Transcript
  • CopyrightKROS

    183

    1.

    Journal of Korea Robotics Society (2014) 9(3):183-189http://dx.doi.org/10.7746/jkros.2014.9.3.183 ISSN: 1975-6291 / eISSN: 2287-3961

    1.

    .

    . ,

    ,

    ,

    [1].

    [2], , ,

    .

    [3][4],

    (Foot Drop)

    (Ankle Foot

    Orthosis, AFO)[5], [6]

    .

    ,

    .

    (Partial Weight-Bearing, PWB)

    [7].

    (Crutch) ( 19.4% )

    ( 10.5%)

    (

    9.1% ) [8],

    () ,

    (Lofstrand)

    [9]. ,

    Received : Jul. 18. 2014; Reviewed : Jul. 30. 2014; Accepted : Aug. 13. 2014

    (NRF-2012M3A6A3057080), (NRF-2013R1A1A2010192), BK21 ( ICT ) .

    1 Electornic Systems Engineering, Hanyang University, Hanyangdaehak-ro55, Sangnok-gu, Ansan, 426-791, S.Korea ([email protected])

    2 Electronic, Electrical, Control and Instrument Engineering, HanyangUniversity ([email protected])

    Corresponding author: Electornic Systems Engineering, HanyangUniversity, Hanyangdaehak-ro 55, Sangnok-gu, Ansan, 426-791, S.([email protected])

    Wearable and Motorized Crutch Control System

    1, 2,

    Dukchan Yoon1, Giho Jang2, Youngjin Choi

    Abstract This paper proposes a wearable and motorized crutch control system for the patients using the conventional crutches. The conventional crutches have a few disadvantages such as the inconvenience caused by the direct contact between the ground and the armpit of the patients, and unstable gait patterns. In order to resolve these problems, the motorized crutch is designed as a wearable type on an injured lower limb. In other words, the crutch makes the lower limb to be moved forward while supporting the body weight, protecting the lower limb with frames, and rotating a roller equipped on the bottom of the frames. Also the crutch is controlled using the electromyography and two force sensing resistor (FSR) sensors. The electromyography is used to extract the walking intention from the patient and the FSR sensors to classify the stance and swing phases while walking. As a result, the developed crutch makes the patients walk enabling both hands to be free, as if normal people do.

    Keywords: Crutch, electromyogram, rehabilitation, aid, gait, walking

  • 184 9 3(2014. 9)

    [10].

    (

    Artery)

    ,

    ,

    .

    ,

    .

    2

    2.

    (Stance Phase)

    (Brachial Plexus

    (Flexion)

    .

    .

    [12]

    2

    . 3.1

    . 3.2

    .

    .

    ) (Swi

    s Injuries)

    [11],

    )

    ].

    (Motoriz

    ,

    ,

    1 2

    .

    ing Phase)

    (Armpi

    1

    .

    zed Crutch)

    ,

    . 4

    5

    .

    it

    .

    [13].

    (E

    .

    (Te

    (Termin

    (Initial Conta

    Extension)

    .

    (Planta

    (Mid Sta

    .

    erminal Stance)

    nal Swing)

    [

    Fig. 1.

    Fig. 2. Actions o

    act)

    (Loading

    ar Flexion)

    -(Pr

    ance)

    .

    13]. 2

    Eight steps of ga

    of three functiona

    . 1

    (Flexion)

    Response)

    (Forefoot)

    .

    re-Swing)

    (Mid Swi

    .

    ,

    .

    ait[13]

    al rockers[13]

    .

    ing)

  • 185

    Fig.

    (Rocker)

    ,

    .

    .

    .

    Phase)

    (Stopper)

    3.1

    3. Gait steps wit

    ,

    .

    .

    3.

    .

    ,

    th the motorized

    ,

    -

    .

    ,

    crutch

    .

    (Rolling

    3

    .

    .

    g

    (Roller)

    .

    (Swin

    .

    F

    4

    (Thig

    (Timing Pull

    ) .

    (Pusher)

    ,

    5

    ng)

    ,

    !

    Fig. 4. Kinematic m

    .

    (Driver),

    gh Holder)

    .

    ley and Belt)

    .

    .

    .

    .

    !!

    .

    model of the mot

    .

    (Support Fix

    .

    .

    .

    .

    .

    ,

    torized crutch

    xture),

    !

  • 186 9 3(2014. 9)

    Fig. 5. Operation of the motorized crutch according to the gait

    3.2

    .

    ~[uV]

    .

    [14].

    ,

    . 6

    (Muscles of Anterior Thigh)

    (Sartorius)

    [15].

    Ag/AgCl .

    , 5[Hz] (Cutoff

    Frequency) (High Pass Filter, HPF)

    DC ,

    (Envelope) 300 RMS

    (Root Mean Squares) . 7

    Fig. 6. Sartorius muscle for acquisition of walking intention

    [13]

    Fig. 7. HPF application of raw EMG

    Fig. 8. RMS application of HP Filtered EMG

    8 HPF RMS

    ,

    .

    3.3

    9

    (Force Sensing Resistor, FSR)

    . 10

    .

    1

    .

    ,

    . Rolling

    , Stop , None

    .

    .

    ,

    Fig 9. Design of stopper

    0 1 2 3 4 5-200

    -100

    0

    100

    200

    Time [s]

    Am

    plitu

    de [

    mV

    ]

    0 2 4 6 8 100

    20

    40

    60

    Time [s]

    Am

    plitu

    de [

    mV

    ]

  • 187

    Fig. 10

    Table. 1. Gait st

    EMG (Rear) FSR ( Front) FSR Status

    11

    3D

    ,

    ,

    . 12

    .

    0. Gait logic diag

    tatus (Logic Event

    Ro0 0 1

    None

    .

    4.

    f-h

    D

    .

    2.e

    13.C

    .

    ,

    ram using EMG a

    t) using EMG and

    olling Phase 1 0 X

    Rolling

    .

    .

    .

    30

    .

    ,

    A, B, C

    13.B

    12.a

    .

    13.A

    13.D

    and FSR

    d FSR

    Stance PhaseX 1 X

    Stop

    .

    12

    a-e

    . 13

    .

    12.b~d

    3

    d

    Fig. 1

    12.f

    .

    .

    .

    11. Appearance o

    Fig. 12. Snapsh

    f~h

    ,

    .

    .

    ,

    ,

    of the developed

    hots during the e

    5.

    .

    motorized crutch

    experiment

    ,

    .

    h

  • 188 9 3(2014. 9)

    .

    .

    .

    (Polylactic acid: PLA)

    .

    (Gear Ratio) .

    . ,

    (Worm Gear)

    .

    .

    [1] Y. E. Kim and E. S. Jeon, Analysis of muscle force

    variation in the lower extremity, The Korean Society of Mechanical Engineers, vol. 1, no. 1, pp. 251-267, 2000.

    [2] H. S. Park, and D. M. Ok, Ergonomic analysis and design of an axilla crutch through QFD and discomfort experiments, Journal of the Ergonomics Society of Korea, vol. 27, no. 4, pp.103-108, 2000.

    [3] C. Chen, D. Zheng, A. Peng, C. Wang, and X. Wu, Flexible design of a wearable lower limb exoskeleton robot, Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 209-214, 2013.

    [4] D. Popov, K. H. Lee, I. Gaponov, J. H. Ryu, Twisted strings-based elbow exoskeleton, Journal of Korea Robotics Society, vol. 8, no. 3, pp. 164-172, 2013.

    [5] K. E. Gordon, G. S. Sawicki, and D. P. Ferris, Mechanical performance of artificial pneumatic muscles to power an anklefoot orthosis, Journal of Biomechanics, vol. 39, no. 10, pp. 1832-1841, 2006.

    [6] S. H. Lee, S. Y. Shin, J. W. Lee, C. H. Kim, Design of an 1 DOF assistive knee joint for a gait rehabilitation robot, Journal of Korea Robotics Society, vol. 8, no. 1, pp. 008-019, 2013.

    [7] S. Li, C. W. Armstrong, and D. Cipriani, Three-point gait crutch walking: variability in ground reaction force during weight bearing, Archives of physical Medicine and Rehabilitation, vol. 82, no.1, pp. 86-92, 2001.

    [8] S. J. Kwon, Assistive devices for the disabled in Korea:

    Fig. 13. Signals during the experiment, where A: EMG, B: (Rear) FSR, C: (Front) FSR, and D: Motor control

    0 2 4 6 8 10 12 14 16 18-1

    -0.5

    0

    Am

    plitu

    de [

    mV

    ]A. EMG

    HPF application of raw EMG

    RMS application of HPF

    0 2 4 6 8 10 12 14 16 180

    0.51

    Con

    trol

    Val

    ue

    B. (Rear) FSR

    0 2 4 6 8 10 12 14 16 180

    0.51

    Con

    trol

    Val

    ue

    C. (Front) FSR

    0 2 4 6 8 10 12 14 16 1805

    10x 10

    4

    Time [s]

    Con

    trol

    Val

    ue

    D. Motor

    Stance Phase Rolling Phase Stance Phase Rolling Phase

    References

    References

  • 189

    current statues and policy implications, Health-welfare Policy Forum, vol. 4, pp. 42-54, 2006.

    [9] G. S. Sim, and D. H. Song, Trends on the patent map of crutch technology, Journal of Korea Intellectual Patent Society, vol. 7, no. 2, pp. 17-21, 2005.

    [10] T. J. Park, O. C. Jeong, and S. H. Yang, Study on lower limb moment during axillary crutch gait according to changes in crutch length, The Korea Journal of Sports Science, vol. 22, no. 1, pp.1123-1132, 2013.

    [11] D. M. Bauer, D. C. Finch, K. P. Mcgough, C. J. Benson, K. Finstuen, and S. C. Allison, A comparative analysis of several crutch-length estimation techniques, Journal of the American Physical Therapy Association, vol. 71, pp. 294-300, 1991.

    [12] J. S. Kim, S. H. Lim, and Y. J. Shin, A study on crutched walking frame with one-wheel drive, Journal of Korean Society of Mechanical Technology, vol. 15, no.3, pp. 351-356, 2013.

    [13] J. Perry, Gait analysis: normal and pathology function, New Jersey, SLACK, 1992.

    [14] K. H. Cha, S. J. Kang, and Y. J. Choi, Knee-wearable robot system using EMG signals, Journal of Control, Robotics, and Systems, vol. 15, no.3, pp. 286-292, 2009.

    [15] P. K. Levangie, and C. C. Norkin, Joint structure and function: a comprehensive analysis 4th edition, F. A. Davis Company, pp.373-413, 2005.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice


Recommended