0) 0, (0) 0

y y y t if t

y y

Q? Solve using Laplace transform.

Seoul NationalUniv.

26Engineering Math, 6. Laplace Transforms

6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

Dirac delta function or the unit impulse function:

Definition of the Dirac delta function

Laplace transform of the Dirac delta function

0 otherwise

t at a

0

1 lim

0 otherwisek k

k

a t a kkf t a t a f t a

0 0

11 1

a k

k

a

f t a dt dt t a dtk

1

kf t a u t a u t a kk

1 1

ks

a k sas as as

k

ef t a e e e t a e

ks ks

L L

0

0 00

1 1 1 1lim = lim = = ( ) 1

0

ks ks s ks

k kk

e e e des

ks s k s dk s

Seoul NationalUniv.

27Engineering Math, 6. Laplace Transforms

Ex. 1 Mass Spring System Under a Square Wave

Step 1

Step 2

Step 3

6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

0)0(0)0().2()1()(23 yytututryyy

tt eeFtf 2

2

1

2

1)()( 1-L

)()23(

1)()(

123 2

2

22 ssss eesss

sYees

YsYYs

2

2/1

)1(

12/1

)2)(1(

1

)23(

1)(

2

ssssssssssF

)2(

)21(

)10(

2/12/1

2/12/1

0

)2(2)1(2)2()1(

)1(2)1(

t

t

t

eeee

eetttt

tt

)2()2()1()1(

))()(( 2

tutftutf

esFesFy ss-1L

asf t a u t a e F s L

Time shifting

ate f t F s a L

S-shifting

asf t a u t a e F s L

Time shifting

Seoul NationalUniv.

28Engineering Math, 6. Laplace Transforms

Ex. 2 Find the response of the system in Example 1 with the square wave

replaced by a unit impulse at time t = 1.

Initial value problem:

Subsidiary equation:

'' 3 ' 2 1 , 0 0, ' 0 0y y y t y y

2 3 2 ss Y sY Y e

1 1

1 2 1 2

sse

Y s es s s s

6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

21 ( )= , ( )=at t te f t e g t e

s a

L

asf t a u t a e F s L

1

1 2 1

0 0 t 1

t 1t t

y t Ye e

L

( 1) ( 1) ( 1)( 1)f t u t g t u

( 1) 2( 1)( 1) ( 1)t te u t e u

ast a e L

Dirac’s Delta

Time shifting

Seoul NationalUniv.

29Engineering Math, 6. Laplace Transforms

6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions

9 ( / 2), (0) 2, (0) 0y y t y y

Q? Solve

Seoul NationalUniv.

30Engineering Math, 6. Laplace Transforms

Transform of a product is generally different from the product

of the transforms of the factors.

Convolution (합성곱):

6.5 Convolution. Integral Equations

0

t

f g t f g t d

)()()( gfgf LLL )()()( gffg LLL

Ex. Transform of a Convolution

Evaluate

Solution) ttgetf t sin)(,)(

0

2 2

sin( ) ( ) ( ) { } {sin }

1 1 1

1 1 ( 1)( 1)

tτ te t dτ F s G s e t

s s s s

L L L

1

2 2

2 2

!{ }

1{ }

{sin }

{cos }

n

n

at

nt

s

es a

ts

st

s

L

L

L

L

0

sin( ) *sint

te t d e t L L

f g f g L L L

Seoul NationalUniv.

31Engineering Math, 6. Laplace Transforms

Convolution:

Theorem 1 Convolution Theorem

If f(t) and g(t) are piecewise continuous on [0, ∞) and of exponential order,

then

6.5 Convolution. Integral Equations

0

t

f g t f g t d

f g f g L L L

Ex. 1 Let . Find h(t).

1H s

s a s

1 1

0

1 1 1, 1 1 1 1

t

at at a ate h t e e d es a s a

L L

( ) ( )h H sLs

gas

fsas

gfgfh1

)(,1

)(,11

)()()*()(

LLLLLL

1

! 1{ } , { }n at

n

nt e

s s a

L L

Seoul NationalUniv.

32Engineering Math, 6. Laplace Transforms

6.5 Convolution. Integral Equations

Ex. 2 Convolution

Evaluate1

2 2 2

1

( )

-

s

L

Solution))(

1)()(Let

22

ssGsF

1

2 2

1 1( ) ( ) sinf t g t t

s

L

1

2 2 2 2 0

1 1sin sin ( )

( )

t- t d

s

L

t

t

dtt

dtt

02

02

)]cos()2[cos(2

1

)]cos()[cos(2

11

tt

t

cos

sin

2

12

2

0

1 1sin (2 ) cos

2 2

t

t t

)(find,)(

1)(

222th

ssH

1

2 2

2 2

!{ }

1{ }

{sin }

{cos }

n

n

at

nt

s

es a

ts

st

s

L

L

L

L

0

t

f g t f g t d

Seoul NationalUniv.

33Engineering Math, 6. Laplace Transforms

6.5 Convolution. Integral Equations

Ex. 4 Repeated Complex Factors. Resonance – Undamped mass-spring system

tt

tKty 0

0

0

2

0

0 cossin

2)(

0)0(0)0(sin 0

2

0 yytKyy

2 2 0 00 2 2 2 2 2

0 0

( )( )

K Ks Y Y Y s

s s

The subsidiary equation

222 )(

1)(

ssH

tt

tth

cos

sin

2

1)(

2

In Ex. 2, we found

The solution

Seoul NationalUniv.

34Engineering Math, 6. Laplace Transforms

Property of convolution

Commutative Law (교환법칙):

Distributive Law (분배법칙):

Associative Law (결합법칙):

Unusual Properties of Convolution:

6.5 Convolution. Integral Equations

f g g f

1 2 1 2f g g f g f g

f g v f g v

000 ff

1f f

Ex. 3 Unusual Properties of Convolution

ttdtt

2

0 2

111*

Seoul NationalUniv.

35Engineering Math, 6. Laplace Transforms

Application to Nonhomogeneous Linear ODEs by convolution

6.5 Convolution. Integral Equations

If

0 1'' ' , 0 , ' 0y ay by r t y K y K

2

2

0 ' 0 0

0 ' 0

s Y sy y a sY y bY R s

s as b Y s a y y R s

, Y y R r L L

22

2

1 1

1 1

2 4

Q ss as b

s a b a

0)0(0)0( yy RQY

t

drtqty0

)()()(

0

t

f g t f g t d

f g g f

Seoul NationalUniv.

36Engineering Math, 6. Laplace Transforms

Theorem 1 Convolution Theorem

If f(t) and g(t) are piecewise continuous on [0, ∞) and of exponential order, then

6.5 Convolution. Integral Equations

f g f g L L L

Proof)

),[,, ttppt

0 0( ) ( ) ( ) ( )s spF s e f d and G s e g p dp

dttgeedttgesG ststs )()()( )(

ddttgefddttgeefesGsF ststss

)()()()()()(00

)()()()()()()(000

sHhdtthedtdtgfesGsF stt

st

L

0)(

ddttf

0 0)(

t

dtdf

( ) ( )f g h H s L L

Seoul NationalUniv.

37Engineering Math, 6. Laplace Transforms

Ex. 5 Response of a Damped Vibrating System to a Single Square Wave

6.5 Convolution. Integral Equations

0)0(0)0().2()1()(23 yytututryyy

tt eetq 2)(

2

1

1

1

)23(

1)()(

123

2

22

sssssQee

sYsYYs ss

0,1For yt

( ) 2( )

1 1

( ) 2( ) ( 1) 2( 1)

1

For 1 2, ( ) 1

1 1 1

2 2 2

t tt t

t

t t t t

t y q t d e e d

e e e e

2 2( ) 2( )

0 1 1For 2 , ( ) 1 ( ) 1

tt tt y q t d q t d e e d

( ) 1, only for 1 2r t t

2

( ) 2( ) ( 2) 2( 2) ( 1) 2( 1)

1

1 1 1

2 2 2

t t t t t te e e e e e

Seoul NationalUniv.

38Engineering Math, 6. Laplace Transforms

Integral Equation: Equation in which the unknown function appears in an integral.

Ex. 6 Solve the Volterra integral equation of the second kind.

Equation written as a convolution:

Apply the convolution theorem:

0

sin

t

y t y t d t

siny y t t

2 2

1 1

1Y s Y s

s s

2 3

4 2 4

1 1 1

6

s tY s y t t

s s s

6.5 Convolution. Integral Equations (적분방정식)

)()( tYy L

Unknown

t

dthftgtf0

)()()()( : Volterra integral equation for f(t)

1

!{ }n

n

nt

s L

Seoul NationalUniv.

39Engineering Math, 6. Laplace Transforms

6.5 Convolution. Integral Equations

Solve

ttt tffordefettf

0

2 )()(3)(

Solution)

1 1 1 1

3 4

2! 3! 1 1( ) 3 2

1f t

s s s s

L L L L

tett 213 32

Example An Integral Equation

2

0( ) 3 ( )

tt tf t t e f e d L L L L

1

1)(

1

1!23)(

3

ssF

sssF

1

2166)(

43

sssssF

0

1

2 2

2 2

!{ }

1{ }

{sin }

{cos }

t

n

n

at

f g t f g t d

f g f g

nt

s

es a

ts

st

s

L L L

L

L

L

L

Seoul NationalUniv.

40Engineering Math, 6. Laplace Transforms

6.5 Convolution. Integral Equations

0( ) 2 ( )

tt ty t e y e d te Q? Solve

Q? find if equals: f t f tL

9

, ?( 3)

f t f ts s

L

Seoul NationalUniv.

41Engineering Math, 6. Laplace Transforms

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

Differentiation of Transforms

L (f ) f (t)

Ex.1 We shall derive the following three formulas.

2

2 2

1

s 3

1sin cos

2t t t

222 s

s

tt

sin2

222

2

s

s ttt

cossin

2

1

0

stF s f e f t dt

L 0

stdFF s e tf t dt tf

ds

L

1 , tf t F s F s tf t L L

Seoul NationalUniv.

42Engineering Math, 6. Laplace Transforms

2 2sin t

s

L

By differentiation

2

2 2sin

2

t st

s

L

2 2cos

st

s

L

By differentiation

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

222

22

222

222

222

2

22

)()(

2

)(

21)()cos(

s

s

s

ss

s

s

ssFttL

222 )(

2)()sin(

s

ssFttL

L (f ) f (t)

2

2 2

1

s 3

1sin cos

2t t t

222 s

st

t

sin

2

222

2

s

s ttt

cossin

2

1

)()}({

),()}({

1 tfsF

sFttf

- L

L

2 2

2 2 2( cos )

( )

st t

s

L

Seoul NationalUniv.

43Engineering Math, 6. Laplace Transforms

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

L (f ) f (t)

2

2 2

1

s 3

1sin cos

2t t t

222 s

s

tt

sin2

222

2

s

s ttt

cossin

2

1

)()}({

),()}({

1 tfsF

sFttf

-L

L

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1sin cos

2 2 ( ) ( ) 2 ( ) ( )

s s s st t t

s s s s

L

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1sin cos

2 2 ( ) ( ) 2 ( )

s s st t t

s s s

L

2 2sin t

s

L

2 2

2 2 2( cos )

( )

st t

s

L

2

2 2 2 2 2 2 2

1 2 1

2 ( ) ( )s s

Seoul NationalUniv.

44Engineering Math, 6. Laplace Transforms

1 s s

f t f tF s ds F s ds

t t

L L Integration of Transforms:

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

Proof)

sddttfesdsFs

ts

s

~)(~)~(0

~

dtsdetfdtsdtfesdsFs

ts

s

ts

s

0

~

0

~ ~)(~)(~)~(

t

e

t

esde

st

s

ts

s

ts

~~ ~

t

tfdt

t

tfesdsF st

s

)()(~)~(0

L

Seoul NationalUniv.

45Engineering Math, 6. Laplace Transforms

1 , s s

f t f tF s ds F s ds

t t

L L

Ex. 2 Find the inverse transform of

Case 1 Differentiation of transform

Case 2 Integration of transform

2 2 2

2 2ln 1 ln

s

s s

21 1

2 2 2 2

2 2ln 1 2cos 2

2cos 2 2 1 cos

s sF s f F s t tf t

s s s

tf t t

t t

L L L

2 2 2

2 2 2

2 2ln ln

d s ss s

ds s s

2 2 2

2 2ln 1 ln

s

s s

Derivative

1

2 2

21 1

2

2 2 2 cos 1

2ln 1 1 cos

s

sG s g t G t

s s

g tG s ds t

s t t

L

L L

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

)()}({

),()}({

1 tfsF

sFttf

- L

L

Because the lower limit of the integral is “s”

Seoul NationalUniv.

46Engineering Math, 6. Laplace Transforms

Special Linear ODEs with Variable Coefficients

2 2

' 0

'' 0 ' 0 2 0

d dYty sY y Y s

ds ds

d dYty s Y sy y sY s y

ds ds

L

L

Ex. 3 Laguerre’s Equation, Laguerre Polynomials

Laguerre’s ODE: '' 1 ' 0 0 1 2 , (0) '(0) 0ty t y ny n , , , y y

22 0 0 0 dY dY

sY s y sY y Y s nYds ds

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

2

' 0

'' 0 ' 0 .

f s f f ,

f s f sf f

L L

L L

)()}({ sFttf L

1

!{ }

( 1)

n t

n

nt e

s

L

2 1 0dY

s s n s Yds

2

1 1

1

dY n s n nds ds

Y s s s s

1

1

n

n

sY

s

ate f t F s a L

S-shiftingIn the mean time,

1

!{ }n

n

nt

s L

1( ) ?nl Y L

Rodrigues’s formula

1

( 1) ln ln( 1) ( 1) ln ln ln

n

n

sY n s n s Y

s

Seoul NationalUniv.

47Engineering Math, 6. Laplace Transforms

Ex.3 Laguerre’s Equation, Laguerre Polynomials

Laguerre’s ODE: '' 1 ' 0 0 1 2 , (0) '(0) 0ty t y ny n , , , y y

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

1

!( )

( 1)

n nn t

n n

d n st e

dt s

L

Ys

s

s

sn

net

dt

d

n

el

n

n

n

ntn

n

nt

n

11

)1(

)11(

)1(!

!

1)(

!}{ LL ate f t F s a L

S-shifting

1

1 0

, 1, 2, !

t nn n t

n

, n

l t Y e dt e n

n dt

L

11 20 ' 0 0n nn n n nf s f s f s f f s f

L L L

( 1)( ) (0) (0) ,..., (0) 0n t nf t t e f f f 1

!{ }

( 1)

n t

n

nt e

s

L

1

1n

n

sY

s

Back to 1( ) ?nl Y L

Seoul NationalUniv.

48Engineering Math, 6. Laplace Transforms

6.6 Differentiation and Integration of Transforms.ODEs with Variable Coefficients

Q? Solve 2 sin 3 ?t t L

Q? Solve 2 2, ?

( 16)

sf t f t

s

L

Seoul NationalUniv.

49Engineering Math, 6. Laplace Transforms

6.7 Systems of ODEs

1 11 1 12 2 1

2 21 1 22 2 2

( )

( )

y a y a y g t

y a y a y g t

)()0(

)()0(

222212122

121211111

sGYaYaysY

sGYaYaysY

)()0()(

)()0()(

22222121

11212111

sGyYsaYa

sGyYaYsa

)(),(

),(),(

2211

2211

gGgG

yYyY

L L

L L

)(),(, 2

1

21

1

121 YyYyYY -- L L

The Laplace transform method may also be used for solving systems of

ODE (연립상미분방정식),

a first-order linear system with constant coefficients.

Seoul NationalUniv.

50Engineering Math, 6. Laplace Transforms

6.7 Systems of ODEs

Ex. 3 Model of Two Masses on Springs

The mechanical system consists of two bodies of mass 1 on three springs of

the same spring constant k. Damping is assumed to be practically zero.

2

1 1 2 1

2

2 2 1 2

3

3

s Y s k kY k Y Y

s Y s k k Y Y kY

1 1 2 1

2 2 1 2

''

''

y ky k y y

y k y y ky

1 2

1 2

0 1, 0 1,

' 0 3 , 0 3

y y

y k y k

Laplace

transform

Model of the

physical

system:

Initial

conditions:

2

' 0

'' 0 ' 0 .

f s f f ,

f s f sf f

L L

L L

Seoul NationalUniv.

51Engineering Math, 6. Laplace Transforms

6.7 Systems of ODEs

2

1 1 2 1

2

2 2 1 2

3

3

s Y s k kY k Y Y

s Y s k k Y Y kY

2

1 2 2 22 2

2

2 2 2 22 2

3 2 3 3

32

3 2 3 3

32

s k s k k s k s kY

s k s ks k k

s k s k k s k s kY

s k s ks k k

Cramer’s rule or Elimination

1

1 1

1

2 2

cos sin 3

cos sin 3

y t Y kt kt

y t Y kt kt

L

L

Inverse transform

Ex. 3 Model of Two Masses on Springs

Recommended