28
利利利利利 ASγ 利利利利利 multi- TeV 利利利利利利利利利利利利利 2010.04.18

利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

  • Upload
    tucker

  • View
    72

  • Download
    5

Embed Size (px)

DESCRIPTION

利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化. 樊 超. 2010.04.18. 内容提要. 课题背景 Tibet AS γ 实验及数据选择 分析方法和实验结果 总结. 光子背景场. 宇宙线 ( 1912 年 Hess 发现 ). 宇宙线及大尺度各向异性. 高能宇宙线源. 各种电磁辐射. ±. 成分:绝大部分由带电粒子(多数为质子)组成,有少量的中性粒子,在很宽的能量范围内呈幂律分布 起源:太阳、河内( SNR , PSR )、河外( AGN , GRB ) 加速: Fermi 激波加速 - PowerPoint PPT Presentation

Citation preview

Page 1: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

利用羊八井 ASγ Ⅲ 期阵列研究multi-TeV 宇宙线各向异性随时

间的演化

2010.04.18

樊 超

Page 2: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

内容提要

1.1. 课题背景课题背景

2.2. Tibet ASTibet ASγγ 实验及数据选择实验及数据选择

3.3. 分析方法和实验结果分析方法和实验结果

4.4. 总结总结

Page 3: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

宇宙线 (1912 年 Hess 发现 )

成分:绝大部分由带电粒子(多数为质子)组成,有少量的中性粒子,在很宽的能量范围内呈幂律分布

起源:太阳、河内( SNR , PSR )、河外( AGN , GRB )加速: Fermi 激波加速传播:带电粒子在传播过程中受磁场影响而偏离其原本方向。星际

磁场就像一个搅拌机,将宇宙线粒子搅拌得各向同性

地球

高能宇宙线源

e,P,...,Fe

中微子

分子云

各种电磁辐射

靶和加速器

射线

P,...,Fe

光子背景场

然而,实验观测表明,宇宙线强度存在微弱的大尺度各向异性,幅度约在 10-4 到 10-2 之间

宇宙线及大尺度各向异性

Page 4: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

宇宙线的传播与源的效应由传播方程可以推算出:

R 指宇宙线粒子的刚度

– SNR 的分布等因素

运动学效应— Compton-Getting 效应A.H. Compton and I.A. Getting, Phys. Rev. 47, 817(1935)

大尺度各向异性的可能起因

Page 5: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

太阳活动及 Local 环境

Multi-TeV 能量宇宙线在 3μG 的银河系磁场中 Larmor 半径大概为几百 AU ,考虑日球有长达一千 AU 以上的磁尾结构,因此日球调制仍是宇宙线各向异性的可能起因。

From Munakata’s report

大尺度各向异性的可能起因

Page 6: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

常用周期

众多实验观测到了恒星时和太阳时周期下不同能量宇宙线的各向异性。     ——除此之外,是否存在其它周期下的各向异性调制?

宇宙线及大尺度各向异性

恒星时sidereal

太阳时solar

反恒星时anti-sidereal

扩展恒星时ext-sidereal

1 日 23 时 56 分 4 秒 24 时 24 时 3 分 56 秒 23 时 52 分 8 秒1 年 366.2422

cycles365.2422

cycles364.2422

cycles367.2422

cycles

恒星时各向异性 Tibet ASγ , Science, 2006, 314, 439

各向异性的周期性调制

Page 7: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

没有发现其它明显周期Li., A. F., et al. 2008, Proc. 30th ICRC. (Mexico City), 1, 609

• AS 发现几 TeV 宇宙线各向异性 :– 太阳日变化

– 恒星日 变化

– 半恒星日变化

Page 8: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

太阳周期,平均周期大约为 11.2 年,太阳黑子磁场的极性随太阳周期更替而反号,因此太阳是一颗约 22 年的准周期性磁变星。

有观测以来的太阳周期(以太阳黑子数目标记)

•太阳周期

各向异性随时间演化的研究

各向异性随时间演化的研究

Page 9: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

MAT : 0.6TeV 恒星时各向异性没有呈现与太阳活动之间的相关性 (1985-2008)

各向异性随时间演化的研究

TeV 能量以下 TeV 能量以上

Mt. Norikura EAS 实验:10TeV 各向异性年变化( 1973-1987 )。虚线—太阳磁场极性反转期

Milagro 对 6 TeV 宇宙线各向异性拟合谐波参数的分析( 2000-2007 )。

Page 10: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

Tibet III 恰好包含第 23 个太阳周期整个的后半程,可以研究各向异性在该时期与太阳活动的关联

本工作的意义

1. Multi-TeV 能区最精准的观测(大统计量)

2. 可得出国际上首个两维各向异性在不同年份的时间演化(全天扫描)

3. Multi-TeV 宇宙线恒星时各向异性至今仍未有一致的令人信服的解释,研究其随太阳活动的关联,可以对其解释提供较有力的限制。

Page 11: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

Tibet ASTibet ASγγ 实验及实验及数据选择数据选择

Page 12: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

Tibet AS 宇宙线阵列实验

中日 AS探测阵列

Tibet ASγ 实验

Page 13: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

阵列名称

内部面积(m2)

探测器数目

触发率(HZ)

阵列间隔( m)

Mode Energy(TeV)

时间

Tibet I 7650 65 20-40 15 10 1990-1993

Tibet II 36900 221 230 15 10 1995-1999

Tibet HD 5175 168 120 7.5 3 1997-1999

Tibet III 22050 533 680 7.5 3 1999-2003

Tibet III (full) 36900 789 1700 7.5 3 2003-now

AS 阵列发展过程Tibet ASγ 实验

为保持数据的前后一致,事例的重建均是采用 Tibet III 阵列第一期( Phase 1 , 1999 年)运行时的探测器配置为标准来进行的

Page 14: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

数据选择我们按照如下的标准选择数据:1) :选择 Tibet III 阵列 Phase1-9 的数据,采用 Phase1 的重

建标准重建;2) :任意 4 路快时间探测器符合的事例,且每个探测器上记录的等

效 粒子数大于 0.8 个 ;3) :天顶角 <450 ;4) :芯内的事例 in_out_flag=1 ;5) : 10<ΣρFT<178 ,对应最可几能量为 5TeV

Page 15: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

全天扫描得到各向异性两维天图

短时期内各向异性分布的分析方法

分析方法分析方法

Page 16: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

全天扫描得到各向异性的两维分布(基于等天顶角估计背景) Zenith

North Pole

On-source

Off-source

,on onI N

,off offI N

off

off

on

on

I

N

I

N

bkg

obs

N

NI ,

某方向的 CR 相对强度

等天顶角探测器效率相同,因此

由此构造 ,最小化后求得给定方向上的宇宙线的本底事例数及相对强度

全天扫描得到各向异性两维天图

Page 17: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

相邻周期的干扰

要将二者分开,需要 1 )足够长的观测时间( 365 个太阳日或 366 个恒星日) 2 )均匀一致的探测效率(可以通过活时间修正实现)

若取数不够长(不足一年)或一年内因探测器标定等原因有较长时间的事例缺失,那么这时就无法有效区分两个相邻周期的各向异性干扰!

对短时期的各向异性研究 : 寻找新的方法

全天扫描得到各向异性两维天图

Page 18: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

短时期不同周期下各向异性的分析

前提:

且 某时刻 t ,地平坐标

短时期不同周期下各向异性的分析

可将每一时刻的各向异性视为太阳时和恒星时周期内两个独立效应的合效应

),,( t {故:

Page 19: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

最小化后,即可同时得到恒星时和太阳时周期下的两维各向异性天图

短时期不同周期下各向异性的分析

变换的 χ2 :

Page 20: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

方法的检验

图 (a) :原来的方法得到的恒星日周期相对强度两维天图图 (b) :同时拟合两个周期得到的恒星时周期两维天图图 (c) :两种方法得到的一维投影图的对比

短时期不同周期下各向异性的分析

由比较可以看出,同时拟合两个周期 CR 相对强度的方法是有效、准确的

Page 21: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

恒星时各向异性的时间演化

Tibet III 每个 Phase 得到的 5 TeV 宇宙线恒星时各向异性比较。

Page 22: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

恒星时各向异性的时间演化

一维直方图的一致性比较:(构造 χ 2)

由比较可以看出:各 Phase 的恒星时各向异性是较为一致的

满足自由度为N (N=18) 的 χ 2分布,检验它们是否为同一分布的几率 Prob. 由下式来计算

定量比较

Page 23: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

•总结总结• ASγ 得到了 TeV 能区两维的各向异性,研究得出宇宙线各向异性

只有两个周期的调制——太阳时和恒星时

• 本工作采用之前的研究成果,可以用少量的数据同时拟合出两个周期的宇宙线各向异性,避免了以前的活时间修正

• 本工作给出了 multi-TeV 宇宙线各向异性两维分布随太阳活动的变化(国际上首次)。

• 结果显示, multi-TeV 宇宙线恒星时各向异性与太阳活动无显著关联,为进一步理解 TeV 宇宙线大尺度各向异性的起因提供了有力的限制。

Page 24: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

谢 谢 !谢 谢 !

Page 25: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

宇宙线及各向异性

宇宙线的传播与源的效应由传播模型可以推算出由宇宙线的传播所造成的各向异性度为:

R 指宇宙线粒子的刚度

由此看出随能量增长各向异性幅度变大,与实验观测不符

下列因素可降低高能处超出观测的 LSA 幅度– 宇宙线由不同的成分组成

– Galactic halo

– SNR 的分布

Page 26: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

Lallement et al., 2005

intensity map significance map

Page 27: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

太阳时和恒星时的定义(选取的参考点不同)

•太阳时以太阳为参考 (地球绕太阳公转)•恒星时以遥远的恒星为参考 (与地球无相对运动)

一个太阳日为 24小时,恒星日比太阳日小 3 分 56 秒,为 23 时 56 分 4 秒

宇宙线及大尺度各向异性

Page 28: 利用羊八井 AS γ Ⅲ 期阵列研究 multi-TeV 宇宙线各向异性随时间的演化

全天扫描得到各向异性的两维及一维分布

因数据分布而做的修正

方位角修正

活时间修正 两个相邻的周期下的宇宙线各向异性会相互干扰,我们观测到的实际是二者的耦合效应。要将二者分开,需要足够长的观测时间及均匀一致的探测效率。

但如果取数时间不够长,如不足一年的取数时间或一年的取数时间内因探测器标定等原因有较长时间的事例缺失,那么这时的修正显然是不合理的

足够长的观测时间 —— 365 个太阳日或 366 个恒星日均匀一致的探测效率——需要做因探测探测事例率不均的修正(活时间修正)

因此对短时期的各向异性研究需要寻找新的方法以避免相邻周期信号的干扰!

全天扫描得到各向异性的两维及一维分布