38
今今今今今今 CH11 今今 今今 今今今 今今今 CH13 今今 今今今今今今 今今今今 今今今今今今今今今今今

今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Embed Size (px)

Citation preview

Page 1: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

今日課程內容CH11 滾動

力矩角動量陀螺儀

CH13 重力牛頓萬有引力重力位能行星運動與衛星軌道運動

Page 2: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.6: Torque(力矩 ) Revisited

Fig. 11-10 (a) A force F, lying in an x-y plane, acts on a particle at point A. (b) This force produces a torque = r x F on the particle with respect to the origin O. By the right-hand rule for vector (cross) products, the torque vector points in the positive direction of z. Its magnitude is given by in (b) and by in (c).

Page 3: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.7 Angular Momentum(角動量 )

Page 4: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Sample problem: Angular Momentum

Page 5: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.8: Newton’s 2nd Law in Angular Form

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle.

Page 6: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Sample problem: Torque, Penguin Fall

Page 7: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.9: The Angular Momentum of a System of Particles

The total angular momentum L of the system is the (vector) sum of the angular momenta l of the individual particles (here with label i):

With time, the angular momenta of individual particles may change becauseof interactions between the particles or with the outside.

Therefore, the net external torque acting on a system of particles is equal to the time rate of change of the system’s total angular momentum L.

Page 8: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.10: Angular Momentum of a Rigid Body Rotating About a Fixed Axis

Page 9: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.10: More Corresponding Variables and Relations for Translationaland Rotational Motiona

Page 10: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.11: Conservation of Angular Momentum

If the net external torque acting on a system is zero, the angular momentum L of the system remains constant, no

matter what changes take place within the system.

Page 11: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.11: Conservation of Angular Momentum(角動量守恆 )

If the component of the net external torque on a system along a certain axis is zero, then the component of the angular momentum of the system along that axis cannot change, no matter what changes take place within the system.

(a) The student has a relatively large rotational inertia about the rotation axis and a relatively small angular speed.

(b) By decreasing his rotational inertia, the student automatically increases his angular speed. The angular momentum of the rotating system remains unchanged.

Page 12: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Sample problem

Figure 11-20 a shows a student, sitting on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia Iwh about its central axis is 1.2 kg m2. (The rim contains lead in order to make the value of Iwh substantial.) The wheel is rotating at an angular speed wh of 3.9 rev/s; as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum Lwh of the wheel points vertically upward. The student now inverts the wheel (Fig. 11-20b) so Lwh that, as seen from overhead, it is rotating clockwise.

Its angular momentum is now - Lwh.The inversion results in the student, the stool, and the wheel’s center rotating together as a composite rigid body about the stool’s rotation axis, with rotational inertia Ib= 6.8 kg m2. With what angular speed b and in what direction does the composite body rotate after the inversion of the wheel?

Page 13: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Sample problem

Page 14: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

11.12: Precession of a Gyroscope

(b) A rapidly spinning gyroscope, with angular momentum, L, precesses around the z axis. Its precessional motion is in the xy plane.

(c) The change in angular momentum, dL/dt, leads to a rotation of L about O.

(a) A non-spinning gyroscope falls by rotating in an xz plane because of torque .

Page 15: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

習題Ch11: 6, 11, 24, 26, 35, 40, 54, 61, 68

Page 16: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Chapter 13

Gravitation (重力 )

Page 17: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.2 Newton’s Law of Gravitation

Here m1 and m2 are the masses of the particles, r is the distance between them, and G is the gravitational constant.

G =6.67 x1011 Nm2/kg2

=6.67 x1011 m3/kg s2.

Fig. 13-2 (a) The gravitational force on particle 1 due to particle 2 is an attractive force because particle 1 is attracted to particle 2. (b) Force is directed along a radial coordinate axis r extending from particle 1 through particle 2. (c) is in the direction of a unit vector along the r axis.r̂

Page 18: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.2 Newton’s Law of Gravitation

A uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell’s mass were concentrated at its center.

Page 19: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

12.3 Gravitation and the Principle of Superposition

For n interacting particles, we can write the principle of superposition for the gravitational forces on particle 1 as

Here F1,net is the net force on particle 1 due to the other particles and, for example, F13 is the force on particle 1 from particle 3, etc. Therefore,

The gravitational force on a particle from a real (extended) object can be expressed as:

Here the integral is taken over the entire extended object .

Page 20: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Example, Net Gravitational Force:

Figure 13-4a shows an arrangement of three particles, particle 1 of mass m1= 6.0 kg and particles 2 and 3 of mass m2=m3=4.0 kg, and distance a =2.0 cm. What is the net gravitational force 1,net on particle 1 due to the other particles?

Page 21: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.4: Gravitation Near Earth’s Surface(地表附近的重力 )

If the particle is released, it will fall toward the center of Earth, as a result of the gravitational force , with an acceleration we shall call the gravitational acceleration ag. Newton’s second law tells us that magnitudes F and ag are related by

If the Earth is a uniform sphere of mass M, the magnitude of the gravitational force from Earth on a particle of mass m, located outside Earth a distance r from Earth’s center, is

Therefore,

Page 22: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.4: Gravitation Inside Earth(地球內部的重力 )

A uniform shell of matter exerts no net gravitational force on a particle locatedinside it. Calculations:

The force magnitude depends linearly on the capsule’s distance r from Earth’s center.Thus, as r decreases, F also decreases, until it is zero at Earth’s center.

Page 23: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.6: Gravitational Potential Energy(重力位能 )

The gravitational potential energy of the two-particle system is:

U(r) approaches zero as r approaches infinity and that for any finite value of r, the value of U(r) is negative.

If the system contains more than two particles, consider each pair of particles in turn, calculate the gravitational potential energy of that pair with the above relation, as if the other particles were not there, and then algebraically sum theresults. That is,

Page 24: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.6: Gravitational Potential Energy

Page 25: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.6: Gravitational Potential Energy: Potential Energy and Force

The minus sign indicates that the force on mass m points radially inward, toward mass M.

Page 26: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.6: Gravitational Potential Energy: Escape Speed(脫離速度 )

If you fire a projectile upward, there is a certain minimum initial speed that will cause it to move upward forever, theoretically coming to rest only at infinity.

This minimum initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (mass M, radius R) with escape speed v. The projectile has a kinetic energy K given by ½ mv2, and a potential energy U given by:

When the projectile reaches infinity, it stops and thus has no kinetic energy. Italso has no potential energy because an infinite separation between two bodies isour zero-potential-energy configuration. Its total energy at infinity is thereforezero. From the principle of conservation of energy, its total energy at the planet’ssurface must also have been zero, and so

This gives the escape speed

Page 27: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.6: Gravitational Potential Energy: Escape Speed

Page 28: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Example:

Page 29: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.7: Planets and Satellites: Kepler’s 1st Law(克普勒行星第一運動定律 )

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.

Page 30: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.7: Planets and Satellites: Kepler’s 2nd Law

2. THE LAW OF AREAS:A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet’s orbit in equal time intervals; that is, the rate dA/dt at which it sweeps out area A is constant.

Angular momentum, L:

角動量守恆

Page 31: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.7: Planets and Satellites: Kepler’s 3rd Law

3. THE LAW OF PERIODS: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

Consider a circular orbit with radius r (the radius of a circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s second law to the orbiting planet yields

Using the relation of the angular velocity, , and the period, T, one gets:

對橢圓而言, r = a(半長軸 )

Page 32: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Example, Halley’s Comet

Page 33: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.8: Satellites(衛星 ): Orbits(軌道 ) and Energy

As a satellite orbits Earth in an elliptical path, the mechanical energy E of the satellite remains constant. Assume that the satellite’s mass is so much smaller than Earth’s mass.The potential energy of the system is given by

For a satellite in a circular orbit,

Thus, one gets:

For an elliptical orbit (semimajor axis a),

Page 34: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

Example, Mechanical Energy of a Bowling Ball

Page 35: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.9: Einstein and Gravitation

The fundamental postulate of Einstein’s general theory of relativity about gravitation (the gravitating of objects toward each other) is called the principle of equivalence, which says that gravitation and acceleration are equivalent.

Page 36: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.9: Einstein and Gravitation: Curvature of Space

Page 37: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

13.9: Einstein and Gravitation: Curvature of Space

Page 38: 今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動

習題Ch13: 10, 13, 20, 22, 28, 35, 40, 53, 65