UNIDAD DE REFORZAMIENTO CAPÍTULO 1: ESTRUCTURA ATÓMICA DE LA MATERIA

Preview:

DESCRIPTION

Colegio Andrés Bello Chiguayante. UNIDAD DE REFORZAMIENTO CAPÍTULO 1: ESTRUCTURA ATÓMICA DE LA MATERIA. Jorge Pacheco R. Profesor de Biología y Química. DEFINICIÓN DE CONCEPTOS. Teoría de los cuatro elementos:. - PowerPoint PPT Presentation

Citation preview

UNIDAD DE REFORZAMIENTO

CAPÍTULO 1: ESTRUCTURA ATÓMICA DE LA MATERIA

UNIDAD DE REFORZAMIENTO

CAPÍTULO 1: ESTRUCTURA ATÓMICA DE LA MATERIA

Colegio Andrés Bello

Chiguayante

Colegio Andrés Bello

Chiguayante

Jorge Pacheco R.Profesor de Biología y Química

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Teoría de los cuatro elementos:

• Unos de los primeros intentos por explicar la composición de la materia, el cual postula que la materia estaba compuesta por cuatro elementos: tierra, aire, agua y fuego.

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Número Atómico (Z):

• Corresponde al número de protones que posee un núcleo de un átomo. Cuando los átomos son neutro el número de protones coincide con el número de electrones.

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Tubo de Crookes:

• Tubo de vidrio al vacío. Consta de dos electrodos cátodo (potencial eléctrico negativo) y ánodo (potencial eléctrico positivo).

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Isótopos:

• Átomos perteneciente a un mismo elemento, es decir, que poseen igual Z pero distinto A.

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Rayos Catódicos:

• Haz de luz, que se origina en el cátodo de un tubo de Crookes. Su trayectoria es desde el cátodo hacia el ánodo transportando carga negativa. Dichas cargas negativas fueron bautizadas como electrones.

DEFINICIÓN DE CONCEPTOSDEFINICIÓN DE CONCEPTOS

• Número Másico (A):

• Corresponde al número total de protones y neutrones que posee el núcleo de un átomo.

• A=Z+n.

COMPLETACIÓNCOMPLETACIÓN

Isótopos Protones Neutrones

Abundancia

u

14 N 99,632%7

15 N 0,368%7

u total

7 7 13,95

7 8 0,055

14,005

COMPLETACIÓNCOMPLETACIÓN

Isótopos Protones Neutrones

Abundancia

u

20 Ne 90,48%10

21 Ne 0,27%10

22 Ne 9,25%10

u total

10 10 18,096

10 11 0,0567

2,03510 12

20,19

COMPLETACIÓNCOMPLETACIÓN

Isótopos Protones Neutrones

Abundancia

u

39 K 93,26%19

40 K 0,012%19

41 K 6,73%19

u total

19 20 36,37

19 21 0,0048

2,75919 22

39,13

COMPLETACIÓNCOMPLETACIÓN

Isótopos Protones Neutrones

Abundancia

u

Protio 99,985%

Deuterio 0,015%

Tritio 0%

u total

1 0 0,99985

1 1 0,0003

01 2

1,00015

COMPLETACIÓNCOMPLETACIÓN

Isótopos A Z n° e- p+27 Al3+13

115 In49

128 Te2-

52

27 13

115 49

14 10 13

66 49 49

128 52 76 54 52

COMPLETACIÓNCOMPLETACIÓN

Especie A B C D E F G

N° de electrones 7 10 8 8 16 5 10

N° de protones 7 10 9 10 15 7 11

N° de neutrones 7 7 10 9 14 6 12

Especies Neutras : A y B.

Especies Negativas: E.

Especies Positivas : C, D, F y G.

COMPLETACIÓNCOMPLETACIÓN

Especie A B C D E F G

N° de electrones 7 10 8 8 16 5 10

N° de protones 7 10 9 10 15 7 11

N° de neutrones 7 7 10 9 14 6 12

Isótopos : B y D / A y F.

Isóbaros : E.

Isótonos : C y D.

EXPRESAREXPRESAR• 22 protones, 22 electrones y 26

neutrones:

48

Ti 22

EXPRESAREXPRESAR• 15 protones, 16 electrones y 20

neutrones:

35

P 15

EXPRESAREXPRESAR• 19 protones, 18 electrones y 20

neutrones:

39

K 19

UNIDAD DE REFORZAMIENTO CAPÍTULO 2: MODELO MECANO

CUÁNTICO Y ESTRUCTURA MOLECULAR

UNIDAD DE REFORZAMIENTO CAPÍTULO 2: MODELO MECANO

CUÁNTICO Y ESTRUCTURA MOLECULAR

Colegio Andrés Bello

Chiguayante

Colegio Andrés Bello

Chiguayante

Jorge Pacheco R.Profesor de Biología y Química

MODELO MECANO CUÁNTICOMODELO MECANO CUÁNTICO

APRENDIZAJES ESPERADOS:

• Definen los números cuánticos y describen los estados permitidos para un electrón en el modelo mecánico cuántico.

• Formulan la configuración electrónica de diversos elementos químicos.

• Distinguen la distribución espacial de las moléculas a partir de las propiedades electrónicas de los átomos constituyentes.

¿Cuál fue la principal deficiencia del modelo atómico de Bohr?

A pesar de los avances del modelo, era incapaz de explicar el espectro de átomos multielectrónicos o polielectrónicos (más de un electrón), lo que hizo suponer a otros científicos la existencia de estructuras al interior de los átomos, las que denominaron subniveles de energía.

PREGUNTAS PREVIASPREGUNTAS PREVIAS

¿Cuál fue la principal contribución de Louis de Broglie al conocimiento de la estructura interna del átomo?

Postula que, los electrones poseían un comportamiento dual de onda y partícula, pues cualquier partícula que posee masa y que se mueve a cierta velocidad, puede comportarse además como onda.

PREGUNTAS PREVIASPREGUNTAS PREVIAS

1892 - 1987

¿Cuál fue la principal contribución de Werner Heisenberg al conocimiento de la estructura interna del átomo?

Sugiere a partir de un supuesto matemático, la imposibilidad de conocer de manera simultánea y con exactitud la posición, el momento y la energía de un electrón. Mientras más exacta sea la determinación de una variable, más inexacta será la otra (principio de incertidumbre).

PREGUNTAS PREVIASPREGUNTAS PREVIAS

1901 - 1976

¿Cuál fue la principal contribución de Erwin Schrödinger al conocimiento de la estructura interna del átomo?

Establece una función de onda, denominada orbital, que describe probabilísticamente el comportamiento de un electrón en el átomo.

PREGUNTAS PREVIASPREGUNTAS PREVIAS

1887 - 1961

MODELO ATÓMICO MECANOCUÁNTICOMODELO ATÓMICO MECANOCUÁNTICO

VÍDEO

NÚMEROS CUÁNTICOSNÚMEROS CUÁNTICOS

• Corresponde a la representación de la distribución de los electrones alrededor del núcleo de un átomo.

• Los números cuánticos son:

a) Número cuántico principal (n).

b) Número cuántico secundario (l).

c) Número cuántico magnético (m).

d) Número cuántico spin (s).

NÚMERO CUÁNTICO PRINCIPAL (n)NÚMERO CUÁNTICO PRINCIPAL (n)

• Corresponde a los niveles de energía de un electrón.

• A mayor valor de “n” mayor es la distancia promedio del electrón respecto del núcleo.

• Los valores asignados corresponden a números enteros y comienzan desde el 1 en adelante: n= 1, 2, 3, etc.

NÚMERO CUÁNTICO SECUNDARIO (l)NÚMERO CUÁNTICO SECUNDARIO (l)

• Conocido también como momento angular o azimutal. Corresponde a la geometría o forma del orbital.

• Puede tener valores que comienzan desde 0 hasta (n-1) para cada valor de n.

• Ejemplo: Si n= 1, l= 0

Si n= 2, l= 0, 1

Si n= 3, l= 0, 1, 2

NÚMERO CUÁNTICO SECUNDARIO (l)NÚMERO CUÁNTICO SECUNDARIO (l)

• Los valores de l son reemplazados por letras según la siguiente tabla.

l 0 1 2 3s p d f

NÚMERO CUÁNTICO SECUNDARIO (l)NÚMERO CUÁNTICO SECUNDARIO (l)

tipo “s” tipo “p”

tipo “d”

NÚMEROS CUÁNTICOS : n y lNÚMEROS CUÁNTICOS : n y l

n 1 2 3l 0 0 1 0 1 2

subnivel 1s 2s 2p 3s 3p 3d

- ENERGÍA +

NÚMERO MAGNÉTICO (m)NÚMERO MAGNÉTICO (m)

• Corresponde a la orientación espacial de los orbitales.

• Los valores dependen de l. Adquieren todos los valores asignados a l, que van desde el –l hasta +l.

• Ejemplo: Si l= 0, m= 0

Si l= 1, m= -1, 0, +1

Si l= 2, m= -2,-1,0,+1,+2

NÚMERO MAGNÉTICO (m)NÚMERO MAGNÉTICO (m)

m= 0m= -1

m= +1

m= 0

RESUMEN Nº CUÁNTICOS RESUMEN Nº CUÁNTICOS

n l ml Nºde

orbitales Designación de los orbitales atómicos

1 0 0 1 1s

2 0 0 1 2s

2 1 -1 0 +1 3 2px 2py 2pz

3 0 0 1 3s

3 1 -1 0 +1 3 3px 3py 3pz

3 2 -2 -1 0 +1 +2 5 3dxy 3dyz 3dxz 3dx2-y2 3dz2

4 0 0 1 4s

4 1 -1 0 +1 3 4px 4py 4pz

4 2 -2 -1 0 +1 +2 5 4dxy 4dyz 4dxz 4dx2-y2 4dz2

4 3 -3 -2 -1 0 +1 +2 +3 7 4f

RESUMEN Nº CUÁNTICOS RESUMEN Nº CUÁNTICOS

n l ml Nºde

orbitales Designación de los orbitales atómicos

1 0 0 1 1s

2 0 0 1 2s

2 1 -1 0 +1 3 2px 2py 2pz

3 0 0 1 3s

3 1 -1 0 +1 3 3px 3py 3pz

3 2 -2 -1 0 +1 +2 5 3dxy 3dyz 3dxz 3dx2-y2 3dz2

4 0 0 1 4s

4 1 -1 0 +1 3 4px 4py 4pz

4 2 -2 -1 0 +1 +2 5 4dxy 4dyz 4dxz 4dx2-y2 4dz2

4 3 -3 -2 -1 0 +1 +2 +3 7 4f

RESUMEN Nº CUÁNTICOS RESUMEN Nº CUÁNTICOS

n l ml Nºde

orbitales Designación de los orbitales atómicos

1 0 0 1 1s

2 0 0 1 2s

2 1 -1 0 +1 3 2px 2py 2pz

3 0 0 1 3s

3 1 -1 0 +1 3 3px 3py 3pz

3 2 -2 -1 0 +1 +2 5 3dxy 3dyz 3dxz 3dx2-y2 3dz2

4 0 0 1 4s

4 1 -1 0 +1 3 4px 4py 4pz

4 2 -2 -1 0 +1 +2 5 4dxy 4dyz 4dxz 4dx2-y2 4dz2

4 3 -3 -2 -1 0 +1 +2 +3 7 4f

RESUMEN Nº CUÁNTICOS RESUMEN Nº CUÁNTICOS

n l ml Nºde

orbitales Designación de los orbitales atómicos

1 0 0 1 1s

2 0 0 1 2s

2 1 -1 0 +1 3 2px 2py 2pz

3 0 0 1 3s

3 1 -1 0 +1 3 3px 3py 3pz

3 2 -2 -1 0 +1 +2 5 3dxy 3dyz 3dxz 3dx2-y2 3dz2

4 0 0 1 4s

4 1 -1 0 +1 3 4px 4py 4pz

4 2 -2 -1 0 +1 +2 5 4dxy 4dyz 4dxz 4dx2-y2 4dz2

4 3 -3 -2 -1 0 +1 +2 +3 7 4f

ESPÍN (s)ESPÍN (s)

• Corresponde al momento magnético del electrón, es decir al giro sobre su propio eje en sentido horario (+1/2) y antihorario (-1/2).

• Cada orbital posee una capacidad máxima de tolerar dos electrones siempre y cuando posea espín opuestos.

ACTIVIDAD: COMPLETAR ACTIVIDAD: COMPLETAR

Orbital n l m s

3s2

5s1

3p2

4p5

5f12

3d7

3 0 0

5 0 0

3 1 0

4 1 0

5 3 +13 2 -1

• Determina los valores de los números cuánticos del último electrón.

-1/2

+1/2

+1/2-1/2

-1/2-1/2

CONFIGURACIÓN ELECTRÓNICACONFIGURACIÓN ELECTRÓNICA

CONFIGURACIÓN ELECTRÓNICACONFIGURACIÓN ELECTRÓNICA

• Corresponde a la distribución de los distintos electrones alrededor del núcleo en los diferente niveles de energía y orbitales. Para saber cómo se ordenan debemos tener en cuenta los siguientes principios.

A) PRINCIPIO DE MÍNIMA ENERGÍAA) PRINCIPIO DE MÍNIMA ENERGÍA

• “Los electrones se ubican primero en los orbitales de más baja energía, por lo tanto, los de mayor energía se ocuparán sólo cuando los primeros hayan agotado su capacidad”.

NIVELES DE ENERGÍA DE LOS ORBITALESNIVELES DE ENERGÍA DE LOS ORBITALES

B) PRINCIPIO DE EXCLUSIÓN DE PAULIB) PRINCIPIO DE EXCLUSIÓN DE PAULI

• “Dos electrones de un mismo átomo no pueden tener los cuatro números cuánticos iguales”.

• Pueden compartir como máximo el valor de tres números cuánticos, pero no los cuatro.

C) PRINCIPIO DE MÁXIMA MULTIPLICIDAD DE HUND.

C) PRINCIPIO DE MÁXIMA MULTIPLICIDAD DE HUND.

• “En orbitales de la misma energía los electrones entran de a uno. Ocupando cada órbita con el mismo espín. Cuando se alcanza el semillenado recién se produce el apareamiento con los espines opuestos.”

NIVELES DE ENERGÍA DE LOS ORBITALESNIVELES DE ENERGÍA DE LOS ORBITALES

ESQUEMA DE LLENADO DE ORBITALESESQUEMA DE LLENADO DE ORBITALES

CONFIGURACIÓN ELECTRÓNICACONFIGURACIÓN ELECTRÓNICA

1s1

Expresa el número de electrones en el orbital

Expresa el tipo de orbital

Expresa el número cuántico principal (nivel de energía)

EJEMPLOEJEMPLO

H z=1

C z=6

Na z=11

Cl z=17

O 2- z=8

Mg 2+ z=12

K + z=19 1s2 2s2 2p6 3s2 3p6

1s1

1s2 2s2 2p2

1s2 2s2 2p6 3s1

1s2 2s2 2p6 3s2 3p5

1s2 2s2 2p6

1s2 2s2 2p6

ELECTRONES DE VALENCIAELECTRONES DE VALENCIA• Corresponden a los electrones que

se encuentran en el último nivel de energía.

H z=1

C z=6

Na z=11

Cl z=17

EJEMPLO:

1s1 1 e.v.

1s2 2s2 2p2 4 e.v.

1s2 2s2 2p6 3s1 1 e.v.

1s2 2s2 2p6 3s2 3p5 7 e.v.

ELECTRONES CELIBATARIOELECTRONES CELIBATARIO• Corresponden a los electrones que

se encuentran desapareado (solitario) al interior de un átomo.

H z=1

C z=6

Na z=11

Cl z=17

EJEMPLO:

1s1 1 e.c.

1s2 2s2 2px12py12pz0 2 e.c.

1s2 2s2 2p6 3s1 1 e.c.

1s2 2s2 2p6 3s2 3p5 1 e.c.

SÍMBOLO DE LEWISSÍMBOLO DE LEWIS

• Símbolo de Lewis de un elemento consiste en la representación de los electrones de valencia mediante la localización de puntos alrededor del símbolo químico.

SÍMBOLO DE LEWISSÍMBOLO DE LEWIS

• Las estructuras, diagramas o fórmulas de Lewis de una molécula son representaciones planas de los átomos en la molécula y de la posición de los electrones enlazantes y no enlazantes.

FORMULACIÓN ESTRUCTURA DE LEWISFORMULACIÓN ESTRUCTURA DE LEWIS

FORMULACIÓN ESTRUCTURA DE LEWISFORMULACIÓN ESTRUCTURA DE LEWIS

• Determina el número total de electrones de valencia que aportan los átomos participantes.

• Formula los símbolos de Lewis correspondiente.• Dispone espacialmente los átomos que forman

parte de la molécula. Para moléculas complejas (triatómica o más) el átomo menos electronegativo tomará la posición central (excepto el átomo de hidrógeno).

• Distribuye aleatoriamente los electrones alrededor de la molécula, de tal manera de cumplir la regla del octeto.

• Si no se cumple la regla del octeto se debe agregar enlaces dobles o triples.

EJEMPLO ESTRUCTURA DE LEWISEJEMPLO ESTRUCTURA DE LEWIS

• Escribe la estructura de Lewis del trifluoruro de nitrógeno (NF3). Datos: N Z= 7 y F Z= 9.

N Z= 7: 1s22s22p3

F Z= 9: 1s22s22p5

5 e x 1 = 57 e x 3 = 21Total = 26 e

N F

EJEMPLO ESTRUCTURA DE LEWISEJEMPLO ESTRUCTURA DE LEWIS

N FF

F

EJEMPLO ESTRUCTURA DE LEWISEJEMPLO ESTRUCTURA DE LEWIS

N FF

F

EJERCICIOSEJERCICIOS

• A partir de las siguientes moléculas desarrolla la estructura de Lewis:

Datos: H z=1; O z= 8; Cl z=17; C z=6; N z=7.

A) H2O.B) O2.C) NH4

+.

REVISIÓNREVISIÓN

A) H2O.

H Z= 1: 1s1

O Z= 8: 1s22s22p4

1 e x 2 = 26 e x 1 = 6Total = 8 e

H O

REVISIÓNREVISIÓN

O HH

O HH

REVISIÓNREVISIÓN

B) O2.

O Z= 8: 1s22s22p4 6 e x 2 = 12 e

O

REVISIÓNREVISIÓN

O O

O O

REVISIÓNREVISIÓN

C) NH4+.

H Z= 1: 1s1

N Z= 7: 1s22s22p3

1 e x 4 = 45 e x 1 = 5Total = 9e – 1= 8e

H N

REVISIÓNREVISIÓN

N HH

H

H +1

CARGA FORMAL (C.F.)CARGA FORMAL (C.F.)

• Corresponde a la diferencia entre los electrones de valencia de un átomo aislado y el número de electrones asignados a ese átomo en una estructura de Lewis.

• Se puede calcular de acuerdo a:

C.F.= n° e.v. – (n° e. libres + ½ (n° e. enlazantes))

EJEMPLOEJEMPLO

• Determina la carga formal del átomo central de la molécula de agua:

C.F. Oxígeno= 6 - (4 + 1/2 (4))C.F. Oxígeno = 6 – ( 4 + 2)C.F. Oxígeno = 6 – 6C.F. Oxígeno = 0

O HH

GEOMETRÍA MOLECULAR: MODELO RPEVGEOMETRÍA MOLECULAR: MODELO RPEV

• Modelo basado en criterios electroestáticos, cuya idea central es que los electrones de valencia en torno a un átomo tienden a ubicarse en las posiciones que minimizan la fuerza de repulsión entre ellos.

GEOMETRÍA MOLECULAR: MODELO RPEVGEOMETRÍA MOLECULAR: MODELO RPEV

AXnEm• A: Corresponde al átomo central.• X: Átomo(s) unido(s) al átomo central.• E: Pares de electrones libres en torno al átomo central.• n: El número de átomos unidos al átomo central.• m: Número de pares de electrones libres en torno al átomo central.

GEOMETRÍA MOLECULAR: MODELO RPEVGEOMETRÍA MOLECULAR: MODELO RPEVTIPO GEOMETRÍA ÁNGULO DE

ENLACEREPRESENTACIÓN

AX2Lineal 180°

AX3Trigonal plana 120°

AX4Tetraédrica 109,5°

AX2E Angular <120°

AX3E Piramidal 107°

AX2E2Angular 104,5°

Muchas GraciasMuchas Gracias

Colegio Andrés Bello

Chiguayante

Colegio Andrés Bello

Chiguayante

Jorge Pacheco R.Profesor de Biología y Química