66
1 第 10 第 第第第第第 Absorption Photometr y 第第第第第第第第第第第第第第第第第 第第第第第第 第第第第第第 第第 一。、 -第 第第第第第第第第第第第第第

第 10 章 吸光光度法 ( Absorption Photometry )

Embed Size (px)

DESCRIPTION

第 10 章 吸光光度法 ( Absorption Photometry ). 基于物质对光的选择性吸收建立起来的一种分析方法。包括比色法、紫外 - 可见吸光光度法和红外光谱法等。. 10.1  物质对光的选择性吸收和光吸收定律. 10.1.1  物质对光的选择性吸收. 1 、光的基本性质. 光是一种电磁波,具有波粒二象性,用普郎克公式可以把波性和粒性联系在一起。. 光的波粒二象性. 光的折射. 波动性.  . 光的衍射. 光的偏振. 光的干涉. E. 粒子性. 光电效应. E :光子的能量( J, 焦耳). - PowerPoint PPT Presentation

Citation preview

Page 1: 第 10 章 吸光光度法 ( Absorption Photometry )

1

第 10 章 吸光光度法( Absorption Photometry )

  基于物质对光的选择性吸收建立起来的一种分析

方法。包括比色法、紫外 - 可见吸光光度法和红外光谱法等。

Page 2: 第 10 章 吸光光度法 ( Absorption Photometry )

2

10.1  物质对光的选择性吸收和光吸收定律

11 、光的基本性质、光的基本性质

  光是一种电磁波,具有波粒二象性,用普郎克公式

可以把波性和粒性联系在一起。

10.1.1  物质对光的选择性吸收

Page 3: 第 10 章 吸光光度法 ( Absorption Photometry )

3

光的波粒二象性光的波粒二象性

波动性波动性波动性波动性

粒子性粒子性粒子性粒子性

EEEE

光的折射光的折射光的折射光的折射

光的衍射光的衍射光的衍射光的衍射

光的偏振光的偏振光的偏振光的偏振

光的干涉光的干涉光的干涉光的干涉

光电效应光电效应光电效应光电效应

EE :光子的能量(:光子的能量( J,J, 焦耳)焦耳) :光子的频率(:光子的频率( HzHz, , 赫兹)赫兹) :光子的波长(:光子的波长( cmcm ))cc :光速:光速(( 2.99792.997910101010 cm.s cm.s-1-1 ))hh :: PlankPlank 常数(常数( 6.62566.62561010-34-34 J.s J.s 焦耳焦耳 . . 秒)秒)

hcE h

Page 4: 第 10 章 吸光光度法 ( Absorption Photometry )

4

光学光谱区

远紫外 近紫外 可见 近红外 中红外 远红外(真空紫外)

10nm~200nm 200nm ~380nm

380nm ~ 780nm

780 nm~ 2.5 m

2.5 m ~ 50 m

50 m ~300 m

紫外光度法 比色及可见光度法

跃迁类型:分子中价电子的跃迁

Page 5: 第 10 章 吸光光度法 ( Absorption Photometry )

5

2 、吸收光谱产生的原理

1. 电子相对于原子核的运动 -- 电子能级 ;

2. 原子核在其平衡位置附近的相对振动 -- 振动能级 ;

3. 分子本身绕其重心的转动 -- 转动能级 .

物质分子内部 3 种运动形式及其对应能级:

  分子吸收光谱,是由于分子中价电子选择性地吸收了某些范围内的光

Page 6: 第 10 章 吸光光度法 ( Absorption Photometry )

6

基态

激发态

分子总能量: E 分子= E 电子+ E 振动+ E 转动

分子吸收光,从基态跃迁到激发态,能量发生变化△E 分子= △ E 电子+ △ E 振动+ △ E 转动

1~20ev 0.05~1ev <0.05ev若吸收光,则必须:

/ E hv hc分子

即:只有光的能量与分子中基态与激发态能量差相等时,物质才会吸收光。由于物质基态与激发态能量差是固定的,所以物质对光的吸收是选择性的

Page 7: 第 10 章 吸光光度法 ( Absorption Photometry )

7

吸收光谱 Absorption Spectrum

纯 电子能态纯 电子能态 间跃迁间跃迁

S2

S1

S0

S3

h E2

E0

E1

E3

S2

S1

S0

h A

hhh

分子内电子跃迁 带状光谱

锐线光谱锐线光谱

A

Page 8: 第 10 章 吸光光度法 ( Absorption Photometry )

8

* 单色光( monochromatic light ):具有同一波长的光。

* 复合光( multiplex light ):由不同波长组成的光。* 紫外光( ultraviolet light ):波长 200~400 nm 。* 可见光( visible light ):人眼能感觉到的光,波长在 400~75

0 nm 。它是由红、橙、黄、绿、青、蓝、紫等各种色光按一定比例混合而成的

* 波段( wave band ):各种色光的波长范围不同。* 互补色光( complementary color light ):按一定比例混合,

得到白光( white light )。* 物质的颜色是因物质对不同波长的光具有选择性吸收作用而

产生的。

Page 9: 第 10 章 吸光光度法 ( Absorption Photometry )

9

绿

青蓝 橙

白光

Page 10: 第 10 章 吸光光度法 ( Absorption Photometry )

10

物质的颜色与吸收光的关系

完全吸收

完全透过

吸收黄色光

光谱示意 表观现象示意复合光复合光复合光复合光

Page 11: 第 10 章 吸光光度法 ( Absorption Photometry )

11

吸收光  /nm 吸收光颜色 物质颜色

400 ~ 450 紫 黄绿450 ~ 480 蓝 黄480 ~ 490 绿蓝 橙490 ~ 500 蓝绿 红500 ~ 560 绿 红紫560 ~ 580 黄绿 紫580 ~ 610 黄 蓝610 ~ 650 橙 绿蓝650 ~ 760 红

表 6-2  物质颜色与吸收光颜色的关系

蓝绿

Page 12: 第 10 章 吸光光度法 ( Absorption Photometry )

12

I’0 It

Ia浓度 C

b

吸收光

Ir反射光

10.1.2 光吸收的基本定律 ---- 朗伯 - 比尔定律

 把 I0 当作入射光, I0 = Ia + It

吸光溶液: I’0 = Ia + It + Ir

定义:透光度:0

tIT

I

通常用 I 表示透光度越大,溶液对光的吸收越小

1 、朗伯 - 比尔定律

I’0 I0

b

Ir反射光

空白溶液: I’0 = I0 + Ir

Page 13: 第 10 章 吸光光度法 ( Absorption Photometry )

13

朗伯定律 :(1760) A=lg(I0/It)=k1b

当入射光的 , 吸光物质的 c 一定时 , 溶液的吸光度 A

与液层厚度 b 成正比 .

比尔定律 (1852) A=lg(I0/It)=k2c

当入射光的 , 液层厚度 b 一定时 , 溶液的吸光度 A

与吸光物质的 c 成正比 .

吸光度: 0lg lgt

IA T

I

Page 14: 第 10 章 吸光光度法 ( Absorption Photometry )

14

朗伯 - 比尔定律

意义 :当一束平行单色光通过均匀、透明的吸光介质时,

其吸光度与吸光质点的浓度和吸收层厚度的乘积成正比 .

A=lg(I0/It)=Kbc

K :常数,与吸光物质性质、入射光波长和温 度等因素有关

光吸收具有加和性 .A = A1 + A2 +

Page 15: 第 10 章 吸光光度法 ( Absorption Photometry )

15

K 吸光系数 Absorptivity

a 的单位 : L·g-1·cm-1

当 c 的单位用 g·L-1 表示时,用 a 表示,

A = a b c

的单位 : L·mol-1·cm-1

当 c 的单位用 mol·L-1 表示时,用 表示 .

-摩尔吸光系数 Molar Absorptivity

A = b c

2 、摩尔吸光系数和桑德尔灵敏度

a :表示每升 1 g 物质,液层厚度为 1 cm 时溶液的吸光度

:表示物质的量浓度为 1mol/L ,液层厚度为 1cm 时溶液的吸光度越大,物质对光的吸收程度越大, 最大时的吸收波长即 λmax ,此时测定灵敏度最高。  问:如何测 ?

Page 16: 第 10 章 吸光光度法 ( Absorption Photometry )

16

一般情况

< 104

~ 104 ~105

> 105

低灵敏度中等灵敏度高灵敏度

实际测得的是实际测得的是条件摩尔吸收系数, 条件摩尔吸收系数, ′′实际测定实际测定 2Fe

bCA

333

Fe2+ 3N N

+N N

Fe

2+

桔红色 508邻二氮菲

=1.1 104

Page 17: 第 10 章 吸光光度法 ( Absorption Photometry )

17

Sandell( 桑德尔 ) 灵敏度 (S)

定义:当仪器的检测限 A=0.001 时 , 截面积为 1cm2 的液层内 所能检出的物质的最低含量。 用 S 表示,单位: g·cm-2

S 与 关系 MS

S 小,灵敏度高 ; 相同的物质, M 小,则灵敏度高 .

Page 18: 第 10 章 吸光光度法 ( Absorption Photometry )

18

单光束、单波长可见: 72 、 721 、 722 、 723 、 724

紫外 - 可见: 751G 、 754

双光束、双波长

10.2 分光光度计及吸收光谱

10.2.1 分光光度计

Page 19: 第 10 章 吸光光度法 ( Absorption Photometry )

19

单波长单光束分光光度计

0.575

光源光源 单色器单色器

吸收池吸收池

检测器检测器 显示显示

Page 20: 第 10 章 吸光光度法 ( Absorption Photometry )

20

主要部件

光源:发出所需波长范围内的连续光谱,有足够的光强度 ,

稳定

可见光区:钨灯,碘钨灯 (320 ~ 2500nm)

紫外区:氢灯,氘灯 (180 ~ 375nm)

Page 21: 第 10 章 吸光光度法 ( Absorption Photometry )

21

单色器:将光源发出的连续光谱分解为单色光的装置。

棱镜:依据不同波长光通过棱镜时折射率不同 .

玻璃 350 ~ 3200nm, 石英 185 ~ 4000 nm

问:玻璃能用于紫外区吗?

• 光栅:在镀铝的玻璃表面刻有数量很大的等宽度等间距条痕 (600 、 1200 、 2400 条 /mm ) 。

• 利用光通过光栅时发生衍射和干涉现象而分光。

波长范围宽 , 色散均匀 ,分辨性能好 , 使用方便 .

Page 22: 第 10 章 吸光光度法 ( Absorption Photometry )

22

吸收池 ( 比色皿 ) :用于盛待测及参比溶液。 可见光区:光学玻璃池 紫外区:石英池

问:紫外区能用玻璃吗?

显示装置(指示器):记录 A或T

低档仪器:刻度显示

中高档仪器:数字显示,自动扫描记录

检测器:利用光电效应,将光能转换成电流讯号。

光电管,光电倍增管

Page 23: 第 10 章 吸光光度法 ( Absorption Photometry )

23

 任何一种溶液.对不同波长的光的吸收程度是不相等的。如果将不同波长的单色光依次通过一定浓度的某一溶液,测量该溶液对各种单色光的吸收程度,以波长为横坐标,以吸光度为纵坐标可以得到一条曲线,叫做吸收光谱或吸收曲线。它清楚地描述了溶液对不同波长的光的吸收情况。 

10.2.2 吸收光谱

Page 24: 第 10 章 吸光光度法 ( Absorption Photometry )

24

Cr2O72- 、 MnO4

- 的吸收光谱

300 400 500 600 700 /nm350

525 545

Cr2O72- MnO4

-

1.0

0.8

0.6

0.4

0.2

Ab

sorb

anc

e

350

光吸收曲线

Page 25: 第 10 章 吸光光度法 ( Absorption Photometry )

25

不同物质吸收光谱的形状以及 max 不同

—— 定性分析的基础例如: KMnO4 溶液的光吸收曲线, λmax = 525nm ,如果浓

度改变,吸光度改变,但吸收曲线形状不变,如下页

同一物质,浓度不同时,吸收光谱的形状相同, Amax 不同

—— 定量分析的基础

Page 26: 第 10 章 吸光光度法 ( Absorption Photometry )

26

Page 27: 第 10 章 吸光光度法 ( Absorption Photometry )

27

选择适当的参比溶液

原则:原则: 扣除非待测组分的吸收扣除非待测组分的吸收

以显色反应为例进行讨论以显色反应为例进行讨论 M + R = M + R = M-R M-R maxmax

试液试液 显色剂 溶剂 吸光物质 参比液组成 显色剂 溶剂 吸光物质 参比液组成无吸收无吸收 无吸收无吸收 光

学透明

光学透明

溶剂溶剂基质吸收基质吸收 无吸收无吸收 吸收吸收 不加显色剂的试液不加显色剂的试液无吸收无吸收 吸收吸收 吸收吸收 显色剂显色剂基质吸收基质吸收 吸收吸收 吸收吸收

吸收吸收

显色剂 显色剂 + + 试液 试液 + + 待测组分的掩蔽剂待测组分的掩蔽剂

若欲测 若欲测 M-R M-R 的吸收的吸收 maxmax

A A (样) (样) = A = A (待测吸光物质)(待测吸光物质) + A + A (干扰)(干扰) + A + A (池)(池)A A (参比)(参比) = A = A (干扰)(干扰) + A + A (池)(池)

Page 28: 第 10 章 吸光光度法 ( Absorption Photometry )

28

10.3 显色反应及其影响因素

10.3.1 显色反应和显色剂

显色反应:将待测组分转变成可测量的有色化合物的反

应,叫显色反应。

显色剂: 与待测组分形成有色化合物的试剂称显色剂。

Page 29: 第 10 章 吸光光度法 ( Absorption Photometry )

29

( 1 ) 显色反应的选择A 选择性好,干扰少,或干扰容易消除 ; 灵敏度高,有色物

质的 ε 应大于 104 。

B 有色化合物的组成恒定,符合一定的化学式。

C 有色化合物的化学性质稳定,至少保证在测量过程中溶液的吸光度基本恒定。这就要求有色化合物不容易受外界环境条件的影响。

D 有色化合物与显色剂之间的颜色差别要大,即显色剂对光的吸收与络合物的吸收有明显区别,要求两者的吸收峰波长之差 Δλ(称为对比度 )大于 60 nm 。

Page 30: 第 10 章 吸光光度法 ( Absorption Photometry )

30

( 2 )显色剂

无机显色剂不多,因为生成的络合物不稳定,灵敏度和选择性也不高。如用 KSCN 显色测铁、钼、钨和铌;用钼酸铵显色测硅、磷和钒 ; 用 H2O2 显色测钛等。

有机显色剂分子中含有生色团( chromophoric

group )和助色团( auxochrome group )。生色团是某些含不饱和键的基团,如偶氮基、对醌基和羰基等。这些基团中的π 电子被激发时需能量较小,可吸收波长 200 nm以上的可见光而显色。助色团是含孤对电子的基团,如氨基、羟基和卤代基等。这些基团与生色团上的不饱和键作用,使颜色加深。

Page 31: 第 10 章 吸光光度法 ( Absorption Photometry )

31

有机显色剂

A 磺基水杨酸 OO型螯合剂,可与很多高价金属离子生成稳定的螯合物,主要用于测 Fe3+ 。

B 丁二酮肟 NN型螯合显色剂,用于测定 Ni2+ 。

C 1 , 10- 邻二氮菲 NN型螯合显色剂,测微量 Fe2+ 。

D 二苯硫腙 含 S 显色剂,萃取光度测定 Cu2+ , Pb2+ , Zn2+ ,Cd2+ , Hg2+ 等。

E 偶氮胂Ⅲ (铀试剂Ⅲ ) 偶氮类螯合剂,强酸性溶液中测 Th

( ),Zr( )Ⅳ Ⅳ , U( )Ⅳ 等;在弱酸性溶液中测稀土金属离子。

F 铬天青 S 三苯甲烷类显色剂,测定 Al3+ 。

G 结晶紫 三苯甲烷类碱性染料,测定 Tl3+ 。

Page 32: 第 10 章 吸光光度法 ( Absorption Photometry )

32

( 3 )多元络合物

多元络合物是由三种或三种以上的组分所形成的络合物。目前应用较多的是由一种金属离子与两种配位体所组成的三元络合物。三元络合物在吸光光度分析中应用较普遍。重要的三元络合物类型。

* 三元混配络合物 金属离子与一种络合剂形成未饱和络合物,然后与另一种络合剂结合,形成三元混合配位络合物,简称三元混配络合物。例如, V(V) , H2O2 和吡啶偶氮间苯二酚 (PAR) 形成 1:1:1 的有色络合物,可用于钒的测定,其灵敏度高,选择性好。

Page 33: 第 10 章 吸光光度法 ( Absorption Photometry )

33

* 离子缔合物 金属离子先与络合剂生成络阴离子或络阳离子,再与带反电荷的离子生成离子缔合物。主要用于萃取光度法。 如, Ag+ 与 1 , 10- 邻二氮菲形成阳离子,再与溴邻苯三酚红的阴离子形成深蓝色的离子缔合物。用 F- 、 H2O2 、 EDTA 作掩蔽剂,可测定微量 Ag+ 。

作为离子缔合物的阳离子,有碱性染料、 1 , 10- 邻二氮菲及其衍生物、安替比林及其衍生物、氯化四苯砷(或磷、锑 ) 等 ; 作为阴离子,有 X- , SCN- , ClO4

- ,无机杂多酸和某些酸性染料等。

Page 34: 第 10 章 吸光光度法 ( Absorption Photometry )

34

* 金属离子 -络合剂 - 表面活性剂体系 金属离子与显色剂反应时,加入某些表面活性剂,可以形成胶束化合物,它们的吸收峰向长波方向移动 ( 红移 ) ,而测定的灵敏度显著提高。目前,常用于这类反应的表面活性剂有溴化十六烷基吡啶、氯化十四烷基二甲基苄胺、氯化十六烷基三甲基铵、溴化十六烷基三甲基铵 、溴化羟基十二烷基三甲基铵、 OP

乳化剂。例如,稀土元素、二甲酚橙及溴化十六烷基吡啶反应,生成三元络合物,在 pH 8~9 时呈蓝紫色,用于痕量稀土元素总量的测定。

Page 35: 第 10 章 吸光光度法 ( Absorption Photometry )

35

* 杂多酸 溶液在酸性的条件下,过量的钼酸盐与磷酸盐、硅酸盐、砷酸盐等含氧的阴离子作用生成杂多酸,作为吸光光度法测定相应的磷、硅、砷等元素的基础。杂多酸法需要还原反应的酸度范围较窄,必须严格控制反应条件。很多还原剂都可应用于杂多酸法中。氯化亚锡及某些有机还原剂,例1-氨基 -2-萘酚 -4-磺酸加亚硫酸盐和氢醌常用于磷的测定。硫酸肼在煮沸溶液中作砷钼酸盐和磷钼酸盐的还原剂。抗坏血酸也是较好的还原剂。

Page 36: 第 10 章 吸光光度法 ( Absorption Photometry )

36

10.3.2 影响显色反应的因素

1. 溶液的酸度

(1)酸度低,金属离子水解

(2) 酸度影响显色剂的浓度和颜色

(3)酸度影响络合物的组成和颜色

2 、显色剂用量

3. 显色时间和温度

4. 溶剂 ( 1 )溶剂影响络合物的离解度 ( 2 )溶剂影响显色反应的速度

Page 37: 第 10 章 吸光光度法 ( Absorption Photometry )

37

10.4.1  测定波长的选择和标准曲线的绘制1 、测定波长的选择 

515 655 415 500

钍 -偶氮砷 III

钴 -亚硝基红盐 A A

络合物 络合物试剂

试剂

/nm /nm

最大吸收原则: 选 λmax 的光作入射光。此时,灵敏度较高,测定时偏离朗伯 - 比耳定律的程度减小,其准确度也较好。 “ 吸收最大、干扰最小”的原则:当有干扰物质存在时,应据此来选择入射光的波长。

10.4  吸光光度分析及误差控制

Page 38: 第 10 章 吸光光度法 ( Absorption Photometry )

38

根据 A = εbc

作 A ~ C 曲线从工作曲线上查浓度

A

Ax

C

2. 标准曲线的制作

1 2

3

1 、 3 不通过原点,主要原因有:   A 、参比溶液选择不当   B 、吸收池厚度不等   C 、吸收池表面不清洁

Page 39: 第 10 章 吸光光度法 ( Absorption Photometry )

39

10.4.2 对朗伯 - 比耳定律的偏离

A = εbc

Page 40: 第 10 章 吸光光度法 ( Absorption Photometry )

40

1. 单色光不纯所引起的偏离

避免方法:选最大吸收波长处, 使用分光效能高的单色器

A

C

A

λλ1 λ2

λ1

λ2

λ1 处无偏差

Page 41: 第 10 章 吸光光度法 ( Absorption Photometry )

41

2.介质不均匀性引起的偏离

朗伯 - 比耳定律是建立在均匀、非散射基础上的一般规律 ,如果介质不均匀,呈胶体、乳浊、悬浮状态存在,则入射光除了被吸收之外、还会有反射、散射作用。在这种情况下,物质的吸光度比实际的吸光度大得多,必然要导致对朗伯 - 比耳定律的偏离。

Page 42: 第 10 章 吸光光度法 ( Absorption Photometry )

42

3. 由于溶液本身的化学反应引起的偏离 溶液中吸光物质常因解离、缔合、形成新的化合物或在光照射下发生互变异构等,从而破坏了平衡浓度与分析浓度之间的比例关系,也就破坏了吸光度 A 与分析浓度之间的线性关系。产生对朗伯 - 比耳定律的偏离。

例: K2Cr2O7   λmax=450nm

稀释,离解度增大,吸光度降低实际测定时:可控制强酸性测 Cr2O7

2-

         或控制强碱性测 CrO42-

242

272 2 CrOHOHOCr

Page 43: 第 10 章 吸光光度法 ( Absorption Photometry )

43

4. 显色反应的干扰及其消除

• 试样中存在干扰物质会影响被测组分的测定 ,使得标准曲线严重偏离朗伯 -比尔定律 ,这是造成光度分析误差的重要原因 .例干扰物质本身有颜色或与显色剂反应 ,在测量条件下也有吸收 ,造成干扰 .干扰物质与待测组分反应或与显色剂反应 ,使显色反应不完全 ,也会造成干扰 .

干扰物质在测量条件下从溶液中析出 ,使溶液变混浊 ,无法准确测定溶液的吸光度 .

Page 44: 第 10 章 吸光光度法 ( Absorption Photometry )

44

• 消除干扰的方法主要有以下几种:消除干扰的方法主要有以下几种:• ( 1 )控制酸度•  许多显色剂是有机弱酸,控制溶液的酸度,就可以控制显色剂 R 的浓度,这样就可以使某种金属离子显色,使另外一些金属离子不能生成有色络合物。•( 2 )加入掩蔽剂• 在显色溶液里加一种能与干扰离子反应生成无色络合物的试剂,也是消除干扰的有效而常用的方法。• (3) 改变干扰离子的价态以消除于扰。•( 4 )选择合适的参比溶液 .

•( 5 )增加显色剂的用量

•( 6 ) 分离干扰离子

Page 45: 第 10 章 吸光光度法 ( Absorption Photometry )

45

10.4.3  吸光度测量的误差  由于仪器精度不够,光源不稳、检测器、读数不准,实验条件偶然变动等引起的误差,这些误差,都反映到读数误差ΔT  ΔT(绝对误差):与 T本身的大小无关,对于一台给定仪器它基本上是常数,一般在 0.002-0.01 之间,仅与仪器自身的精度有关。

0 10T%

90   100

A 01.0∞

读数标尺

T :分布均匀, A=εbc ,

当 T 不同时, ΔA非常数,∴ ΔC非常数

Page 46: 第 10 章 吸光光度法 ( Absorption Photometry )

46

d d=

c A

c A

rd dA d

= 100% = 100% = 100%ln

c TE

c A T T

A = - lgT = - 0.434lnT

测量误差公式推导 :

r1

= 100% = %ln ln

TE

T T T T

dA d=

ln

T

A T T

bcA dA = - 0.434dT/T

若: dT= ΔT =±0.01 ,则:

A b c

由于 T 与浓度 c 不是线性关系,故不同浓度时的仪器读数误差 ΔT 引起的测量误差 Δc/c 不同。

Page 47: 第 10 章 吸光光度法 ( Absorption Photometry )

47

可绘制∣ Er∣~ T 曲线

T lgT 最大时,即 (TlgT) ′= 0 时误差最小 ,

算得 lgT= - 0.434 , T=36.8% , A = 0.434

适宜测量范围: T : 0.15 ~ 0.65

        A : 0.80 ~ 0.20

工作中可控制  A : 0.90 ~ 0.10

通过使用不同厚度的比色皿

r1

= 100% = %ln ln

TE

T T T T

由 

10

8

6

4

2

0 20 40 60 800.7 0.4 0.2 0.1 A

T/%

Er

r0.434

lg

( 0.01)

c TE

c T T

T

(36.8)

0.434

Page 48: 第 10 章 吸光光度法 ( Absorption Photometry )

48

Page 49: 第 10 章 吸光光度法 ( Absorption Photometry )

49

10.5.1 目视比色法

标准系列

未知样品

特点

利用自然光

比较吸收光的互补色光

准确度低(半定量)

不可分辨多组分

方法简便,灵敏度高

10.5 其它吸光光度法

Page 50: 第 10 章 吸光光度法 ( Absorption Photometry )

50

10.5.2 示差吸光光度法  分光光度法可用于测量微量组分,控制 A 在 0.1 ~ 1.0 之间,若浓度过大,即使不偏离比尔定律,但会使 A > 1.0 ,无法测定。所以可采用示差法。示差法可分三种:  高浓度示差法(常用)  低浓度示差法  极限精密法

Page 51: 第 10 章 吸光光度法 ( Absorption Photometry )

51

1 、示差法原理      被测物浓度设:空白液    0

  标液     C0

  待测液    Cx   ( Cx>C0, 但与 C0 接近)以空白液作参比: A0 = b c0

       Ax = b cx

△A = Ax-A0 = b (cx-c0)= b c△

以标液作参比,调 A0 = 0 ,(相当于把 C0 的浓度当作 0 )

A 相对= △ A= b c 相对

若已知 b ,示差法测 A ,求浓度: Cx = Cs + △ C

Page 52: 第 10 章 吸光光度法 ( Absorption Photometry )

52

示差法提高准确度的实质:扩展了读数标尺。

常规法常规法Tx

T0 5 10 50 100

落在测量误差较大的范围

示差法示差法 T0 5 10 50 100

Tx Ts

Ts

落在测量误差较小的范围

结论:示差法通过提高测量的准确度提高了方法的准确度

Page 53: 第 10 章 吸光光度法 ( Absorption Photometry )

53

10.5.3 10.5.3 双波长光度分析法双波长光度分析法

1 、双波长原理

切光器使两个波长的光交替照射到吸收池上设 λ1 、 λ2 处两束光强度相等,

Aλ1 =  λ1 b c    Aλ2 =  λ2 b c

△A=A λ1 -A λ2 = (   λ1 - λ2 ) bc

△A C∝

光源

单色器

单色器

检测器

吸收池λ1

λ2

切光器

Page 54: 第 10 章 吸光光度法 ( Absorption Photometry )

54

2 、应用

A 、可测混浊液  只一个吸收池,当 λ1 与 λ2 相差不大时,混浊液对两束光散射

相同B 、单组分测定,用一个吸收池,消除了比色皿不一致产生的误差C 、可测吸收光谱重迭组分

Page 55: 第 10 章 吸光光度法 ( Absorption Photometry )

55

测 P :选 λ2 作参比,在 λ1 处测 A, Q在两处吸光度相等,相互抵消 A=(   λ1 - λ2 ) bc

Page 56: 第 10 章 吸光光度法 ( Absorption Photometry )

56

测定苯酚 (X) 与 2 , 4 ,6-三氯苯酚 (Y) 混合物中的苯酚时就可用这种方法。当选择 λ

2 为测量波长,三氯苯酚在此波长处也有较大吸收,产生干扰。选择波长 λ1或 λ1′ (等吸收点)作为参比波长,则可以消除三氯苯酚对苯酚测定的干扰。

Page 57: 第 10 章 吸光光度法 ( Absorption Photometry )

57

10.5.4 导数光度分析法

目的:提高分辨率 去除背景干扰 原理: dnA/dn ~

Page 58: 第 10 章 吸光光度法 ( Absorption Photometry )

58

10.6 吸光光度法的应用

痕量金属分析

临床分析

食品分析

其它应用

Page 59: 第 10 章 吸光光度法 ( Absorption Photometry )

59

1. 弱酸 (碱 )离解常数的测定

  设有一元弱酸 HB ,按下式离解:

配三个标液,浓度都为 CHB ,设 b=1 ,分别测吸光度

(1)HBHB HB HB HB

HB

AA C

C 1 、高酸度

2 、高碱度 (2)BB HB BB

HB

AA C

C

][

]][[

HB

BHKa

][

][lg

B

HBpHpKa

BHHB

3 、 pH 一定,接近 pKa

[ ] ( [ ]) (3)HB HBBA HB C HB

[ ] [ ] (4)HB HB BA C B B

或  ( )

R

A

HR R

HR

Page 60: 第 10 章 吸光光度法 ( Absorption Photometry )

60

[ ] (5)HBB

HB B

A CHB

由(3)式: 

[ ] (6)HB HB

HB B

A CB

由(4)式: 

[ ](7)

[ ]HBB

HB HB

A CHB

B C A

(5)/ (6): 

[ ](8)

[ ]B

HB

A AHB

B A A

(1)(2)代入(7): 

Page 61: 第 10 章 吸光光度法 ( Absorption Photometry )

61

l (9)g B

HB

A ApKa p

AH

A

由上式可计算 PKa

lg或作  ~ 图HB

B

A A

ApH

A

g 0当l 时,HB

B

A A

AH pKa

Ap

HRi

iR

AAAA

lg

pH

Page 62: 第 10 章 吸光光度法 ( Absorption Photometry )

62

2. 络合物组成的测定

(1). 摩尔比法(饱和法) : 固定 cM ,改变 cR

1:1 3:1

c(R)/c(M)

A

1.0 2.0 3,0

Page 63: 第 10 章 吸光光度法 ( Absorption Photometry )

63

(2). 等摩尔连续变化法 :

M R总浓度不变:c c c

M:R=1:1

0.50.33

cM/ccM/c

M:R=1:2

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

nMRnRM

Page 64: 第 10 章 吸光光度法 ( Absorption Photometry )

64

补充: 多组分的测定

a) 在 1处测组分 x, 在 2处测组分 y.

Page 65: 第 10 章 吸光光度法 ( Absorption Photometry )

65

b) 在 1处测组分 x; 在 2处测总吸收 ,扣除 x 吸收 ,

可求 y.

Page 66: 第 10 章 吸光光度法 ( Absorption Photometry )

66

x1, y

1, x2, y

2

由 x,y标液在 1, 2处分别测得 .

c) x,y 组分不能直接测定

A1=x1bcx+ y

1bcy ( 在 1处测得 A1)

A2 =x2bcx+ y

2bcy ( 在 2处测得 A2)联立求方程