ЗАДАЧА ДИФРАКЦИИ ЭЛЕКТРОМАГНИТНЫХ ТЕ-ВОЛН НА НЕЛИНЕЙНОМ СЛОЕ

Embed Size (px)

Text of ЗАДАЧА ДИФРАКЦИИ ЭЛЕКТРОМАГНИТНЫХ ТЕ-ВОЛН НА...

  • 4 (24), 2012 - .

    73

    517.927, 519.624 . . , . .

    - 1

    . - , ; . . : , , TE-, . Abstract. The article considers a boundary diffraction problem of a TE wave on a nonlinear layer. The nonlinearity in the layer is described by Kerr law. A numerical method to solve the problem is suggested and proved. Results of numerical calcula-tions are given. Key words: Maxwells equations, diffraction problem, TE waves, Kerr nonlinearity.

    1.

    , -, , , 0x x h - Oxyz .

    1 0 , 3 0 , 0 -. , 1 0 , 3 0 , -, 1 , 3 . ,

    0 . [1]:

    , , , , , cos , , sinx y z t x y z t x y z t E E E ;

    , , , , , cos , , sinx y z t x y z t x y z t H H H , ; E , E , E , H , H , H .

    , ,x y zE , ,x y zH : i E E E , i H H H ,

    , , Tx y zE E EE , , , Tx y zH H HH ; T ;

    , ,x xE E x y z , , ,y yE E x y z , , ,z zE E x y z ,

    1 20092013 ., 14.37.21.1950, 14.A18.21.2054, 8860.

  • .

    74

    , ,x xH H x y z , , ,y yH H x y z , , ,z zH H x y z . cos t sin t . E , H

    rot ,rot ,

    ii

    H EE H

    (1)

    - 0x , x h : - x 0x x h . [2]

    22 E ,

    2 ; .

    . . 1 .

    0 x

    z

    h

    I

    R T

    1 3

    . 1.

    I ( ) , -

    R ( ) T ( ) - (. . 1).

    2. -

    TE-

    0, ,0 TyEE , ,0, Tx zH HH , , ,x xE E x y z , , ,z zE E x y z , , ,y yH H x y z .

  • 4 (24), 2012 - .

    75

    , E , H y [3]. , z , - z. , E , H

    E i zy yE x e , H i zx xH x e , H i zz zH x e , (2)

    . (2) (1),

    H H E ,

    E H ,

    E H .

    x z y

    y x

    y z

    i x x i x

    i x i x

    x i x

    2 2E E Ey y yx x x .

    2 2 0 0k ,

    0, , , jj

    d dx kx kdx dx k

    ( 1,2,3j ). : E yY x x . -

    ,

    2Y x Y x , (3)

    12

    2

    3

    , 0,

    , 0 ,, .

    x

    Y x hx h

    3.

    0x 1 . (3)

    2 1Y Y ,

    2 21 1

    1 2( )x xY x C e C e .

    2 21 1k , 1 :C R , 2 :C I .

    1 1k x k xY x Re Ie . (4) I , R

    .

  • .

    76

    2 1 0 , - , -, , , .

    x h 3 . (3)

    2 3Y Y ,

    2 2

    3 33 4

    x h x hY x C e C e .

    4 0C . 2 23 3k ,

    3 :C T ,

    1x h kY x Te , (5) T .

    , 0x , 2 3 0 .

    (4), (5) 2 1 3max , .

    2 22Y x Y x Y x . (6) 4.

    [4, 5], - .

    yE zH . y

    zE

    i Hx

    , , -

    yEx

    .

    Y Y :

    0 0xY , 0x hY ,

    0 0xY , 0x hY , (7)

    0 0 00 0

    lim limx x x x x xf f x f x

    0x x .

    0 0Y R I , 0Y h T ,

  • 4 (24), 2012 - .

    77

    10 0Y R I k , 30Y h Tk . (8) ( NL):

    R T Y x (6) , - (7), 0x x h - Y x (4), (5).

    5.

    (6) 0

    22Y k Y , (9)

    2 22 2 0k . (9)

    1 2 2 2cos sinY C k x C k x .

    0x , (7) (8) -

    1

    1 2 2

    ,,

    R I Ck R I k C

    (10)

    , 2C ,

    12 1 2C k k R I . x h (7) (8) -

    :

    1 2 2 23 2 1 2 2 2 2

    cos sin ,sin cos .

    T C k h C k hk T k C k h k C k h

    (11)

    (11) 1C 2C , (10), -

    12 1 2 2

    3 2 2 1 2

    cos sin ,

    sin cos .

    T R I k h k k R I k h

    k T k R I k h k R I k h

    (12)

    (12)

    1 12 1 2 2 2 1 2 2

    3 2 2 1 2 1 2 2 2

    cos sin cos sin ,

    sin cos cos sin .

    T R k h k k k h I k h k k k h

    k T R k k h k k h I k k h k k h

    (13)

    (13) ,

    1 13 2 1 2 2 3 2 1 2 2cos sin cos sink R k h k k k h k I k h k k k h

  • .

    78

    2 2 1 2 1 2 2 2sin cos cos sin .R k k h k k h I k k h k k h

    22 1 3 2 2 1 3 2

    22 1 3 2 2 3 1 2

    sin cos.

    sin cos

    k k k k h k k k k hR I

    k k k k h k k k k h

    (14)

    , R , (12)

    12 1 2 2cos sinT R I k h k k R I k h , (15)

    22 1 3 2 2 1 3 2

    222 1 3 2 2 3 1 2

    sin cos1 cos

    sin cos

    k k k k h k k k k hT I k h

    k k k k h k k k k h

    22 1 3 2 2 1 3 21

    222 2 1 3 2 2 3 1 2

    sin cos1 sin

    sin cos

    k k k k h k k k k hk I k hk k k k k h k k k k h

    .

    :

    1 2

    22 1 3 2 2 3 1 2

    2

    sin cos

    k k ITk k k k h k k k k h

    .

    1C 2C

    1 3 2 2 21 2

    2 1 3 2 2 3 1 2

    sin cos2

    sin cos

    k k k h k k hC I

    k k k k h k k k k h

    ;

    1 2 2 3 22 2

    2 1 3 2 2 3 1 2

    2 sin cos

    sin cos

    Ik k k h k k hC

    k k k k h k k k k h

    .

    ,

    22 1 3 2 2 1 3 2

    22 1 3 2 2 3 1 2

    1 222 1 3 2 2 3 1 2

    1 3 2 2 2 2 2 2 3 2 222 1 3 2 2 3 1 2

    sin cos,

    sin cos

    2 ,sin cos

    2 sin cos cos sin cos sin.

    sin cos

    k k k k h k k k k hR I

    k k k k h k k k k h

    k k ITk k k k h k k k k h

    Ik k k h k k h k x k k h k k h k xY x

    k k k k h k k k k h

  • 4 (24), 2012 - .

    79

    (14) (15) . - .

    , (14) (15) ( !). (9) :

    2 2 22 1Y k Y c , 1c .

    (7) (8),

    2 22 2 2 2 21 3 2R I k T k k T R I . R

    T . , ()

    .

    6.

    . , , - : 22 Y , - (6).

    , (6) ( : (6) -), . -, , -, , (- ). [6]. .

    - . , , R -, (8) (6)

    10 0 ,

    0 0 .

    Y R I

    Y k R I

    (16)

    (6) (16). , 0Y h , : 0T Y h .

    : 0 0F R Y h Y h . (17)

    30Y h k T , : 0T Y h , (17)

    30 0F R Y h k Y h . (18)

  • .

    80

    , (18) - . , R R , 0F R , R

    : 0,T Y h R , ,Y x R - (6) 0 0,Y R R I , 10 0,Y R k R I .

    . , ,R R R R ,

    0F R F R , ,R R R , R , : 0,T Y h R , ,Y x R (6) 0 0,Y R R I , 10 0,Y R k R I , .

    NL. ,R R , -

    ( 1)n , iR , 0,i n , 0R R , nR R . i :

    10 0 ,

    0 0 .i

    i

    Y R I

    Y k R I

    i iF R , - jR 1jR , 1 0j jF R F R ( jR 1jR -). 1,j jR R , iR

    , , .

    , - (., , [7]). - , - (., , [810]).

    7.

    . 27 R T , I .

    2 , h , 1 , 2 , 3 , . I ,

    R R I . , .

  • 4 (24), 2012 - .

    81

    . 2. R I . :

    2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 0,001

    . 3. T I . :

    2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 0 , 0,001 , 0,1

    . 4. R I . : 2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 0,001

  • .

    82

    . 5. R

    . : 2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 1I

    . 6. T I . : 2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 0,001

    . 7. T

    . : 2 2,8 , 1 1 , 2 9 , 3 2 , 1h , 1I

  • 4 (24), 2012 - .

    83

    1. Eleonski i , V. M. Cylindrical Nonlinear Waveguides / V. M. Eleonskii, L. G. Oga-

    nesyants, V. P. Silin // Soviet physics JETP. 1972. V. 35, 1. P. 4447. 2. , . . . / . . ,

    . . . : , 2003. 304 c. 3. Smirnov, Yu. G. Electromagnetic wave propagation in nonlinear layered wave-

    guide structures / Yu. G. Smirnov, D. V. Valovik. Penza : PSU Press, 2011. 248 c. 4. , . . / . . . . ; . :

    , 1948. 540 . 5. , . . / . . . . :

    , 1988. 440 . 6. Schrmann, H.-W. Reflection and transmission of a plane TE-wave at a lossless

    nonlinear dielectric film / H.-W. Schrmann, V. S. Serov, Yu. V. Shestopalov // Physi-ca D. 2001. 158. P. 197215.

    7. , . . / . . // . 1976. . 140. . 103129.

    8. , . . -, / . . , . . // . 2013. . 58 ( ).

    9. , . . - - , / . . , . . // . . - . 2012. 3. . 2937.

    10. Valovik, D. V. Electromagnetic TM wave propagation in nonlinear multilayered waveguides. Numerical technique to obtain propagation constants / D. V. Valovik, E. V. Zarembo // International Conference on Mathematical Methods in Electromagnet-ic Theory 2012, Proceedings. Kharkiv, 2012. P. 105108.

    - , , ,

    Valovik Dmitry Victorovich Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University

    E-mail: dvalovik@mail.ru

    ,

    Ergasheva Ekaterina Rifkatovna Student, Penza State University

    E-mail: mmm@pnzgu.ru

    517.927, 519.624

    , . . - /

    . . , . . // . . - . 2012. 4 (24). . 7383.