7
CopyrightKROS 착용형 전동 목발 제어시스템 183 ` Journal of Korea Robotics Society (2014) 9(3):183-189 http://dx.doi.org/10.7746/jkros.2014.9.3.183 ISSN: 1975-6291 / eISSN: 2287-3961 1. 서 인간의 보행은 일상생활을 유지하기 위한 가장 기본적 이동 수단이다. 이는 정상인 뿐만 아니라 신체가 손상 사람에게도 중요한 목표가 되고 있다 . 최근 교통사고 , 산업재해 , 스포츠 레저 활동으로 인한 각종 사고가 번해지고 의학의 발달로 인하여 사회가 노령화 되면서 , 람의 신체가 손상될 가능성이 증가하고 있다 [1] . 이에 따라 사람의 손상된 신체부위를 보완하고 일상 생활을 수행하 능력과 재활능력을 제고시키는 보행 보조기에 대한 심이 높아지고 있으며 [2], 휠체어, 전동스쿠터, 보행기 등의 다양한 보행 보조기가 상용화되어 있다 . 또한 척추손상 고관절 이하의 근력을 보조하는 외골격 타입의 로봇 [3][4] , 인공근육을 이용하여 족하수 (Foot Drop) 방지하고 정상 보행을 가능하게 하는 능동형 하지 보조기(Ankle Foot Orthosis, AFO) [5] , 슬관절의 재활 보행을 돕는 보조기 [6] 등과 같은 로봇 기술을 적용하여 환자의 편의를 도모하기 위한 연구가 활발히 진행되고 있다. 그러나 이러한 연구 대상은 하지의 골절, 염좌 등의 상해로 인한 깁스 환자 에게는 적합하지 않다. 이러한 환자들의 대부분은 부분 중지지 (Partial Weight-Bearing, PWB) 조절능력이 뛰어난 발을 사용하게 된다 [7] . 목발(Crutch) 지팡이 ( 전체 보행 보조기 19.4% 점유 ) 척추 상·하지 보조기( 전체 보행 보조기 10.5%) 다음으로 가장 많이 사용되는 ( 전체 보행 보조기 목발 9.1% 점유) 보행 보조기이다 [8], 종래기술에 따른 수동형 목발의 종류에는 겨드랑이와 손잡이에 기대어 몸을 지탱 하는 표준형 액와( 겨드랑이 ) 목발, 상지 주관절 이하에 비된 전완 커브와 손잡이를 이용한 로프스트랜드(Lofstrand) 목발 등이 있다 [9] . , 액와 목발은 대표적인 목발의 Received : Jul. 18. 2014; Reviewed : Jul. 30. 2014; Accepted : Aug. 13. 2014 ※ 이 논문은 한국연구재단의 <실감교류인체감응솔루션> 글로벌프 론티어사업 (NRF-2012M3A6A3057080), 일반연구자지원사업 (NRF-2013R1A1A2010192), BK21 플러스 사업(한양대학교 전시스템공학과 ICT 기반 의료로봇 시스템 사업팀)의 지원을 받수행되었음. 1 Electornic Systems Engineering, Hanyang University, Hanyangdaehak-ro 55, Sangnok-gu, Ansan, 426-791, S.Korea ([email protected]) 2 Electronic, Electrical, Control and Instrument Engineering, Hanyang University ([email protected]) Corresponding author: Electornic Systems Engineering, Hanyang University, Hanyangdaehak-ro 55, Sangnok-gu, Ansan, 426-791, S. ([email protected]) 착용형 전동 목발 제어시스템 Wearable and Motorized Crutch Control System 1 , 장 2 , 최 Dukchan Yoon 1 , Giho Jang 2 , Youngjin Choi Abstract This paper proposes a wearable and motorized crutch control system for the patients using the conventional crutches. The conventional crutches have a few disadvantages such as the inconvenience caused by the direct contact between the ground and the armpit of the patients, and unstable gait patterns. In order to resolve these problems, the motorized crutch is designed as a wearable type on an injured lower limb. In other words, the crutch makes the lower limb to be moved forward while supporting the body weight, protecting the lower limb with frames, and rotating a roller equipped on the bottom of the frames. Also the crutch is controlled using the electromyography and two force sensing resistor (FSR) sensors. The electromyography is used to extract the walking intention from the patient and the FSR sensors to classify the stance and swing phases while walking. As a result, the developed crutch makes the patients walk enabling both hands to be free, as if normal people do. Keywords: Crutch, electromyogram, rehabilitation, aid, gait, walking

착용형 전동 목발 제어시스템biorobotics.hanyang.ac.kr/_media/publication:2014:kros2014.pdf · 착용형 전동 목발 제어시스템 ß 183 o fm m ... 실감교류인체감응솔루션>

Embed Size (px)

Citation preview

  • CopyrightKROS

    183

    1.

    Journal of Korea Robotics Society (2014) 9(3):183-189http://dx.doi.org/10.7746/jkros.2014.9.3.183 ISSN: 1975-6291 / eISSN: 2287-3961

    1.

    .

    . ,

    ,

    ,

    [1].

    [2], , ,

    .

    [3][4],

    (Foot Drop)

    (Ankle Foot

    Orthosis, AFO)[5], [6]

    .

    ,

    .

    (Partial Weight-Bearing, PWB)

    [7].

    (Crutch) ( 19.4% )

    ( 10.5%)

    (

    9.1% ) [8],

    () ,

    (Lofstrand)

    [9]. ,

    Received : Jul. 18. 2014; Reviewed : Jul. 30. 2014; Accepted : Aug. 13. 2014

    (NRF-2012M3A6A3057080), (NRF-2013R1A1A2010192), BK21 ( ICT ) .

    1 Electornic Systems Engineering, Hanyang University, Hanyangdaehak-ro55, Sangnok-gu, Ansan, 426-791, S.Korea ([email protected])

    2 Electronic, Electrical, Control and Instrument Engineering, HanyangUniversity ([email protected])

    Corresponding author: Electornic Systems Engineering, HanyangUniversity, Hanyangdaehak-ro 55, Sangnok-gu, Ansan, 426-791, S.([email protected])

    Wearable and Motorized Crutch Control System

    1, 2,

    Dukchan Yoon1, Giho Jang2, Youngjin Choi

    Abstract This paper proposes a wearable and motorized crutch control system for the patients using the conventional crutches. The conventional crutches have a few disadvantages such as the inconvenience caused by the direct contact between the ground and the armpit of the patients, and unstable gait patterns. In order to resolve these problems, the motorized crutch is designed as a wearable type on an injured lower limb. In other words, the crutch makes the lower limb to be moved forward while supporting the body weight, protecting the lower limb with frames, and rotating a roller equipped on the bottom of the frames. Also the crutch is controlled using the electromyography and two force sensing resistor (FSR) sensors. The electromyography is used to extract the walking intention from the patient and the FSR sensors to classify the stance and swing phases while walking. As a result, the developed crutch makes the patients walk enabling both hands to be free, as if normal people do.

    Keywords: Crutch, electromyogram, rehabilitation, aid, gait, walking

  • 184 9 3(2014. 9)

    [10].

    (

    Artery)

    ,

    ,

    .

    ,

    .

    2

    2.

    (Stance Phase)

    (Brachial Plexus

    (Flexion)

    .

    .

    [12]

    2

    . 3.1

    . 3.2

    .

    .

    ) (Swi

    s Injuries)

    [11],

    )

    ].

    (Motoriz

    ,

    ,

    1 2

    .

    ing Phase)

    (Armpi

    1

    .

    zed Crutch)

    ,

    . 4

    5

    .

    it

    .

    [13].

    (E

    .

    (Te

    (Termin

    (Initial Conta

    Extension)

    .

    (Planta

    (Mid Sta

    .

    erminal Stance)

    nal Swing)

    [

    Fig. 1.

    Fig. 2. Actions o

    act)

    (Loading

    ar Flexion)

    -(Pr

    ance)

    .

    13]. 2

    Eight steps of ga

    of three functiona

    . 1

    (Flexion)

    Response)

    (Forefoot)

    .

    re-Swing)

    (Mid Swi

    .

    ,

    .

    ait[13]

    al rockers[13]

    .

    ing)

  • 185

    Fig.

    (Rocker)

    ,

    .

    .

    .

    Phase)

    (Stopper)

    3.1

    3. Gait steps wit

    ,

    .

    .

    3.

    .

    ,

    th the motorized

    ,

    -

    .

    ,

    crutch

    .

    (Rolling

    3

    .

    .

    g

    (Roller)

    .

    (Swin

    .

    F

    4

    (Thig

    (Timing Pull

    ) .

    (Pusher)

    ,

    5

    ng)

    ,

    !

    Fig. 4. Kinematic m

    .

    (Driver),

    gh Holder)

    .

    ley and Belt)

    .

    .

    .

    .

    !!

    .

    model of the mot

    .

    (Support Fix

    .

    .

    .

    .

    .

    ,

    torized crutch

    xture),

    !

  • 186 9 3(2014. 9)

    Fig. 5. Operation of the motorized crutch according to the gait

    3.2

    .

    ~[uV]

    .

    [14].

    ,

    . 6

    (Muscles of Anterior Thigh)

    (Sartorius)

    [15].

    Ag/AgCl .

    , 5[Hz] (Cutoff

    Frequency) (High Pass Filter, HPF)

    DC ,

    (Envelope) 300 RMS

    (Root Mean Squares) . 7

    Fig. 6. Sartorius muscle for acquisition of walking intention

    [13]

    Fig. 7. HPF application of raw EMG

    Fig. 8. RMS application of HP Filtered EMG

    8 HPF RMS

    ,

    .

    3.3

    9

    (Force Sensing Resistor, FSR)

    . 10

    .

    1

    .

    ,

    . Rolling

    , Stop , None

    .

    .

    ,

    Fig 9. Design of stopper

    0 1 2 3 4 5-200

    -100

    0

    100

    200

    Time [s]

    Am

    plitu

    de [

    mV

    ]

    0 2 4 6 8 100

    20

    40

    60

    Time [s]

    Am

    plitu

    de [

    mV

    ]

  • 187

    Fig. 10

    Table. 1. Gait st

    EMG (Rear) FSR ( Front) FSR Status

    11

    3D

    ,

    ,

    . 12

    .

    0. Gait logic diag

    tatus (Logic Event

    Ro0 0 1

    None

    .

    4.

    f-h

    D

    .

    2.e

    13.C

    .

    ,

    ram using EMG a

    t) using EMG and

    olling Phase 1 0 X

    Rolling

    .

    .

    .

    30

    .

    ,

    A, B, C

    13.B

    12.a

    .

    13.A

    13.D

    and FSR

    d FSR

    Stance PhaseX 1 X

    Stop

    .

    12

    a-e

    . 13

    .

    12.b~d

    3

    d

    Fig. 1

    12.f

    .

    .

    .

    11. Appearance o

    Fig. 12. Snapsh

    f~h

    ,

    .

    .

    ,

    ,

    of the developed

    hots during the e

    5.

    .

    motorized crutch

    experiment

    ,

    .

    h

  • 188 9 3(2014. 9)

    .

    .

    .

    (Polylactic acid: PLA)

    .

    (Gear Ratio) .

    . ,

    (Worm Gear)

    .

    .

    [1] Y. E. Kim and E. S. Jeon, Analysis of muscle force

    variation in the lower extremity, The Korean Society of Mechanical Engineers, vol. 1, no. 1, pp. 251-267, 2000.

    [2] H. S. Park, and D. M. Ok, Ergonomic analysis and design of an axilla crutch through QFD and discomfort experiments, Journal of the Ergonomics Society of Korea, vol. 27, no. 4, pp.103-108, 2000.

    [3] C. Chen, D. Zheng, A. Peng, C. Wang, and X. Wu, Flexible design of a wearable lower limb exoskeleton robot, Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 209-214, 2013.

    [4] D. Popov, K. H. Lee, I. Gaponov, J. H. Ryu, Twisted strings-based elbow exoskeleton, Journal of Korea Robotics Society, vol. 8, no. 3, pp. 164-172, 2013.

    [5] K. E. Gordon, G. S. Sawicki, and D. P. Ferris, Mechanical performance of artificial pneumatic muscles to power an anklefoot orthosis, Journal of Biomechanics, vol. 39, no. 10, pp. 1832-1841, 2006.

    [6] S. H. Lee, S. Y. Shin, J. W. Lee, C. H. Kim, Design of an 1 DOF assistive knee joint for a gait rehabilitation robot, Journal of Korea Robotics Society, vol. 8, no. 1, pp. 008-019, 2013.

    [7] S. Li, C. W. Armstrong, and D. Cipriani, Three-point gait crutch walking: variability in ground reaction force during weight bearing, Archives of physical Medicine and Rehabilitation, vol. 82, no.1, pp. 86-92, 2001.

    [8] S. J. Kwon, Assistive devices for the disabled in Korea:

    Fig. 13. Signals during the experiment, where A: EMG, B: (Rear) FSR, C: (Front) FSR, and D: Motor control

    0 2 4 6 8 10 12 14 16 18-1

    -0.5

    0

    Am

    plitu

    de [

    mV

    ]A. EMG

    HPF application of raw EMG

    RMS application of HPF

    0 2 4 6 8 10 12 14 16 180

    0.51

    Con

    trol

    Val

    ue

    B. (Rear) FSR

    0 2 4 6 8 10 12 14 16 180

    0.51

    Con

    trol

    Val

    ue

    C. (Front) FSR

    0 2 4 6 8 10 12 14 16 1805

    10x 10

    4

    Time [s]

    Con

    trol

    Val

    ue

    D. Motor

    Stance Phase Rolling Phase Stance Phase Rolling Phase

    References

    References

  • 189

    current statues and policy implications, Health-welfare Policy Forum, vol. 4, pp. 42-54, 2006.

    [9] G. S. Sim, and D. H. Song, Trends on the patent map of crutch technology, Journal of Korea Intellectual Patent Society, vol. 7, no. 2, pp. 17-21, 2005.

    [10] T. J. Park, O. C. Jeong, and S. H. Yang, Study on lower limb moment during axillary crutch gait according to changes in crutch length, The Korea Journal of Sports Science, vol. 22, no. 1, pp.1123-1132, 2013.

    [11] D. M. Bauer, D. C. Finch, K. P. Mcgough, C. J. Benson, K. Finstuen, and S. C. Allison, A comparative analysis of several crutch-length estimation techniques, Journal of the American Physical Therapy Association, vol. 71, pp. 294-300, 1991.

    [12] J. S. Kim, S. H. Lim, and Y. J. Shin, A study on crutched walking frame with one-wheel drive, Journal of Korean Society of Mechanical Technology, vol. 15, no.3, pp. 351-356, 2013.

    [13] J. Perry, Gait analysis: normal and pathology function, New Jersey, SLACK, 1992.

    [14] K. H. Cha, S. J. Kang, and Y. J. Choi, Knee-wearable robot system using EMG signals, Journal of Control, Robotics, and Systems, vol. 15, no.3, pp. 286-292, 2009.

    [15] P. K. Levangie, and C. C. Norkin, Joint structure and function: a comprehensive analysis 4th edition, F. A. Davis Company, pp.373-413, 2005.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice