14
반도체공정 Chap3. Silicon Oxidation 1 Chap. 3. Silicon Oxidation 주요내용: - silicon dioxide(SiO2)를 형성하기 위한 산화 공정 - 산화공정 과정의 불순물의 재분포 현상 - SiO2 file의 특성과 두께 측정 방법 Why silicon in modern integrated circuit ? Ge : 1950년대 주로 사용 (silicon의 energy gap=1.12 eV, Ge의 energy gap=0.6 eV) (제약) 높은 누설전류 특성, Silicon 에 비해 낮은 동작 온도 Si : 1960년대 이후 주로 사용 (장점) 낮은 누설전류 특성, 산소(O 2 )와 결합하여 SiO 2 를 쉽게 형성함. → 가장 큰 장점 Silicon dioxide의 용도 공정측면: thermal growth 가능. high quality, dopant mask, selective etching mask etc. 소자측면: MOSFET의 gate oxide, capacitor의 유전막, 소자 격리용, PMD, IMD, spacer etc. 트랜지스터 (MOSFET)의 단면도 : SiO2 film의 이용분야

반도체공정 Chap3. Silicon Oxidation 1 Chap. 3 ...bandi.chungbuk.ac.kr/~nsk/processing/SiliconOxidation.pdf · 반도체공정 Chap3. Silicon Oxidation 3 3.1.1 Oxidation Kinetics

  • Upload
    lydiep

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • Chap3. Silicon Oxidation 1

    Chap. 3. Silicon Oxidation

    :

    - silicon dioxide(SiO2)

    -

    - SiO2 file

    Why silicon in modern integrated circuit ?

    Ge : 1950 (silicon energy gap=1.12 eV, Ge energy gap=0.6 eV)

    () , Silicon

    Si : 1960

    () , (O2) SiO2 .

    Silicon dioxide

    : thermal growth . high quality, dopant mask, selective etching mask etc.

    : MOSFET gate oxide, capacitor , , PMD, IMD, spacer etc.

    (MOSFET) : SiO2 film

  • Chap3. Silicon Oxidation 2

    MOSFET 3-D (SEM) MOSFET (SEM)

    3.1 Thermal oxidation process

    silicon wafer oxide

    (thermally growth) : quality film .

    -

    PECVD

    thermal oxidation furnace

    : 800~1200, gas flow rate: ~ liter/min., temp. range: 1, ramp-up &

    down .

  • Chap3. Silicon Oxidation 3

    3.1.1 Oxidation Kinetics

    Chemical reaction of Dry & wet oxidation ( )

    :

    :

    silicon silicon 44% .

    (100nm SiO2 44nm silicon .)

    * SiO2

    Basic structural unit Basic structural unit of silicon dioxide.of silicon dioxide.

    22--dimensional Quartzdimensional Quartz

    22--dimensional dimensional --oxideoxide

    amorphous SiO2 vacancy

    diffusion

    .

  • Chap3. Silicon Oxidation 4

    * Simple oxidation model

    (, D; , x: )

    (, k: surface reaction rate constant)

    ,

    , growth rate

    ( x(0)=d0 ) ,

    (d0)

    ( ,

    ; time coordinate shift to account for the initial oxide layer)

    , given oxidation time

  • Chap3. Silicon Oxidation 5

    . ( )

    .

    (, root .)

    compact form

    (,

    )

    ,

    Dry wet B/A

    B/A (linear rate constant)

    , activation energy()

    2eV .

    () Si-Si bond

    1.83 eV/molecule .

    (111) (100) go B/A

    (111) bond .

  • Chap3. Silicon Oxidation 6

    Dry wet B(parabolic rate constant)

    Dry oxidation Wet oxidation

    Dry oxidation Wet oxidation remark

    slowfaster than dry

    (5~10 times)

    ,

    thin & high

    quality required

    oxide

    (e.g. gate oxide)

    thicker oxide

    (FOX, PVX,

    masking layers)

    gate oxide

    wet

    .

    Gate oxide

    anneal .

    Parabolic rate constant

    (B)

    : 1.24 eV ()

    : 0.71 eV ()

    ()

    fused silica O2 1.18 eV

    fused silica H2O 0.79 eV

    Parabolic rate constant

    wafer orientation .

  • Chap3. Silicon Oxidation 7

    (!) simple oxidation model oxide ( ) ,

    thin oxide simple oxidation model .

  • Chap3. Silicon Oxidation 8

    3.1.1 Thin oxide growth

    Thin oxide ( ) : reproducibility, Uniformity etc.

    For thin oxide growth

    Low temp oxidation ( )

    ULSI . (typical oxidation temp. ~850 )

    dilution ( N2 + O2 , Ar + O2 etc.)

    high quality thin oxide .

    composite oxide film : thermal + LPCVD oxide

    thermal cycle .

    thin oxide growth anneal . (N2, N2O, Ar anneal)

    dry oxidation thin oxide growth ( ) simple oxidation

    model .

    * Thin oxidation model

    model

    , term .

    , .

    (, ; initial oxide thickness when time is extrapolated to zero .)

    3.2 Impurity redistribution during oxidation ( )

    silicon silicon dioxide .

    Segregation coefficient (k) :

    SiO2 Si , .

    Impurity diffusion through SiO2 escape to the gaseous ambient

    Oxide growing Si/SiO2

  • Chap3. Silicon Oxidation 9

    4 :

    oxide (k < 1), oxide (k > 1)

    Case (a) : Oxidation of Boron doped silicon, k ~ 0.3

    Case (b) : H2 anneal of Boron doped silicon,

    H2 oxide B oxide B

    Case (c) : Oxidation of Phos. doped silicon, k ~ 10

    oxide Ph. silicon .

    Case (d) : k oxide oxide silicon

    Ga (k ~ 20)

  • Chap3. Silicon Oxidation 10

    3.3 Masking properties of silicon dioxide

    Selective masking : SiO2 layer IC

    * Pre-deposition / drive-in (high temperature anneal )

    Oxide , .

    , . (typically 0.5 ~ 1.0 um)

    Ga Al IC (As, Ph, B, Sb) silicon oxide

    10 .

    Si3N4 (silicon nitride) oxide .

  • Chap3. Silicon Oxidation 11

    3.4 Oxide quality

    IC MOSFET .

    factor .

    oxide oxide (charge) oxide/silicon trap .

    (interface trap charge, fixed oxide charge, oxide trapped charge, mobile ionic charge)

    interface trap charge (Qit) :

    Si/SiO2 . Si-SiO2 , state silicon

    . Si wafer orientation . 1/10 Qit

    . Qit H2 anneal (~450 ) .

    : ~1010 /cm2, : ~1011 /cm2

    Fixed oxide charge (Qf) :

    Si/SiO2 3nm . positive charge. //orientation

    . Oxidation ionic silicon Si/SiO2 silicon

    bond .

    : ~1010 /cm2, : ~5 1010 /cm2

    *IC Qf Qit wafer .

    Oxide tranpped charge (Qot) :

    SiO2 . electron bombardment X-ray

    . IC Qot anneal .

  • Chap3. Silicon Oxidation 12

    Mobile ionic charge (Qm) :

    sodium alkali . 100 , e-field oxide

    . (e.g. MOSFET VT )

    IC sodium ion 6% HCl .

    oxidation rate .

    3.5 Oxide thickness characterization

    Profilemeter

    Ellisometer : IC . (~ 100 x 100um2)

    .

    C-V : . Large area capacitor pattern .

  • Chap3. Silicon Oxidation 13

    * Oxide color

  • Chap3. Silicon Oxidation 14

    3.6 Process Simulation :

    http://www.synopsys.com/products/tcad/tcad.html

    http://www.synopsys.com/products/tcad/taurus_tsuprem4_ds.html