71
1.SPICEの最適な環境について 2.SPICEの弱点について 3.SPICEの再現性を高める方法について 4.収束エラー改善方法について 5.質疑応答 SPICE活用入門 1 Copyright (C) Bee Technologies Inc. 2013

SPICE活用入門 (02AUG2013)

Embed Size (px)

DESCRIPTION

SPICE活用入門 (02AUG2013)

Citation preview

Page 1: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について 2.SPICEの弱点について 3.SPICEの再現性を高める方法について 4.収束エラー改善方法について 5.質疑応答

SPICE活用入門

1 Copyright (C) Bee Technologies Inc. 2013

Page 2: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について

環境

ツール

SPICEモデル

シミュレーション技術

2 Copyright (C) Bee Technologies Inc. 2013

Page 3: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について

ツール

3 Copyright (C) Bee Technologies Inc. 2013

Page 4: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について

SPICEモデル

(1)サプライヤ企業から提供してもらう (2)スパイスモデル配信サイト:スパイス・パークを利用する → http://www.spicepark.info (3)自分で作成する →デバイスモデリング教材の活用 →デバイスモデリングセミナーの活用 →部品モデル作成術(書籍の活用) (4)デバイスモデリングサービスを活用する →半導体部品、受動部品、バッテリー、 センサー、モーター、機構部品等 (5)パラメータベースのシンプルモデルを活用する →シンプルモデル

4 Copyright (C) Bee Technologies Inc. 2013

Page 5: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について

SPICEモデル:スパイスモデル配信サイト:スパイス・パーク

5 Copyright (C) Bee Technologies Inc. 2013

Page 6: SPICE活用入門 (02AUG2013)

1.SPICEの最適な環境について

シミュレーション技術=回路モデリング

(1)概念設計 概念設計段階の回路方式の検討のテンプレート →コンセプトキット 電子書籍(Kindle,PDF)+デザインキット(PSpice,LTspice) →Kindle版はAMAZONで発売中 →PDF版は、マルツエレックで発売中 (2)詳細設計 詳細設計段階の回路方式の検討のテンプレート →デザインキット お客様の回路図をシミュレーション化 →カスタム・デザインキット

6 Copyright (C) Bee Technologies Inc. 2013

Page 7: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

(1)破壊の概念がない(耐圧の概念がない) →ヒューズのシンプルモデルの活用 (2)DC電源 安全動作領域がない 大電流が流れる →DC電源のシンプルモデルの活用 CVCC電源のシンプルモデルの活用

U1CVCCPS

CC = 5ACV = 5V

1

2

U1DC_POWER_SUPPLY

VOUT = 80VdcIMAX = 160AdcVMAX = 80VdcPOWER = 1600W

7 Copyright (C) Bee Technologies Inc. 2013

Page 8: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

The model accounts for:

• Current Rating

• Fuse Factor

• Internal Resistance

• Normal Melting I2t

Enable the model to simulate fusing time

(blow time) as a function of I2t.

The model can be used for testing the

blow time for the different current

pattern.

A one-shot switch, once fuse is opened it

cannot be closed.

Fig.1 Fusing Time vs. Fusing Current Characteristic

0.001

0.01

0.1

1

10

0.1 1 10 100

Fu

sin

g T

ime

(S

ec

.)Fusing Current (A)

8 Copyright (C) Bee Technologies Inc. 2013

Page 9: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

Irate = the current rating of fuse [A]

FF = Fusing Factor, the ratio of the

minimum fusing current (the current

that fuse start to heat up) to Irate.

(e.g. Irate =400mA and the minimum

fusing current is 620mA then FF =

620m/400m = 1.55)

Rint = internal resistance of fuse

I2t = Normal Melting value [A2, seconds]

• From the fuse specification, the model is characterized by setting parameters Irate, FF,

Rint and I2t.

Model Parameters:

Fig.2 Fuse model with default parameters

IRATE = 400m

FF = 1.55

RINT = 650m

I2T = 0.024

9 Copyright (C) Bee Technologies Inc. 2013

Page 10: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

0.001

0.01

0.1

1

10

0.1 1 10 100

Fu

sin

g T

ime

(S

ec

.)

Fusing Current (A)

Fig.3 Shows the complete setting of fuse model parameters by using data from the

datasheet of CCF1N0.4 provided by KOA Speer Electronics, Inc.

the minimum fusing current

is 620mA, FF = 20m/400m

= 1.55

IRATE = 400m

FF = 1.55

RINT = 650m

I2T = 0.024

10 Copyright (C) Bee Technologies Inc. 2013

Page 11: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

• The simulation result shows the fusing times, tF, (the time that fuse blows) at

the different fuse currents, IF .

tF = 956.677usec. at IF = 5A

tF = 5.9221msec. at IF = 2A

tF = 23.7861msec. at IF = 1A

Simulation Circuit

*Analysis directives:

.TRAN 0 1s 0 100u

.STEP PARAM dc_current LIST 1, 2, 5

*Integration Method: trapezoidal

Simulation Result

11 Copyright (C) Bee Technologies Inc. 2013

Page 12: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

0.001

0.01

0.1

1

10

0.1 1 10 100

Fu

sin

g T

ime

(S

ec

.)

Fusing Current

Measurement

Simulation

Graph shows the comparison result between the simulation result vs. the

measurement data. The fusing current error (average from 0.001-10 sec.) = 4.9%

Comparison Graph

12 Copyright (C) Bee Technologies Inc. 2013

Page 13: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

• The simulation result shows the fusing times, tF, (the time that fuse blows)

for the same peak current but different in current patterns(waveforms).

tF = 59.984msec. for sine wave

tF = 150.041msec. for triangle wave

Simulation Circuit Simulation Result

.TRAN 0 0.2s 0 100u

*Integration Method: trapezoidal

13 Copyright (C) Bee Technologies Inc. 2013

Page 14: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

ヒューズ

0.001

0.01

0.1

1

10

0.1 1 10 100

Fu

sin

g T

ime

(S

ec

.)Fusing Current

Measurement

Simulation

If the most accurate result is required, we could provide the specific model that

optimized for each part number of fuse. The fusing current error (average from 0.001-

10 sec.) will reduce from 4.9% (simplified model) to 0.4% (specific fuse model)

Model of fuse part number CCF10.4, all parameters and

function are already set

Error reduce to 0.4%

Comparison Graph

14 Copyright (C) Bee Technologies Inc. 2013

Page 15: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

DC電源

• This DC Power Supply Simplified SPICE Behavioral Model is for users who

require the model of a DC power supply as a part of their system.

• The model focuses on the power supply’s behavior in their operation area,

which user can input rated voltage, rated power, and maximum output

current.

Rated output voltage

Rated output line (from Rated Power)

Output Voltage [V]

Output Current [A]

Operation Area Maximum output current

15 Copyright (C) Bee Technologies Inc. 2013

Page 16: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

DC電源

POWER Rated power

– e.g. 400W, 800W, 1600W

– Value = <POWER>

VMAX DC maximum output voltage

– e.g. 80V, 320V, 650V

– Value = <VMAX>

IMAX DC maximum output current

– e.g. 40A, 80A, 160A

– Value = <IMAX>

VOUT Output voltage

– 0 ~ VMAX

– Value = <VOUT>

• From the DC power supply specification, the model is characterized by setting

parameters POWER, VMAX, and IMAX, then input VOUT value (from 0 to VMAX).

U1DC_POWER_SUPPLY

VOUT = 80VdcIMAX = 160AdcVMAX = 80VdcPOWER = 1600W

Model Parameters:

16 Copyright (C) Bee Technologies Inc. 2013

Page 17: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

DC電源

I(OUT)

0A 20A 40A 60A 80A 100A 120A 140A 160A 180A 200A

V(OUT)

0V

20V

40V

60V

80V

100V

(160.000,9.990)

(20.000,79.991)

(160.000,9.990)

Rated output voltage

Maximum output current

Rated output line

Rated operation

range

17 Copyright (C) Bee Technologies Inc. 2013

Page 18: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

DC電源

*Analysis directives:

.DC LIN I_ILOAD 0 200 10m

.PROBE V(*) I(*) W(*) D(*) NOISE(*)

DC Sweep: ILOAD 0-200A

0

OUT

OUT

ILOAD

U1DC_POWER_SUPPLY

VOUT = 80VdcIMAX = 160AdcVMAX = 80VdcPOWER = 1600W

18 Copyright (C) Bee Technologies Inc. 2013

Page 19: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

DC電源

Time

0s 10ms

V(OUT)

0V

20V

40V

60V

80V

100V

Parameter VOUT = 40V

60V

80V, and 100V

V(OUT) is limited by the model parameter VMAX (80V)

19 Copyright (C) Bee Technologies Inc. 2013

Page 20: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

CVCC電源

U1CVCCPS

CC = 5ACV = 5V

1

2

CV and CC value set only

CV: Constant Voltage [V]

CC: Constant Current [A]

Default Value:

CV=5V: Constant Voltage [V]

CC=5A: Constant Current [A]

20 Copyright (C) Bee Technologies Inc. 2013

Page 21: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

CVCC電源

I_ILoad

0A 1.0A 2.0A 3.0A 4.0A 5.0A

V(H1:1,H1:2)

0V

1.0V

2.0V

3.0V

4.0V

5.0V

6.0V

7.0V

8.0V

CV=6V

CV=5V

CV=4V

CC=5A I_ILoad

0A 1.0A 3.0A 5.0A 7.0A

V(H1:1,H1:2)

0V

1.0V

2.0V

3.0V

4.0V

5.0V

6.0V

7.0V

8.0V

CC=4A CC=5A

CC=6A

CV (Constant Voltage) CC (Constant Current)

CV=5V

21 Copyright (C) Bee Technologies Inc. 2013

Page 22: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

CVCC電源

[How to set]

.MODEL MPOPS PMOS

+ LEVEL=3 L=1u W=1u TOX=100n

+ VTO=-0.7 KP={22.2222*CC}

RD={(0.37*CV)/CC}

+ RDS=100MEG N=1MEG

Load Regulation

I_ILoad

0A 1.0A 2.0A 3.0A 4.0A 5.0A

V(H1:1,H1:2)

0V

1.0V

2.0V

3.0V

4.0V

5.0V

6.0V

I_ILoad

0A 1.0A 2.0A 3.0A 4.0A 5.0A

V(H1:1,H1:2)

0V

1.0V

2.0V

3.0V

4.0V

5.0V

6.0V

RD={(0.1*CV)/CC}

RD={(0.37*CV)/CC}

Symbol of the CV|CC Power Supply Model

U1CVCCPS

CC = 5ACV = 5V

1

2

22 Copyright (C) Bee Technologies Inc. 2013

Page 23: SPICE活用入門 (02AUG2013)

2.SPICEの弱点について

CVCC電源

I_ILoad

0A 1.0A 2.0A 3.0A 4.0A 5.0A

V(H1:1,H1:2)

0V

1.0V

2.0V

3.0V

4.0V

5.0V

6.0V

[How to set]

.MODEL MPOPS PMOS

+ LEVEL=3 L=1u W=1u TOX=100n

+ VTO=-0.7 KP={22.2222*CC}

RD={(0.37*CV)/CC}

+ RDS=100MEG N=1MEG

Load Regulation

The parameter RD is deleted

Symbol of the CV|CC Power Supply Model

U1CVCCPS

CC = 5ACV = 5V

1

2

23 Copyright (C) Bee Technologies Inc. 2013

Page 24: SPICE活用入門 (02AUG2013)

Most electronic ballasts and switching power supplies use a bridge rectifier and a bulk storage capacitor to derive raw dc voltage from the utility ac line, figure above: Vin=100Vac, 50Hz and PO=200W.

24

Vin

AC_IN1

PARAMETERS:

f req = 50Hz

Vin = 100Vac

AC_IN2

Cbulk2000uF

0

bulkDB1

DB2DB3

Diode

DB4

Load

1.414Adc

Iline

Vbulk

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 25: SPICE活用入門 (02AUG2013)

Time

160ms 164ms 168ms 172ms 176ms 180ms 184ms 188ms 192ms 196ms 200ms

AVG(ABS(W(Vin)))/(RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))

0

0.2

0.4

0.6

0.8

1.0

ABS( I(Vin) )

0A

10A

20A

ABS( V(AC_IN1,AC_IN2) ) V(bulk)

0V

100V

200V

SEL>>

The Uncorrected Power Factor rectifying circuit draws current from the ac line when the ac voltage exceeds the capacitor voltage (Vbulk). The current (Iline) is non-sinusoidal. This results in a poor power factor condition where the apparent input power is much higher than the real power, figure above, power factor ratios of 0.5 to 0.7 are common.

25

|VAC, in, 100V| (VPEAK, in=100*2=141.42V) and Vbulk

|Iline|

Power Factor Ratio = Pin, avg./(Vin, rms* Iin, rms)

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 26: SPICE活用入門 (02AUG2013)

Vac, inC1

1uF

C2

200u

ILoad

0.5A

L112

Diode

D2

Q1MOSFET

R7

L21 2

0

0

Rectifiers PFC

TB6819AFG

Controller

Circuit

PARAMETERS:

f req = 50Hz

Vin = 100Vac

The Power Factor Correction (PFC) circuit, as an off-line active preconverter, is designed to draw a sinusoidal current from the AC line that is in phase with input voltage. As a result, the power factor ratio is improved to be near to ideal (1).

The TB6819AFG is a critical conduction mode (CRM) PFC controller IC. The description including equation and constants as a guide to understand its designing process is included in this document.

26

Iline

VDC, OUT

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 27: SPICE活用入門 (02AUG2013)

Time*10

100ms 104ms 108ms 112ms 116ms 120ms 124ms 128ms 132ms 136ms 140ms

AVG(ABS(W(Vin))) / (RMS(ABS(V(AC_IN1,AC_IN2)))*RMS(ABS(I(Vin))))

0

0.2

0.4

0.6

0.8

1.0

-I(Vin)

-8.0A

0A

8.0A

SEL>>

1 V(AC_IN1,AC_IN2) 2 V(VOUT)

-160V

0V

160V1

200V

400V

600V2

>>

The poor power factor load is corrected by keeping the ac line current sinusoidal and in phase

with the line voltage. This results with power factor ratio is 0.85.

27

VAC, in, 100V and VDC, OUT, 400V

Iline

Power Factor Ratio = 0.85

*simulation result at tscale = 10

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 28: SPICE活用入門 (02AUG2013)

Load

0.5A

R12

39k

C9

0.1uF

Vin

FREQ = {f req}

VAMPL = {Vin*1.414}

AC_IN1

R4 100

PARAMETERS:

f req = 50

Vin = 100

C6 3300p

AC_IN2

C11u

0

0

R93MEG

R1022k

C5

10nF

C8

47uFIC = 17.9

D5DZ18V

R11360k

R668k

R8100k

MULT

Rtf

C30.47uF

IC = 3.74

L1{L}

12

PARAMETERS:

L = 230u

N = {1/9.6}

N=N2/N1, L2=(N^2)*L1

VCC

V1

R70.11

PO

UT

V2

U1

TB6819AFG

FB

_IN

CO

MP

MU

LT

ISZ

CD

GN

D

PO

UT

VC

C

FB_IN

IS

ZC

D

C78p

R310k

C4

1uF

VOUT

R21.5MEG

R19.53k

C2 200uF

IC = {2.51*1509.53/9.53}

COMP

L2{N*N*L}

1 2

K

K1

COUPLING = 1

K_Linear

L1 = L1

L2 = L2

DB1

Diode

D2

Diode

D3

DiodeD4

DB2DB3

Diode

DB4

Q1MOSFET

R5

10

28

VAC, in=85-265VAC

PO = 200W, VDC, OUT = 400VDC

*Analysis directives: .TRAN 0 20ms 0 100n .OPTIONS ABSTOL= 100n .OPTIONS GMIN= 1.0E-8 .OPTIONS ITL1= 500 .OPTIONS ITL2= 200 .OPTIONS ITL4= 40 .OPTIONS RELTOL= 0.01 .OPTIONS VNTOL= 100u

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 29: SPICE活用入門 (02AUG2013)

Time

18.00ms 18.25ms 18.50ms 18.75ms 19.00ms 19.25ms 19.50ms 19.75ms 20.00ms

ID(Q1)

-6A

0A

6A

12A

V(Q1:d,Q1:s)

0V

200V

400V

600V

I(D2)

8A

16A

-2A

SEL>>

V(D2:2,D2:1)

0V

200V

400V

600V

Switching Devices VPEAK and IPEAK at Steady State

29

D2 VKA, Peak ≈ 400V at steady state

Total simulation time = 976.83 seconds

D2 IF, Peak ≈ 12A at steady state

Q1 VDS, Peak ≈ 400V at steady state

Q1 ID, Peak ≈ 7.2A at steady state

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 30: SPICE活用入門 (02AUG2013)

Load

0.5A

R12

39k

C9

0.1uF

Vin

FREQ = {f req*tscale}

VAMPL = {Vin*1.414}

AC_IN1

R4 100

PARAMETERS:

f req = 50

Vin = 85

C6 3300p

AC_IN2

C11u

0

0

R93MEG

R1022k

C5

{10n/tscale}

C8

47uFIC = 17.9

D5DZ18V

R11360k

R668k

R8100k

MULT

Rtf

C3{0.47u/tscale}

L1{L}

12

PARAMETERS:

L = 230u

N = {1/9.6}

N=N2/N1, L2=(N^2)*L1

VCC

V1

R70.11

PO

UT

V2

U1

TB6819AFG

FB

_IN

CO

MP

MU

LT

ISZ

CD

GN

D

PO

UT

VC

CFB_IN

ISZ

CD

C78p

R310k

C4

{1u/tscale}

VOUT

R21.5MEG

R19.53k

C2 {200u/tscale}

PARAMETERS:

tscale = 40

COMP

L2{N*N*L}

1 2

K

K1

COUPLING = 1

K_Linear

L1 = L1

L2 = L2

DB1

Diode

D2

Diode

D3

DiodeD4

DB2DB3

Diode

DB4

Q1MOSFET

R5

10

Switching Devices VPEAK and IPEAK at Start Up 30

Vin, min = 85Vac with frequency 50Hz, tscale = 40

Iload = 0.5A as PO=200W at VO=400V

I(D2)

Switching Diode, D2

*Analysis directives: .TRAN 0 10ms 0m 100n .OPTIONS ABSTOL= 100n .OPTIONS GMIN= 1.0E-8 .OPTIONS ITL1= 500 .OPTIONS ITL2= 200 .OPTIONS ITL4= 40 .OPTIONS RELTOL= 0.01 .OPTIONS VNTOL= 100u

ID(Q1)

Switching MOSFET, Q1

Rectifier Diode, DB1-4

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 31: SPICE活用入門 (02AUG2013)

Time

476us 480us 484us 488us 492us 496us 500us 504us 508us 512us 516us

V(V2)

0V

40V

-I(L1)

0A

5A

10A

V(V1)

0V

250V

500V

V(Q1:g)

10V

20V

SEL>>

Time

0s 0.5ms 1.0ms 1.5ms 2.0ms

V(VOUT)

392V

400V

31

The Simulation Waveform with the defaults models

V(V1)

I (L1)

V(V2)

V(VOUT) without high frequency ripple which is caused by ESR and ESL of the capacitor model.

Gate charge characteristics is not include in the default model.

Total simulation time = 132.41 seconds

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 32: SPICE活用入門 (02AUG2013)

Load

0.5A

R12

39k

Q22SK2611

C9

0.1uF

Vin

FREQ = {f req*tscale}

VAMPL = {Vin*1.414}

AC_IN1

R4 100

PARAMETERS:

f req = 50

Vin = 100

C6 3300p

AC_IN2

C11u

0

0

R93MEG

R1022k

C5

{10n/tscale}

C8

47uFIC = 17.9

D5DZ18V

R11360k

R668k

R8100k

MULT

Rtf

C3{0.47u/tscale}

IC = 3.74

L1{L}

12

PARAMETERS:

L = 230u

N = {1/9.6}

N=N2/N1, L2=(N^2)*L1

VCC

V1

R70.11

PO

UT

V2

U1

TB6819AFG

FB

_IN

CO

MP

MU

LT

ISZ

CD

GN

D

PO

UT

VC

CFB_IN

ISZ

CD

C78p

R310k

C4

{1u/tscale}

VOUT

R21.5MEG

R19.53k

COMP

L2{N*N*L}

1 2

K

K1

COUPLING = 1

K_Linear

L1 = L1

L2 = L2

C2

RJJ-35V221MG5-T20

D2

SCS110AG

DB1

Diode

D3

DiodeD4

PARAMETERS:

tscale = 10

DB2DB3

Diode

DB4

R5

10

Simulation with Models from the SpicePark 32

Capacitor model

MOSFET professional

model

Schottky diode model

Replace some default model with models from SpicePark

*Analysis directives: .TRAN 0 2ms 0 100n .OPTIONS ABSTOL= 100n .OPTIONS GMIN= 1.0E-8 .OPTIONS ITL1= 500 .OPTIONS ITL2= 200 .OPTIONS ITL4= 100 .OPTIONS RELTOL= 0.01 .OPTIONS VNTOL= 100u

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 33: SPICE活用入門 (02AUG2013)

【参考】インダクタの等価回路の考え方

10-3

100

103

106

109

(Hz)

Impedance vs. Frequency

Inductor model

R1L1

L1

R1

R1L1C1

L1

10-3

100

103

106

109

(Hz)

Impedance vs. Frequency

Inductor model

R1L1 R1L1

L1

R1

L1

R1

R1L1C1

R1L1C1

L1L1

33

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 34: SPICE活用入門 (02AUG2013)

Frequency

1.0KHz 10KHz 100KHz 1.0MHz 10MHz

V(V1:+)/ I(V1)

1.0

10

100

1.0K

10K

100K

(2.1878M,234.735K)

All Rights Reserved Copyright (C) Bee Technologies Inc. 34

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 35: SPICE活用入門 (02AUG2013)

ラダー・モデル(Rudder Model)

Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz

V(N01685)/I(V2)

10m

100m

1.0

10

100

1.0K

10K

35

C1

1 2

R1

L2

C2

L1

R2

RS

*$ *PART NUMBER: SF-T5-25-01-PF *MANUFACTURER: TDK *All Rights Reserved Copyright (c) Bee Technologies Inc. 2006 .SUBCKT SF-T5-25-01-PF 1 2 R1 1 N4 2.89441k RS N4 2 37.9262m C1 1 N4 5.81894p L1 1 N3 12.151u L2 N3 N4 24.0673u R2 N3 N4 592.966 C2 N3 N4 2.2969p .ENDS *$

SPICEシミュレーション結果 インピーダンス測定結果(Agilent 4294A)

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 36: SPICE活用入門 (02AUG2013)

Time

484us 488us 492us 496us 500us 504us 508us 512us 516us 520us 524us

V(V2)

0V

40V

-I(L1)

0A

5A

10A

V(V1)

0V

250V

500V

V(Q2:g)

10V

20V

SEL>>

Time

0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms

V(VOUT)

392V

400V

36

V(VOUT) with high frequency ripple which is caused by ESR and ESL of the capacitor model.

Gate charge characteristics is include in the MOSFET Professional model.

V(V1)

I (L1)

V(V2)

Total simulation time = 408.13 seconds

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 37: SPICE活用入門 (02AUG2013)

37

パワーMOSFETのスパイスモデルについて

MOSFET LEVEL LEVEL=1 Shichman-Hodges Model LEVEL=2 形状に基づいた解析モデル LEVEL=3 半経験則短チャネルモデル LEVEL=4 BSIM Model LEVEL=6 BSIM3 MODEL ・・・・・・・ ・・

MOSFET LEVEL=3 半経験則短チャネルモデルの特徴 (1)2次元的な電位分布によるデバイスの長さ及び幅に対してスレッシュホルド電圧 が敏感に影響を受ける。 (2)ドレインが誘起するBarrier loweringによるドレイン電圧に対してのスレッシュホルド電圧 の考慮。 (3)リニア領域と飽和領域との間での緩やかな変化及びホットエレクトロンの速度 飽和によって若干減少する飽和電圧、飽和電流の考慮。

RB

BulkGate

Cbs

Cgb

RG

Cgd

ROS

Cgs

RD

RS

Cbd

Drain

Source

Idrain

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 38: SPICE活用入門 (02AUG2013)

38

Time*1ms

0 8n 16n 24n 32n 40n

V(W1:2) V(W201:2)

0V

2V

4V

6V

8V

10V

12V

14V

16V

18V

20V

MOSFET LEVEL=3 MODEL Bee Technologies MODEL(Professional)

ゲートチャージ特性 ミラー容量が固定値のため、ミラー容量を可変にする

電流臨界モード方式PFC制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 39: SPICE活用入門 (02AUG2013)

39

Condition :

Po = 25[W], 4 Load Analysis Time Domain (Transient) Run to time: 3ms Start saving data after: 1ms Maximum step size: 100n Skip the initial transient bias point calculation (SKIPBP)

.Options RELTOL: 0.01 VNTOL: 1.0u ABSTOL: 1.0n CHGTOL: 0.01p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 10

TEST CONDITION:

C41nF

0

+B15V

+

C18EKMG500ELL222MLP1S

C51nF

0

R1810

0

R192.2k

PARAMETERS:

Po = 25W

Gv = 15.85

RL = 4

f in = 1kHz

C14MMH250K684

R4220

C710uIC = 10

R2

3kR1100k

C10 22uIC = 15

LOAD

{RL}

OUT

C922uIC = 12.85

MUR120RLG

D2

IN

VS

R1310

R3

47k

L17G14N-220-RB

VB

R171

R20

3.3k

0

R218.2k

R8

820

+B

VAA

0

VREF

R6 8.2k

R71.2k

CSD

OCSET

IN-

IC1

IRS2092

VAA

GND

IN-

COMP

CSD

VSS

VREF

OCSET DT

COM

LO

VCC

VS

HO

VB

CSH

VCC

0

DT

VSS 0

COMP

R5

820

-B

HO

R15

10

LO

VR175

-B-15V

0

C210uIC = 7

C810uIC = 7

R1110k

V1

FREQ = {f in}VAMPL = {1.4142*SQRT(Po*RL)/Gv }VOFF = 0

VS

CSH

C13MMC400K104

0

C12MMC250K474

R16

10

C11RPER11H104K2K1A01B

C15RPER11H104K2K1A01B

0

R144.7

MUR120RLGD1

0

R9

4.7k

+ C16EKMG500ELL222MLP1S

C17RPER11H104K2K1A01B

R1210k

C3

RPER11H103K2K1A01B

+C1

EKMG500ELL100ME11DC6AMZ0050J102

FET1IRFIZ24N

FET2IRFIZ24N

Ls1

20nH

1

2

Ls2

20nH

1

2

Ls320nH

1

2

Ls420nH

1

2

Ls520nH

12

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 40: SPICE活用入門 (02AUG2013)

40

Time

1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

1 AVG(W(LOAD)) -(AVG(W(+B))+AVG(W(-B))) 2 -100*AVG(W(LOAD))/(AVG(W(+B))+AVG(W(-B)))

0W

5W

10W

15W

20W

25W

30W

35W

40W

45W

50W1

>>

0

10

20

30

40

50

60

70

80

90

1002

PSUPPLY [W]

PO [W]

%Efficiency

Specifications : Efficiency Simulation Result

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 41: SPICE活用入門 (02AUG2013)

+

-

SPEAKERF120A

FET1IRFIZ24N

FET2IRFIZ24N

+

C1EKMG500ELL100ME11D

C6AMZ0050J102C3

RPER11H103K2K1A01B

V1

FREQ = {f in}VAMPL = { 1.4142*VOUT/Gv }VOFF = 0

0

C41nF

+B15V

+

C18EKMG500ELL222MLP1S

C51nF

0

R1810

0

R192.2k

C14MMH250K684

R4220

C710uIC = 10

R23k

R1100k

C10 22uIC = 15

OUT

C922uIC = 12.85

MUR120RLG

D2

VS

IN

R1310

R3

47k

L17G14N-220-RB

VB

R171

0

R20

3.3k

R218.2k

R8

820

+B

VREF

VAA

0

R6 8.2k

R71.2k

CSD

OCSET

IN-

IC1

IRS2092

VAA

GND

IN-

COMP

CSD

VSS

VREF

OCSET DT

COM

LO

VCC

VS

HO

VB

CSH

VCC

0

DT

VSS 0

COMP

HO

R5

820

-B

R15

10

LO

VR175

-B-15V

0

C210uIC = 7

C810uIC = 7

R1110k

CSH

VS

C13MMC400K104

0

C12MMC250K474

R16

10

C11RPER11H104K2K1A01B

C15RPER11H104K2K1A01B

0Ls1

20nH

1

2

Ls2

20nH

1

2

Ls320nH

1

2

Ls420nH

1

2

R144.7

MUR120RLGD1

0

R9

4.7k

+ C16EKMG500ELL222MLP1S

Ls520nH

12

C17RPER11H104K2K1A01B

R1210k

PARAMETERS:VOUT = 2Gv = 15.85f in = 1k

V

V

V

V V

V

41

Time

505.0us 510.0us

V(VS)

-40V

0V

40V

Time

505.0us 510.0us

V(HO)

-40V

0V

40V

Time

505us 510us503us 513us

V(LO)

-20V

0V

Time

0.50ms 0.75ms 1.00ms 1.25ms

V(IN)

0V

-200mV

200mV

Time

505.0us 510.0us

V(COMP)

0V

-1.0V

1.0V

Class D amplifier circuit are simulated and compared with measured waveforms from oscilloscope

(Tektronix: TDS3054B)

Time

0s 0.3ms 0.7ms

V(OUT)

-4.0V

0V

4.0V

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 42: SPICE活用入門 (02AUG2013)

42

Time

1.988ms 1.990ms 1.992ms 1.994ms 1.996ms 1.998ms

V(VS)

-40V

-30V

-20V

-10V

0V

10V

20V

30V

40V

OUT

VS

Simulated Measured

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 43: SPICE活用入門 (02AUG2013)

43

Time

1.988ms 1.990ms 1.992ms 1.994ms 1.996ms 1.998ms

V(HO)

-40V

-30V

-20V

-10V

0V

10V

20V

30V

40V

Time

1.992ms 1.994ms 1.996ms 1.998ms 2.000ms 2.002ms

V(LO)

-40V

-30V

-20V

-10V

0V

10V

20V

30V

40V

HO

LO

Simulated Measured

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 44: SPICE活用入門 (02AUG2013)

44

Self-oscillation frequency = 400kHz (Simulated)

Self-oscillation frequency = 400kHz (Measured)

Simulated Measured

OUT OUT

VS VS

Self-Oscillating Frequency

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 45: SPICE活用入門 (02AUG2013)

+

-

SPEAKERF120A

FET1IRFIZ24N

FET2IRFIZ24N

+

C1EKMG500ELL100ME11D

C6AMZ0050J102C3

RPER11H103K2K1A01B

V1

FREQ = 1kVAMPL = 0VOFF = 0

0

C41nF

+B15V

+

C18EKMG500ELL222MLP1S

C51nF

0

R1810

0

R192.2k

C14MMH250K684

R4220

C710uIC = 10

R2

3kR1100k

C10 22uIC = 15

OUT

C922uIC = 12.85

MUR120RLG

D2

VS

IN

R1310

R3

47k

L17G14N-220-RB

VB

R171

0

R218.2k

R20

3.3k

R8

820

+B

VREF

VAA

0

R6 8.2k

R71.2k

CSD

OCSET

IN-

IC1

IRS2092

VAA

GND

IN-

COMP

CSD

VSS

VREF

OCSET DT

COM

LO

VCC

VS

HO

VB

CSH

VCC

0

DT

VSS 0

COMP

HO

R5

820

-B

R15

10

LO

VR175

-B-15V

0

C210uIC = 7

C810uIC = 7

R1110k

CSH

VS

C13MMC400K104

0

C12MMC250K474

R16

10

C11RPER11H104K2K1A01B

C15RPER11H104K2K1A01B

0Ls1

20nH

1

2

Ls2

20nH

1

2

Ls320nH

1

2

Ls420nH

1

2

R144.7

MUR120RLGD1

0

R9

4.7k

+

C16EKMG500ELL222MLP1S

Ls520nH

12

C17RPER11H104K2K1A01B

R1210k

Dead-time

45

Dead-time Mode R20 R21

DT1 (25ns) 3.3k 8.2k

DT2 (40ns) 5.6k 4.7k

DT3 (65ns) 8.2k 3.3k

DT4 (105ns) - < 10k

V(DT) Voltage Divider

Analysis Time Domain (Transient) Run to time: 1ms Start saving data after: 0.5m Maximum step size: 40n Skip the initial transient bias point calculation (SKIPBP)

.Options RELTOL: 0.001 VNTOL: 1.0u ABSTOL: 1.0n CHGTOL: 0.01p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 10

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 46: SPICE活用入門 (02AUG2013)

Dead-time DT1(25ns)

46

Time

0.9976ms 0.9980ms 0.9984ms 0.9988ms 0.9992ms0.9974ms

V(LO,-B) V(HO,VS)

-4V

0V

4V

8V

12V

16V

V(OUT)

0V

-400mV

400mV

SEL>>

DT1(25ns)

DT1(25ns)

Spike voltage

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 47: SPICE活用入門 (02AUG2013)

Dead-time DT3(65ns)

47

Time

0.9976ms 0.9980ms 0.9984ms 0.9988ms 0.9992ms 0.9996ms

V(LO,-B) V(HO,VS)

-4V

0V

4V

8V

12V

16V

V(OUT)

0V

-400mV

400mV

SEL>>

DT3(65ns)

DT3(65ns)

Spike voltages (Decrease for longer dead time)

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 48: SPICE活用入門 (02AUG2013)

+

C1EKMG500ELL100ME11D

C6AMZ0050J102C3

RPER11H103K2K1A01B

C17RPER11H104K2K1A01B

+

C18EKMG500ELL222MLP1S

FET1IRFIZ24N

FET2IRFIZ24N

+

-

SPEAKERF120A

0

C41nF

+B15V

C51nF

0

R1810

0

R192.2k

C14MMH250K684

R4220

C710uIC = 10

R2

3kR1100k

C10 22uIC = 15

OUT

C922uIC = 12.85

MUR120RLG

D2

VS

IN

R1310

R3

47k

L17G14N-220-RB

VB

R171

0

R20

3.3k

R218.2k

R8

820

+B

VREF

VAA

0

R6 8.2k

R71.2k

CSD

OCSET

IN-

IC1

IRS2092

VAA

GND

IN-

COMP

CSD

VSS

VREF

OCSET DT

COM

LO

VCC

VS

HO

VB

CSH

V1

FREQ = 1kVAMPL = 0VOFF = 0

VCC

0

DT

VSS 0

COMP

HO

R5

820

-B

R15

10

LO

VR175

-B-15V

0

C210uIC = 7

C810uIC = 7

R1110k

CSH

VS

C13MMC400K104

0

C12MMC250K474

R16

10

C11RPER11H104K2K1A01B

C15RPER11H104K2K1A01B

0Ls1

20nH

1

2

Ls2

20nH

1

2

Ls320nH

1

2

Ls420nH

1

2

R144.7

MUR120RLGD1

0

R9

4.7k

+ C16EKMG500ELL222MLP1S

Ls520nH

12

R1210k

The total power loss in MOSFET are given by:

PTOTAL = PSW+Pcond+Pgd

48

Power losses in the MOSFETs

Analysis Time Domain (Transient) Run to time: 500us Start saving data after: 100n Maximum step size: 2n Skip the initial transient bias point calculation (SKIPBP)

.Options RELTOL: 0.003 VNTOL: 1.0m ABSTOL: 100n CHGTOL: 0.01p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 20

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 49: SPICE活用入門 (02AUG2013)

Time

23.6us 24.4us 25.2us 26.0us 26.8us 27.6us

1 V(FET1:S,FET1:D) 2 -I(Ls1) 3 V(FET1:D,FET1:S)*-I(Ls1)

0V

100V

-60V

1

-1.5A

-1.0A

-0.5A

0A

0.5A

1.0A

1.5A

2.0A

2.5A2

>>

-50W

0W

20W3

Power losses FET1(Professional Model)

49

FET1: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms

PSW ,Pcond ,and Pgd are calculated by PSpice.

VDS, ID (Measured)

-VDS

ID

-VDS

ID

Power loss (VDS*ID)

PSW Pgd Pcond

VDS, ID (Simulated)

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 50: SPICE活用入門 (02AUG2013)

Time

492.8us 493.6us 494.4us 495.2us 496.0us

1 V(FET2:D,FET2:S) 2 -I(Ls3:1) 3 V(FET2:D,FET2:S)*-I(Ls3:1)

0V

100V

-40V

1

-1.0A

-0.5A

0A

0.5A

1.0A

1.5A

2.0A

2.5A

3.0A2

>>

-50W

0W

20W3

Power losses FET2(Professional Model)

50

FET2: ID and VDS are simulated and compared with scope (Tektronix: TDS3054B) waveforms

PSW ,Pcond ,and Pgd are calculated by PSpice.

VDS

ID

VDS

ID

Power loss (VDS*ID)

PSW Pgd Pcond

VDS, ID (Measured) VDS, ID (Simulated)

3.2 D級アンプ

Copyright (C) Bee Technologies Inc. 2013

Page 51: SPICE活用入門 (02AUG2013)

• Gate charge characteristics in Professional model has more accurate results than standard model.

FET: IRFIZ24N Qg Standard vs. Professional Model

51

IRFIZ24N (Standard)

IRFIZ24N (Professional)

VDD=44V,ID=10A

,VGS=10V Measurement Simulation Error (%)

Standard Model: Qg(nc) 13.400 12.543 -6.396

Professional Model: Qg(nc) 13.400 13.409 0.067

3.2 D級アンプ

Copyright (C) Bee Technologies Inc. 2013

Page 52: SPICE活用入門 (02AUG2013)

Time

867us 869us 871us 873us 875us 877us

1 V(OUT) 2 V(VS)

-1.0V

-0.5V

0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V1

>>

-120V

-80V

-40V

0V

40V2

52

Simulated (without output capacitor models) Measured

OUT OUT

VS VS

Self-oscillation frequency = 400kHz (Simulated)

Self-oscillation frequency = 400kHz (Measured)

Simulation Result (without Capacitor Model)

3.2 D級アンプ

Copyright (C) Bee Technologies Inc. 2013

Page 53: SPICE活用入門 (02AUG2013)

53

Simulated (with output capacitor models) Measured

OUT OUT

VS VS

Self-oscillation frequency = 400kHz (Simulated)

Self-oscillation frequency = 400kHz (Measured)

Simulation Result (with Capacitor Model)

D級アンプ

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 54: SPICE活用入門 (02AUG2013)

Application Circuit

54

O_A

O_A1

O_B1

O_BO_B

RRSA 0.5ohmO_B1

V5Vref AB1.25Vdc

O_A1

O_A

RSB

L2

IC = 0

1

2

0

Cv ref AB1uF

00

L1

IC = 012

RSA

RRSB 0.5ohm

0

VM124V CVM1

100uF

00

U1

TB62206FG

CCP1 = 0.22UFCCP2 = 0.01UF

VM = 24COSC = 560PFROSC = 3.6K

FIN

CRVDDVREF_AVREF_BRS_B

RS_AVMCCP_CCCP_BCCP_A STANDBY

OUT_A1PHASE_APHASE_B

OUT_A

OUT_BENABLE_AENABLE_B

OUT_B1TORQUE

V_PHASE_A

TD = 0

TF = {tf phase}PW = {pwphase}PER = {tphase}

V1 = 0

TR = {trphase}

V2 = 5V

V_PHASE_B

TD = {tphase/4}

TF = {tf phase}PW = {pwphase}PER = {tphase}

V1 = 0V

TR = {trphase}

V2 = 5

0 0

PARAMETERS:

f phase = 250Hz

tphase = {1/f phase}

tdphase = {trphase+pwphase/2}

pwphase = {-2*trphase+tphase/2}

trphase = 100n

tf phase = {trphase}

VDD5Vdc C1

10uF

0 0

Rosc 3.6kohm

0

Cosc 560pF

0

Cccp_10.22uF

Cccp_20.022uF

250Hz Full Step

Ph_BPh_A

Ph_B

Ph_A

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 55: SPICE活用入門 (02AUG2013)

O_B1

O_B

O_A

O_A1

RSB 7.9ohm

L29.15mHIC = -0.5

1

2

L19.15mHIC = -0.5

12

RSA7.9ohm

O_A

O_A1

O_B1

O_B

RRSA 0.5ohm

V5Vref AB1.25Vdc

0

Cv ref AB1uF

00

RRSB 0.5ohm

0

VM124V CVM1

100uF

00

U1

TB62206FG

CCP1 = 0.22UFCCP2 = 0.01UF

VM = 24COSC = 560PFROSC = 3.6K

FIN

CRVDDVREF_AVREF_BRS_B

RS_AVMCCP_CCCP_BCCP_A STANDBY

OUT_A1PHASE_APHASE_B

OUT_A

OUT_BENABLE_AENABLE_B

OUT_B1TORQUE

V_PHASE_A

TD = {tphase/4}

TF = {tf phase}PW = {pwphase}PER = {tphase}

V1 = 0

TR = {trphase}

V2 = 5V

V_PHASE_B

TD = {tphase/2}

TF = {tf phase}PW = {pwphase}PER = {tphase}

V1 = 0V

TR = {trphase}

V2 = 5

0 0

PARAMETERS:

f phase = 250Hz

tphase = {1/f phase}

tdphase = {trphase+pwphase/2}

pwphase = {-2*trphase+tphase/2}

trphase = 100n

tf phase = {trphase}

VDD5Vdc C1

10uF

0 0

Rosc 3.6kohm

Cosc 560pF

0

0

Cccp_10.22uF

Cccp_20.022uF

250Hz Full Step

Ph_BPh_A

Ph_B

Ph_AFull Step Switching Sequence

55

Full-step sequences control signals

Analysis Time Domain (Transient) Run to time: 8ms Start saving data after: 0ms Maximum step size: -

.Options RELTOL: 0.01 VNTOL: 1.0m ABSTOL: 1.0n CHGTOL: 1p GMIN: 1.0E-12 ITL1: 500 ITL2: 200 ITL4: 100

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 56: SPICE活用入門 (02AUG2013)

Full Step Switching Sequence

56

• This figure shows the simulation result of the circuit with Full-step switching sequence.

Phase A

Phase B

Enable A

Enable B

IOUT A

IOUT B

Time

0s 4.0ms 8.0ms

I(U1:OUT_B1)

-1.0A

0A

1.0A

I(U1:OUT_A1)

-1.0A

0A

1.0A

V(U1:ENABLE_B)

0V

SEL>>

V(U1:ENABLE_A)

0V

V(PH_B)

0V

V(PH_A)

0V

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 57: SPICE活用入門 (02AUG2013)

Time

2.54ms 2.58ms

I(U1:OUT_B1)

400mA

600mA

I(U1:OUT_A1)

400mA

600mA

SEL>>

Output Ripple Current

• This figure shows the output ripple current of the Mixed Decay Mode ,which consist of Charge ,Slow decay ,and Fast decay mode ,with 101kHz chopping frequency.

57

IOUT = 0.5A

fchop = 101kHz

IOUT A

IOUT B Charge mode

Slow decay mode Fast decay mode

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 58: SPICE活用入門 (02AUG2013)

Time

2.593ms 2.595ms 2.597ms 2.599ms 2.601ms 2.603ms

I(U1:OUT_A1)

300mA

400mA

500mA

600mA

700mA

SEL>>

Ripple Current Simulation

• The simulation result shows the current ripple that agrees to the measurement data.

58

Current ripple

Current ripple

Simulation

Measurement

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 59: SPICE活用入門 (02AUG2013)

Parameter Settings

If there is no measurement data, the default value will be used:

Rm: motor winding resistance []

Lm: motor winding inductance [H]

Data is given by D.C. motor spec-sheet:

V_norm: normal voltage [V]

mNm: normal load [mNm]

kRPM_norm: speed at normal load [kr/min]

I_norm: current at normal load [A]

Load Condition:

IL: load current [A]

59

Model Parameters:

D.C. Motor model and Parameters with Default Value

-+

U1SMPL_DC_MOTORRm = 0.1Lm = 100u

I_norm = 6.1

mNm = 19.6V_norm = 7.2

kRPM_norm = 14.4

IL = 6.1

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 60: SPICE活用入門 (02AUG2013)

60

Time

0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms

I(VIM)

0A

10A

20A

V(VM)

0V

5V

10V

SEL>>

I(X_U1.V_kRPM)

0A

10A

20A

V(X_U1.TRQ)

0V

40V

80V

D.C. Motor Current = 6.1A

D.C. Motor Voltage = 7.2V

D.C. Motor Speed = 14.4krpm

Torque Load= 19.6mNm

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 61: SPICE活用入門 (02AUG2013)

Time

0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms

I(VIM)

0A

10A

20A

V(VM)

0V

5V

10V

I(X_U1.V_kRPM)

0A

10A

20A

SEL>>

V(X_U1.TRQ)

0V

40V

80V

61

D.C. Motor Current = 3.05A

D.C. Motor Voltage = 8.725V

D.C. Motor Speed = 18.4krpm

Torque Load= 9.8mNm

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 62: SPICE活用入門 (02AUG2013)

-+

U2SMPL_DC_MOTORRm = 0.576Lm = 165u

I_norm = 2.9

mNm = 9.8V_norm = 7.2

kRPM_norm = 14.2

IL = 0.6NC

NC

NCA

K

VCC

VO

GND

U1

TLP350

V1

TD = 0

TF = 10nPW = 199.99uPER = 400u

V1 = 0

TR = 10n

V2 = 1.8

0

R11u

0

Vcc

15V

0

VCC

VDD

0

RG120

0

DGT10J321_s

D3

VCC

Vdd

15V

VDD

0

D4001D2

U3GT10J321

62

Simplified D.C. Motor with RS-380PH Spec at No load.

Simulation Circuit and Setting

No load IL=0.6

Application Example

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 63: SPICE活用入門 (02AUG2013)

Time

-100ms 0s 100ms 300ms 500ms 700ms 900ms

1 I(U2:1) 2 V(U2:1,U2:2)

-2A

0A

2A

4A

6A

8A

10A

12A

14A1

-60V

-50V

-40V

-30V

-20V

-10V

0V

10V

20V2

>>

Application Example

63

Measurement Simulation

Motor Current (2A/Div)

Motor Voltage (10V/Div)

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 64: SPICE活用入門 (02AUG2013)

Time

898.0ms 898.4ms 898.8ms 899.2ms 899.6ms

1 I(U3:C) 2 V(U3:C) 3 V(U3:G)

-2A

0A

2A

4A

6A

8A

10A

12A

14A1

>>

-30V

-20V

-10V

0V

10V

20V

30V

40V

50V2

-60V

-50V

-40V

-30V

-20V

-10V

0V

10V

20V3

Application Example

64

Measurement Simulation

IGBT: VGE

IGBT: VCE

IGBT: IC

IGBT: VGE (10V/Div)

IGBT: VCE (10V/Div)

IGBT: IC (2A/Div)

ステッピングモータ制御回路

3.SPICEの再現性を高める方法

Copyright (C) Bee Technologies Inc. 2013

Page 65: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

65 Copyright (C) Bee Technologies Inc. 2013

(1)解析の刻みを変更する →刻みを荒くする (2).OPTIONSで改善する →それぞれのパラメータで改善する (3)回路で改善する →スナバ回路等を追加する

Page 66: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

66 Copyright (C) Bee Technologies Inc. 2013

Page 67: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

67 Copyright (C) Bee Technologies Inc. 2013

Page 68: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

68 Copyright (C) Bee Technologies Inc. 2013

パラメータ 単位 説明

RELTOL 電圧及び電流の相対精度

VNTOL V 電圧の最高精度

ABSTOL A 電流の最高精度

CHGTOL Q 電荷の最高精度

GMIN 1/Ω 全ての分岐の最小コンダクタンス

ITL1 DC、バイパスの繰り返し上限(予測なし)

ITL2 DC、バイパスの繰り返し上限(予測あり)

ITL4 過渡の時間ポイントの繰り返し制限

Page 69: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

69 Copyright (C) Bee Technologies Inc. 2013

パラメータ 対処

ITL1 バイパスポイントを解析中に収束エラー発生時に対処

ITL2 DC解析中に収束エラー発生時に対処

ITL4 過渡解析中に収束エラー発生時に対処

ITLの対処方法

パワーエレクトロニクス分野の解析の場合

パラメータ 対処

VNTOL 大電圧の場合に対処

ABSTOL 大電流の場合に対処

Page 70: SPICE活用入門 (02AUG2013)

4. 収束エラー改善方法について

70 Copyright (C) Bee Technologies Inc. 2013

Standard Default

.OPTIONS RELTOL=0.001 VNTOL=1.0u ABSTOL=1.0p CHGTOL=0.01p GMIN=1.0E-12 ITL1=150 ITL2=20 ITL4=10

Simulation Convergence Quick Fix

.OPTIONS RELTOL=0.01 VNTOL=1.0m ABSTOL=1.0n CHGTOL=0.01u GMIN=1.0E-12 ITL1=500 ITL2=200 ITL4=100

Page 71: SPICE活用入門 (02AUG2013)

71 Copyright (C) Bee Technologies Inc. 2013

質疑・応答