359
ФИЗИКА ТЕХНОЛОГИИ ИННОВАЦИИ Сборник научных трудов Екатеринбург 2015 г.

ФИЗИКА ТЕХНОЛОГИИ ИННОВАЦИИelar.urfu.ru/bitstream/10995/36196/1/978-5-905227-08-0_2015.pdf · Флюсы — тетраборат Li2B4O7 (LiT) и метаборат

Embed Size (px)

Citation preview

  • 2015 .

  • . .

    1

    2015

  • 53:001.895(06) 22.3431+65-551431

    : . . , ,

    - ( );

    . . , - ,

    - ;

    . . , , - .

    . . : /

    . . . , . , 2015. 358 .

    ISBN 978-5-905227-08-0 . . -

    , -, . , , - . - , , - , , , , .

    53:001.895(06) 22.3431+65-551431

  • 3

    1. ................................ 8 . ., . ., . . - ............................. 9

    . ., . . ................. 15

    . ., . ., . . - ........................................... 18

    . ., . . - ................................................................................................. 23

    . ., . ., . . ........................................................................................ 33

    . ., . ., . . ............................................... 38

    . ., . ., . ., . ., . . Mn55Al45 .............................................................. 43

    . ., . ., . . C -: ..................................................................................................................... 47

    . ., . . .......................................................... 54

    . ., A. A. .................................................... 59

  • 4

    . . .......................................................................................................................... 66

    . ., . ., . . ............................................. 71

    . ., . ., . . , ......................... 81

    . . ................................................................................... 86

    . A., . . 3D ......................................................... 89

    . ., . ., . ., . . .......................................................................... 96

    . . .................................................................................. 101

    . ., . ., . ., . . ........................... 105

    . ., . ., . ., . . Ni- ............................................................. 112

    . ., . . .......................................................................................... 121

    . ., . ., . ., . . .................................................................................................................... 129

    . ., . . ............................. 138

    . ., . ., . ., . . Ga-Sn ........... 142

  • 5

    . ., . . R- ..................................................................................................................... 150

    . ., . ., . ., . ., . . ............................................................... 155

    . ., . ., . ., . . , , ............................ 161

    . ., ., . . - .............................................. 167

    . ., . ., . ., . . - -1 ............ 175

    . ., . ., . . ....................................................... 181

    . ., . ., . ., . . InP/ZnS .................................................................................................... 186

    . ., . ., . ., . ., . . .................................................................................................................. 190

    . ., . ., . . ................................................... 196

    . ., . ., . . , Bratts Lake () AERONET ..................................................... 205

    . ., . ., . . ...................................................................................... 212

  • 6

    2. .............................................. 219 . ., . . , .............................................................. 220

    . ., . . Data Mining ......................................................................................... 224

    . ., . ., . ., . ........................................................................................................... 230

    . ., . ., . . ....................... 238

    . . ............................................................................ 248

    . . - ................................................................................................... 252

    . ., . . .................................................................................................................. 257

    . ., . . ................................................... 263

    . . , - ........ 270

    3. ......................................... 277 . ., . . , , ( )? .............................. 278

    . ., . . .................................................................................................... 284

  • 7

    ., . . ....................................................................................................... 289

    . ., . . .......................................................................... 297

    . ., . . - ..................... 305

    . . .......... 310

    . . . .......................................................................................................... 314

    . ., . . ( ) ........................................................................................................ 320

    . ., . . ............................................................................................................. 326

    . . ....................................... 330

    . ., . . ...................... 337

    . ., . . : , , ........................................................................................ 341

    .......................................................................................... 346

  • 8

    1

    1.

    1.

  • 9

    543.054 . . , . . , . . . ., . ., . .

    . ., . ., . .

    - -

    ... - 1:2 1:4. , - : 1:4 . : 1:2 1:4 , , . - , .

    : , , , -- , .

    Sample preparation for XRF analysis of red mud was investigated. Samples were based on lithium-borax fluxes and the effect of flux composition and sample-to-flux ratio on the disk quality were studied. The optimal flux composition is a 1:1 mixture of LiBO2 and Li2B4O7, and the optimal ratio of the flux to the sample is 1:2 or 1:4.

    Key words: XRF analysis, red mud, sample preparation, lithium-borate glass, no wetting agent.

    . - (). . [13], - [4].

    . , . , , . - .

    KATANAX K1 PRIME.

  • 1. . ., . ., . .

    10

    Pt-Au (95 .% Pt, 5 .% Au). 50 , 40 .

    - ARL ADVANT`X 4200 - . Jeol JSM 6490 - Oxford Inca. PULVERISETTE 6 classic line .

    Li2B4O7 (LiT) LiBO2 (LiM) (99,99%, Spex CertiPrep), - 110 . LiF (. . ., 6-09-3529-84), NaCl (. ., 4233-77), KBr (. ., 4160-74), KI (. ., 4232-74).

    - 850. , - : 350./, 4 6 , . - 11 .

    Oxide - KATANAX PRIME K1. 1000, 1020 5 , 1050 1 , 20.

    . , . - , [5]. LiT, LiM LiT:LiM 1:1 4:1. 1 7. LiM - . LiT LiT:LiM 4:1 . LiT:LiM 1:1 , , .

    . (:) 1:7

  • ...

    11

    1:30 [46]. - . . . (0,00010,01 .%), - - . - 1:1, 1:2, 1:3, 1:4, 1:7.

    : 1:1 , , , . , . 40 .

    : 1:2, 1:3, 1:4, 1:7 . - , : 1:2, 1:3 , : 1:4 . - : 1:2, 1:3. - , : 1:4, 1:7 - (. 1), : 1:2, 1:3 , (. 1).

    . 1. - :

    : 1:2; : 1:4

    . : ( 125 ), , , (. 2, 1), ( 0,10,5 ), -, , , ,

  • 1. . ., . ., . .

    12

    (. 2, 2). [4], - , .

    , - 1:2. - 1:4, . . -.

    . 2.

    : 1:2 1

    : 1:2 , .%

    Fe Ti O Al Na Ca Mg Si S Cl 1 70,16 1,56 28,28 2 22,87 1,39 60,53 3,4 2,5 4,03 0,34 2,11 1,04 1,79

    , 1:2, 1:4. K- Sc, Y, Ce, Ca, Fe , : 1:2 15...20% , : 1:4. , / - : 1:2 (. 2). . : 1:2 1:4 10 - Sc, Y, Ce, Ca, Fe. ()

  • ...

    13

    . , 1:2 (. 2).

    2 : Sc Y Ce Fe

    / : 1:2 0,75 1,65 0,87 453 1462 : 1:4 0,61 1,24 0,88 362 1357

    , % : 1:2 5,13 0,40 0,17 0,43 0,39 : 1:4 7,10 0,67 1,13 1,01 2,60

    . - , . . - LiF, NaCl, KBr, KI, - - [5, 7]. - 0,15 0,25.

    , , - -. , , - , - .

    , , , . - , . , - . - , - -, .

    . , , , . 0,15, - .

  • 1. . ., . ., . .

    14

    - - KATANAX K1 PRIME. - 1:2, , . - : 1:4, - . , .

    1. Wu Ch., Liu D. Mineral Phase and Physical Properties of Red Mud Calcined at Different Tem-

    peratures // Journal of Nanomaterials. 2012. Article ID 628592. 2. Dodoo-Arhin D., Konadu D.S., Annan E., Buabeng F. P., Yaya A., Agyei-Tuffour B. Fabrication

    and Characterisation of Ghanaian Bauxite Red Mud-Clay Composite Bricks for Construction Applications // American Journal of Materials Science. 2013. 3(5). P. 110119.

    3. Ghorbani A., Fakhariyan A., Basic J. Recovery of Al2O3, Fe2O3 and TiO2 from Bauxite Pro-cessing Waste (Red Mud) by Using Combination of Different. Appl. Sci. Res. 2013. 3(1s). P. 187191.

    4. . . . .: , 1985.

    5. Claisse F., Blanchette D. S. Physics and Chemistry of Borate Fusion for X-Ray Fluorescence Spectroscopists. Fernand Claisse Inc. Publ. 2008.

    6. . ., . ., . . - - VULCAN 4 // . 2013. 17(2). . 141147.

    7. Nakayama K., Shibata Y., Nakamura T. Glass Beads X-ray Fluorescence Analyses of 42 Com-ponents in Felsic Rocks // X-ray Spectrometry. 2007. 36. P. 130140.

  • 15

    681.78 535.35 . . , . . . ., . .

    . ., . .

    . - . . .

    : , , .

    Authors consider the problems detection of vapors explosives. Electronic scheme has been created. Authors request the idea of significant increase sensitivity of the device. Application of solid-state photomultiplier as the photosensitive element has been considered.

    Keywords: terror, electronic scheme, photodetector, solid-state photomultipliper.

    . , - .-. , , . (), -. , , . - -3500, :

    522639; 3; 60; 5...30. -

    , - -3500. - , . . , - [13].

    -, . , - , [4].

  • 1. . ., . .

    16

    - . . - . - . , .

    , - . , , , . , 5 16. - , . . .

    , , , -. , , - 1,5 . . , - , - .

    (). , , - - ( ) -. , - Si .

    - , . , 106. , - . . . , , , -. - . MC34063. -.

    , . . , . , . , -

  • 17

    . [5].

    - P-CAD. . - - .

    1. . . -. . -20. , 2014. . 277278.

    2. . ., . . - : . . // I -, 65- - . , 2014. . 20.

    3. . ., . ., . . . - 1 // - : .-. . . . 2014. . 33. . 2536.

    4. . ., . ., . . // : .-. . . . 2014. . 33. . 3743.

    5. : 2014146811 . .

  • 18

    543.51 . . , . . , . . . ., . ., . .

    . ., . ., . .

    - -

    - ... - , - . , .

    : -, , .

    Is considered the main reason for creating the background in the mass spectrometer metastable ions, as well as processing program of mass spectrometric data with a high background level. Simulation of the spectrum allows us to analyze the achieved sensitivity measurements indicate the shortcomings and their possible solutions.

    Keywords: mass spectrum, metastable ions, statistical processing.

    - . - , . , - , . - -, . - [1]. , - . , - , . . 1 - . .

    (. 2). - 306.

  • - ...

    19

    34.20 34.25 34.30 34.35 34.40

    10

    20

    30

    40

    I, io

    n/s

    m, u

    . 1.

    305.2 305.6 306.0 306.4 306.8

    2800

    3200

    3600

    4000

    4400

    I,ion

    /c

    m, u

    . 2. -

    ( ) - . - (Thermo Fisher Scientific) - .

    - -: (u) (ion/s).

  • 1. . ., . ., . .

    20

    [2] - (). - -. :

    2(1,6651 ( / 1))R X MY A B e = + , Y , ion/s; X , u; A , ion/s; B , - , ion/s; , u; R , - -.

    , - .

    - 21Ne-2HF , , . 3. - . , , 2HF (20,012u) 6 +8mmu. (20,9937u 21,0119u) ( 1mmu) (20,9939u 21,0125u). , 22Ne 21Ne - (13%) . 2HF - (1,449)104, 1,5104.

    20.96 20.98 21.00 21.02

    0

    10

    20

    30

    40

    502HF

    21Ne

    I,ion

    /s

    m, u

    . 3. - 21Ne-2HF

  • - ...

    21

    () -- .

    19.96 19.98 20.00 20.02 20.04420

    440

    460

    480

    500

    520

    540

    560io

    n/s

    m, u

    . 4. ( )

    - : A=500, B=10 R=2000, M=20,013. 1,6651 c , M/R, . . 0,01u. - Y . - - .

    - 50 - . 1001 19,9520,05u. -, :

    A=497,7359379000,818431727; B=10,2885833903,819891606; R=2586,5219111134,036577;

    M=20,0113611400,001392288. M

    20,00620,018.

  • 1. . ., . ., . .

    22

    - -, , -, ; -, . , -, - -. , 34 , - .

    , , (~10/) , .

    19.96 19.98 20.00 20.02 20.04

    10

    12

    14

    16

    18

    20

    I, io

    n/c

    m, u

    . 5. ( ) . 5

    : 1001 19,9520,05u, 10 0,5 20,013u. - Y .

    1. . ., . ., . ., . . - // -. 2009. . 8, 1. . 1519. [J. Anal. Chem. 2011.V. 66, N 14].

    2. . ., . ., . . - // . 2003. . 7. 1. . 3539.

  • 23

    004.056 + 061.68 . . , . . . ., . .

    . ., . .

    - -

    - ( ). () , - , , . , . , - . , , , .

    : , - , , - .

    Nowadays it is more and more important the application of optoelectronic systems (OES). To increase the measurement accuracy of the coordinates observed object are commonly used control loops of ECO (CL OES). In such CL OES can arise self-oscillations (SO) with large ampli-tude, comparable to the amplitude of the permissible error of CL OES and with a frequency close to the cut-off frequency of CL OES. There were found algorithms, ensuring the elimination of AK with large amplitude.

    Keywords: self-oscillations, optoelectronic systems, control loop, measurement accuracy of coordi-nates.

    , . [13]. ( ) t (), T - - (), () (. 1). - (), - (). () ( ) t , . , : - [2, c. 94]. . (. 1) ( ) ( ) ( ) t t t= [3, c. 1114]. n-

  • 1. . ., . .

    24

    ( ) ( ) n T i n T = ( )U k ( )( ) U i n T [2, c. 316; 3, c. 74]

    ( ) ( )( )( ) max ii n T R i n T = , (1) ( )( ) ( ) ( )( )

    k

    R i n T U k U i n T k = + . - N: . N= [1, 4] (2,2...3) , N=576.

    ( ) 1 4...1 3 . . - ( ) t [3, . 152]. 1.. [1],

    ( ) 3...4 . (2) -

    , ( ) t , ( ) t , ()

    ( )2...3 ,

    ,

    Af f

    (3)

    A , , f, f , , .

    (3) (2),

    ( ) ( ) ( ) ( ) t t t t= + + . (4) .

    - ,

    12 = . (3). [57],

    ( , ) 1K p A = , (5)

    p j w= , w , 2w f= , A [6, c. 944],

    (. 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ), K p A K p K A K p K p K p K p . - [4]

  • -

    25

    . 1.

    ( ) ( ) ( )( )1 exp exp ,

    j w TK j w j w T S

    j w T

    (6)

    T , ( )T S

    S: ( )0, ,

    0, ,

    S ST S

    S S >

  • 1. . ., . .

    26

    ( ) ( )( )1 0 0cos U t A w t t U + , (8) ( )( )2 1U U t , 0U -

    . () -

    [3, c. 151]

    ( ) ( )exp K j w j w T , (9) T T . c [3, c. 155]

    ( ) 100 2

    1

    j w TK j w K j w T

    +

    + , (10)

    0 0...1 = . [3, c. 151]

    ( ) ( )1 exp

    j w TK j w

    j w T

    , (11)

    -

    [5, c. 68] ( ) 2 20

    1 11 2

    K j wj w T j w T T w

    = +

    . 0,510 T T ,

    2 1 . / 2 f f< (11)

    ( ) ( )0

    exp

    j w TK j w

    j w T

    , (12)

    2 w f= . -

    , : () () (. 1) [6, c. 759; 7]. (5)

    ( ) ( ) ( ), K j w A K A K j w = . (13)

    ( )K A (7) - () (. 2) - () (. 2) . 2 . 2.

    (5) . 1f

    ( )( )1arg 2K j f = . (14)

  • -

    27

    [3, c. 160] ( )

    1

    0,51

    2,

    2 ~ 10 .

    f f

    K j f

    , ,

    ( ) ( ) 1 K A K j w = . (15)

    (14), (15) ( ) 0,5~10 ,K A

    1~ 10 A . (16)

    - -

    12 = , (16). - (3). - .

    , (3) (5) (14)

    ( )( )

    1,

    2 1.

    K A

    K j f

    = (17)

    , . . [3, . 157160]

    ...6 4 , (18)

    ( )( )arg 2 K j f = + .

    , . *0 0U = . 2

    ( )1U t (8). ( )2U t ( )1U t (8) -

    ( ) ( )( )2 1 2 U n T sign U n T = . (19) ( )2 U n T (19) t n T= , [6]. , -

  • 1. . ., . .

    28

    ( )2 U n T (19), . 1

    ( ) ( )* *2 2 0cos 2 ( ) U n T A w n T t = + , (20)

    2 f = . (21)

    [6, c. 942944], [7]

    / 2 / 2 T T < < . (22)

    . 2.

    (3), (21), (22) , -, - (18) ff/4 [3, c. 160] (3); -, ,

  • -

    29

    (3), ,

    f f

  • 1. . ., . .

    30

    . 3. , -

    , , - (. . ). - ( ) ( )1 2 2 w w + [8]

    ( ) ( ) ( )( )( ) ( )( )

    ( ) ( ) ( )( )( ) ( )( )

    4 2 sin 21 , ,2 1 4 2 cos 2

    9 3 sin 31 , .3 1 9 3 cos 3

    B w ww arctg

    B w w

    B w ww arctg

    B w w

    +

    +

    (30)

  • -

    31

    , c ff/4 - - - (21), (30), (3), - .

    , , - (23). - f=500. , -, - , / ; -, , . . 8 80 [9]. : [3], . f~1, , [3, c.160]. , (4).

    (31), (1).

    (1), - . [1, 9, 10]. , , [1] 20.

    ( ). , - , , . -, - . , - , . -, , . , - - .

    1. - // URL:

    www.npo-karat.ru/catalog/ 31.03.2015. 2. . . - . .: , 1999. 480 .

  • 1. . ., . .

    32

    3. . . . .: -, 2008. 176 .

    4. . . -, - // . 1993. 2. . 2832.

    5. . ., . . . .: , 1990. 368 .

    6. . ., . . . .: , 1966. 998 .

    7. . . Z- // . 1970. . 8896.

    8. . . // . . 1993. 08563.

    9. . ., . ., . . - // . 1987. 10. . 6980.

    10. . ., . . : // . 1987. 10. . 2548.

  • 33

    544.654+519.688 . . , . . , . . . ., . ., . .

    . ., . ., . .

    ... - .

    : , , , -.

    This article represents diffusion polarization and anode form influence on the results of cathode sediment growth process imitation modeling in coaxial symmetry electrolyzer.

    Keywords: modeling, solid cathode polarization, shape optimization of the cathode.

    - - [1].

    - . D=21052/ =2103. , . - .

    , - . 1. , . . . 1 -, .

    - (. 2). - 0,025...0,2. , . p=48,3/ (10%).

  • 1. . ., . ., . .

    34

    . 1.

    ()

    . 2.

    : () (--)

    . . 3 . 4 - 0,025 0,2. - , . 10 30%, - . - , ( 100).

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    0 0,05 0,1 0,15 0,2 0,25 0,3

    , /

    U, B

    () ()

  • ...

    35

    . 3. 0,025 0,2 () (--)

    . , , - .

    : , - , .

    . 4. 0,025 0,2 () (--)

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    0 20 40 60 80 100 120 140 160

    /2

    0,2

    0,2 ()

    0,0250,025 ()

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0 20 40 60 80 100 120 140 160 180 200

    /2

    0,2 ()0,025 0,025 ()

    0,2

  • 1. . ., . ., . .

    36

    -, - . .

    . 1, h, d1, d2 - , , .

    1

    h, d1, d2, p, /

    166 124 108 446,7731 156 128 104 292,9069 166 124 104 433,3935

    . 1 , , . - , , - , - - , . - . .

    , , - - . . [2]. , . , - 2103 3, 5103.

    0,1 , 0,3 5%, - (. 5).

    - -

  • ...

    37

    . . 2 - .

    . 5. 0,05 ()

    0,02 (--) 2

    ,

    U, 0,025 0,05 0,1 0,15 0,2 0,25 0,3

    0,05 24,86317 46,93154 84,73368 117,1997 142,2092 167,6155 188,5157 0,02 25,00559 47,14981 86,06429 116,0402 142,2607 164,6668 183,6473

    , - 0,5 2,5%, - .

    , - - , , .

    1. . ., . ., . ., . . - // . 2014. 5. (). . 7883.

    2. . . - . : , 1959. 699 .

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    0 20 40 60 80 100 120 140 160 180

    /2

  • 38

    536.248.2 . . , . . , . . . ., . ., . .

    . ., . ., . .

    ... -.

    : , , .

    The influence of the heat transfer fluid volume on loop thermosyphon efficiency has been studied by infrared camera. The study has been carried out by considering of different spatial positions.

    Keywords: infrared camera, heat transfer fluid, loop thermosyphon.

    - [1]. .

    - . . 1 , . - 9 243 -.

    . 1. ,

  • ...

    39

    . - -. - , . q=1,5/2 .

    . 2 , =+53 (1- ). ThermaCAM Researcher .

    . 2.

    =+53 (1- ) . 3

    , - . . - , - q .

  • 1. . ., . ., . .

    40

    . 3.

    -

    . -, - , ( 50). . 3 , 1- =+53 l1 ( . 2 , ).

    -, - . - , , - - . . 4 .

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    30,0

    35,0

    40,0

    45,0

    50,0

    l1 l2 l3 l4 l5

    -53, 1

    -53, 2

    +53, 1

    +53, 2

  • ...

    41

    . 4. , ,

    , 2- =+53

    ; 4- . . . , . - , , - , -.

    , - : , . . , . , - , - , - -. - ( ) -.

    =+53 - , - . =20.

    0,0

    5,0

    10,0

    15,0

    20,0

    25,0

    30,0

    1 2 3 4

    -53, 1

    -53, 2

    +53, 1

    +53, 2

  • 1. . ., . ., . .

    42

    . , -, , 35 53. 1520 - , -. : 15001600 19501980 /2 -.

    , - ( ): 2300 (1- ) 600/2 (2- ) =+53; 1900 (1- ) 1600/2 (2- ) =53. , - 2- =+53; . 3.

    , - , - , 1- , , 50 - , -. - .

    1. . ., . . . : , 1988.

  • 43

    537.622.4 . . , . . , . . , . . , . . . ., . ., . ., . ., . .

    . ., . ., . ., ...

    Mn55Al45 Mn55Al45

    Mn55Al45 - Mn55Al45. , , , - .

    : , - , - , - .

    In this research we have investigated the effect of high-energy milling on the magnetic hysteresis properties of the Mn55Al45 alloy. Studies have found that we can say that attritor milling, due to the high intensity achieves the high coercive force in a short time.

    Keywords: high-energy grinding, magnetic material, ferromagnetic phase, manganese-aluminum magnet.

    MnAl 50- [1] 1980- . - . , -, .

    - , MnAl (). , - , ( 5103/3). - (BH).max=96/3~12c [2], - .

    MnAl - L10. -, . [3].

    , MnAl, , - .

  • 1. . ., . ., . ., ...

    44

    , - MnAl , - Mn55Al45.

    (.%): 55 Mn, . Al - . 500C 30 . -. 5 ., - 500200, 8. - 3, 500. , 4000 ./.

    , 900/ (12) .

    . 1. s, - r Mn55Al45; b Mn55Al45

    : - Hc s r (. 1), - (. 1b). , [4],

  • Mn55Al45

    45

    , ( ). - , (0 0 0), - . -, . . [5] - MnAl . [6] , MnAl -.

    . 2. s, r 475 30 . Mn55Al45;

    b Mn55Al45 475 30 .

    475 30 (. 2) , . , , - . , [7], , [8] (. 2b).

  • 1. . ., . ., . ., ...

    46

    - Mn55Al45 , - , [9]. , , 10. - , . - , - .

    1. Kono H. J. Phys. Soc. Japan, 1958. 13. . 1444. 2. . ., . . . . .: , 1989. . 467.

    3. . ., . ., . ., . . MnAl-C. // -. 1985. . 60, . 6. . 11711176.

    4. Brown P. B., Goedkoop I. D. Acta Met., 1963. 16. P. 737. 5. . ., . . - // . 1969. 11. . 11031113.

    6. . ., . ., . . - MnAl-C. // . 1987. 3. . 148157.

    7. . ., . ., . . MnAl-C. // . 1989. 67. . 915923.

    8. . ., . ., . . . MnAl- // . 1990. 8. . 8389.

    9. Jian H., Skokov K. P., Gutfleisch O. Microstructure and magnetic properties of Mn-Al-C alloy powders prepared by ball milling. Journal of Alloys and Compounds. 2015. 622. P. 524528.

  • 47

    539.1.074.24, 539.1.074.3, 539.1.074.6 . . , . . , . . . ., . ., . .

    . ., . ., . .

    C -: C -:

    C -: - -. - - ( 106/) - ( 10). -.

    : -, , , - .

    This article presents results of comparative analysis of modern commercially available -monitors. Choice problems and features of applications for registration low energy -particles and high den-sity of a stream of particles are touched. The new approach regarding construction scintillation -monitors is offered.

    Keywords: beta-particles counter, contamination monitor, gas-filled counter, scintillation counter.

    - , , - - , - - -.

    , , - . - (-) (, ) .

    - , - - , , -, , , , 100%. - , - , -

  • 1. . ., . ., . .

    48

    [1]. - -, -. , , . -, - , - . . 1 - - - -.

    1 -

    ,

    - -05 [2] 0,1...3,0 - -05 - [2] 0,5...3,0 - - -04-04 [2] 0,15...2,5

    -05 [2] 0,08...3,5 -02 [3] 0,15...3,54 - -6130 [3] 0,15...3,5 RDS-80A Surface Contamination Meter [4] 0,1

    , - 80...100, - , , 14 ( - 156...157 [1, 5], - 49 [5]), 60o (- - 317...318 [5, 6], - 96 [5]) 147Pm ( - 224...225 [1, 5], - 62 [5]).

    - , , . , - 50...100 [1, 6] . r [1] r=n/(1+n), (1) r ; n - ; .

  • C -:

    49

    (1) n: rmax=1/.

    - 10...20.

    () (N) - (Nt): =N/Nt=r/n=1/(1+n), Nt=nt; N=rt, t -.

    , (n), (0).

    - 30% - 5105/. - 4%, .

    - :

    , - ;

    ( ) - .

    - - , -, , .

    - - - - , - ( BC-404, BC-408 1,8 2,1 [7]), - , - [8].

    - ( 2002002 ) - , 1, [9] .

  • 1. . ., . ., . .

    50

    . (), . . -, . , , :

    ; -

    ; ; (

    ); ; [10].

    ( ), -, , . , -, , , .

    - , - -, , , - 106/.

    - , - , , - - . - [9, 11], , , -, . , -, - - . . 2 - - .

  • C -:

    51

    2 -

    ,

    - - [12] 0,1...4,0

    - -, --150 [13] 0,2...3,0

    - - [2] 0,2...3,0

    -01 [14] 0,065...4,0

    Monitor DCM-300 series [15] 0,065...1,5

    , - 65...100, , - , - -.

    . 3 - - .

    3 -

    , %

    14 90Y-90Sr 60Co Scintillation probes SS600 / SS700 [16] 8 40 15 RadEye AB100 Alpha-Beta Contamination monitor [17] 49 23 - -6130 [2] 36 RDS-31 External Beta Probe [4] 3,8 22 14,5 Contamination monitor dose rate meter CoMo-170 [18] 14 42 27 Contamination monitor LB 124 SCINT [11] 11 29

    - - ( ) - - (EF) 90% 90Y-90Sr ( -, . 3), - (EF/EF0,01), 5105/ - 2002002.

    , -, - .

  • 1. . ., . ., . .

    52

    - - -, , - . - , -. [1921], , - , . , - 5. [10, 22].

    -, - . - - .

    2014 - , 2015 .

    -

    1. Knoll G. F. Radiation Detection and Measurement. John Wiley & Sons, Inc. Third Edition.

    800 p. 2. http://www.doza.ru/. 3. http://www.atomtex.ru/. 4. http://www.mirion.com/. 5. http://www.nucleide.org/. 6. Ahmed S. N. Physics and Engineering of Radiation Detection. Elsevier. First Edition, 2007.

    764 p.

  • C -:

    53

    7. http://www.crystals.saint-gobain.com/. 8. . . . : , 2013. 323 . 9. Seo B. K., Kim G. H., Park C. H., Jung Y. H., Jung C. H., Lee K. W., Han M. J. Development of

    the Dual Scintillator Sheet and Phoswitch Detector for Simultaneous Alpha- and Beta-rays Measurement. WM07 Conference, February 25 March 1, 2007, Tucson, AZ.

    10. . ., . . : - // . : , 2014. . 33. . 515.

    11. http://www.berthold.com/. 12. http://www.amplituda.ru/. 13. http://aspect.dubna.ru/. 14. http://www.radek.ru/. 15. http://www.vf.eu/. 16. http://www.southernscientific.co.uk/. 17. http://www.thermoscientific.com/. 18. http://www.euromechanics-saveray.com/. 19. http://sensl.com/. 20. http://www.hamamatsu.com/. 21. http://www.ketek.net/. 22. . ., . ., . . - , 65- - -: . . . 1. : , 2014. . 31.

  • 54

    539.043:535.34 . . , . . . ., . .

    . ., . .

    -, - . . - -. - . , - - 10172, -- -.

    : , , , , .

    Zinc sulfide shows the great potential as the perspective material in the power quantum optic, but the problem is the influence of defects and admixtures on the different properties of the materials. The usage of ionizing radiation for the controlled creation of defects allows us to study the nature of the defects and their influence on the properties of materials. The problems are of the study of their impact and the difficulties of their correct interpretation. The actual question is the issue of the effect of impurities and defects in irradiated samples on the formation of radiation-induced defects. An important conclusion is that under electron irradiation pre-deformed samples show a higher radiation resistance at low fluences up to 1017cm2, as at high fluences more radiation-resistant proved initial samples with lower initial density of defects.

    Keywords: zinc sulfide, defect, admixture, dislocation, spectrum.

    , 26, - . - . , - - - , , ZnS - .

    , , , , , , .

    ,

  • 55

    , . - 26, , , , [1].

    -. , 26 , - , , - . . - ZnS , - - , , . - , - , , , - , -.

    26 - , . -, , , . - : 9,70,2 , 15,40,5 [2].

    , - 26. , -, . , , , - , .

    , 26 - , [3]. - .

    .

  • 1. . ., . .

    56

    , 15 1016...510182 , , - - ( 10172), - [4]. - 1062 10102 -.

    - . - , , - .

    , , - . , , - , - , .

    - [5].

    . 1.

    80 15, -

    ZnS. . 1 - , - 80, (1), 40 (2) 150 (3) . 400...600, - - .

  • 57

    444, , 150.

    - - ZnS , - [6]. 104 106, - , -. , , , 466.

    , - F- ( 430 540), . 300 5 - 1,710182 [7].

    . 2. (1) (2) - , . 2, -

    - . , F- , -. F+- , , -. , , - - .

    - .

  • 1. . ., . .

    58

    , , . , - , . , , , - .

    1. . ., . . , // . : , 1975. . 239251.

    2. Bryant F. J., Hamid S. A. Electron Irradiation and Trapping Center in Zinc Sulphide Single Crystals // Phys. Stat. Sol. 1970. V. 2, N 3. P. 597605.

    3. . ., . . 26 // . ., . . 26. .: , 1986. . 109145.

    4. . ., . . - , // . . 2 . 135139.

    5. . ., . ., . ., . . . 1987. . 47.. . 5458.

    6. . ., . ., . . . . 39. 1983. . 856857. 7. . ., . ., . ., . . . 1994. . 60. . 349352.

  • 59

    53.06 . . , . . . ., A. A.

    . ., A. A.

    ... - : -, , . - 2. - , .

    : , -, -, , -, , .

    In order to study the intensity of radish growth in a dose dependent ionizing radiation irradiated seeds were different types of ionizing radiation. For pre-irradiation of seeds, the following types of ionizing radiation: gamma rays, accelerated electrons, neutrons of intermediate energies. The experiment was conducted under the influence of ionizing radiation dose to 2kGy. The exper-imental results are consistent with literature data.

    Keywords: radishes, gamma radiation, beta radiation, electron acceleration, growth, benefits.

    - , , , , [1]. , , , , , , , , - - , ( , , - . .) - , , , .

    (- , , , .) .

    (- ,

  • 1. . ., A. A.

    60

    , , -) - . , -. , . , , [2].

    , , 113% , - . , 10%, 3032%; ( 3%), (12%) [3]. , , - , 6080- , - , - . :

    1. , 70- , - . , . - .

    2. - ( , ), - . - .

    3. - , - 1990- .

    - , , - ( - ) - - - .

  • ...

    61

    - .. .

    - : - Cs-137, Co-60, Am-241, Sr90-Y90, Pu-Be, -10-102. 18 ( ).

    45 . - , Co-60, Cs-137, Am-241. - - Sr90-Y90. Pu-Be.

    100 . 10 .

    , , -10-102. - 2000. , .

    - -.

    . 48 . - , . - , -.

    . , - . . . , 24 7, -. , . - . , , , - .

  • 1. . ., A. A.

    62

    . 1 . , - Co-60, Cs-137, Am-241. . , , . , (Co-60). - -. 1,25, -, (Cs-137).

    . 1.

    . 2 , - . , , , 100. - 90. - . , - -, 660. , .

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3 4 5 6 7 8

    ,

    Am-241

    Cs-137

    Co-60

  • ...

    63

    . 2.

    , , -. Sr90-Y90 -. . 3, , - , . , , - -10-102, . - . , - 10 , , .

    . 3.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 2 4 6 8

    ,

    - 90

    - 660

    0

    1

    2

    3

    4

    5

    6

    7

    0 2 4 6 8

    ,

    177 320 Sr90-Y90 10

  • 1. . ., A. A.

    64

    . 4 -, , . 890 1900 - . . , 14 , 0,92.

    . 4.

    . 5 , . , , , .

    . 5.

    0

    1

    2

    3

    4

    5

    6

    7

    0 2 4 6 8

    ,

    890 1900Sr90-Y90 (14 )

    0123456789

    0 2 4 6 8

    ,

    Pu-Be

  • ...

    65

    , :

    , . -10-102 -. 90, .

    , 1,25, Co-60, - - .

    , , 177 , .

    - -10-102 .

    , .

    1. . . . .: , 1995. 2. - [ ]. : http://www.pseudology.org/Sterilization/NPO_RT.htm.

    3. . . / . . , . . , . . . .: , 1999. 384 .

  • 66

    004.942 . . . .

    . .

    . - . , - , ( - ). .

    : , , -, , .

    In this paper we formulate the problem of stabilization control unit catalysate catalytic reforming process based on expert information. To enhance the management process of stabilization cataly-sate reforming temperature control system designed bottom of the column based on fuzzy logic. The calculation of fuzzy controller control system, made fuzzification values allocated linguistic variables, built two temperature control system bottom of the column (system with digital PID-controller and system with digital fuzzy controller). Comparative analysis of transient pro-cesses in these systems revealed several advantages of fuzzy controller.

    Keywords: catalytic reforming stabilizer column, fuzzy controllers, linguistic variables, fuzzy infer-ence system.

    , , , , -. . - , , - - [1] [2]. - . - - [3]. - - ( , , , -

  • 67

    ). , - [4]. , , - [5].

    - . - . , - , -, . - ( , , ). - .

    - , - . ( -) , - -. - .

    () (. 1) [6]:

    . 1.

    (t) - , . - : 220256C. - m(t)

  • 1. . .

    68

    , , Matlab Simulink, . x(t) . - : 200250C.

    -: , ( ) - & , ( ) && , m, , [7]. .

    ( ) [8]:

    30

    3 2

    3( )72856.17 6092.43 133.82 1

    s

    eG s

    s s s

    =

    + + +.

    MATLAB - . 2.

    . 2. -

  • 69

    - :

    0

    0

    1 1( )2 1i dK h z K zW z K

    z h z+

    = + +

    .

    - . - h0=0,001c - : K=0,672; Ki=0,0018; Ki=63.

    - (. 3). - (.).

    . 3.

    -

    -

    t,

    200 180

    , C 21,29 7,59 tMAX,

    21,875 19,89

    (21,293,33)/21,29=0,8436 (7,593,32)/7,59=0,5626 I2

    7418 975,5

  • 1. . .

    70

    , -, - . ( ) - 3 , -. - - , , - , . . - . . . - , - .

  • 71

    620.9:662.92; 658.264 . . , . . , . . . ., . ., . .

    . ., . ., . .

    , , , , . - . , , . -, , , - (-) ( ). , - - - , - .

    : , , , , , , ,

    Nowadays, as the energy efficiency and ecology issues prevail, gas generation from solid fuels tech-nologies and their application in energy installations are essential. The low temperature technolo-gies with thermo-chemical coal conversion in fluidized bed reactors are the most perspective. To the best of authors knowledge, these practices are already implemented in some large-scale energy plants, yet their small-scale implementation capabilities are still underinvestigated. The low power two zone gas reactor with fluidized bed for small-scale applications such as gas reciprocat-ing engines co-generation and combined-cycle plants was designed and analyzed by us. Calcula-tions and experimental data show the output synth-gas with its composition and combustion heat values can be used as a low-cal fuel in combustion cameras of these units which requires more researches and development of this technology.

    Keywords: coal, volatile content, air, heat, gasification products, chemical efficiency factor, velocity constant, equilibrium.

    , , -, [1]. - - , ,

  • 1. . ., . ., . .

    72

    [2], [3], .

    - : 1) (), - , - , 1100...1250C [4]; 2) , 420/ [5] - [6]; 3) [7], ( ) [8], - ( ) [9] ( - ), ( ) [10].

    - . Foster Wheeler , topping cycle [11] HIPPS (high integrity pressure protection system) [10]. ( ) 850...930C () . . - - (advanced cycle A-IGCC (advanced integrated gasification combined cycle)) [12] c 53...57%. 700C , , - , 700...1000C. (mild gasification cycle IMGCC) - [13]. - ( 500C), - - (CO, H2, CH4).

    - -, - - . , - [14],

  • 73

    [15]. - - .

    . 1. - 2. .

    . 1.

    : I ; II ; III ; IV -

    ; V ; VI . 1 ; 2 ; 3 - ; 4 -

    ; 5 ; 6 .

    . - , , , -

  • 1. . ., . ., . .

    74

    , . , - , - , . - , , , , - .

    [16]. - :

    ( )2 2 20,5 3,76 1,88 ,C O N CO N+ + + - CO2 CO2 CO, : (1) -

    12 2 2 2C 0,5(O 3,76N ) 0,5 (CO ) 1,88Nk+ + + + (1)

    qx1=16419 1 - (2) CO2 CO

    22 2 20,5 CO 1,88N CO( ) 1,88Nk+ + + (2)

    qx2=7136 1 . k1 k2 3/(2). 2 2 2 2 2CO 1,88N 0,5 O 3,76N CO 3( ) ,76N+ + + + - qx3=23596 1 . q=12863 1 .

    CO, .

    - [17], . , 650C 17% CO, 2149/3; 1000C 34,5% CO, 4298/3.

    , , , - :

    1)

  • 75

    [ ]

    3 1 2 3

    2

    CO2 .. .. ..

    (1 ) (1 )

    1 (1 ) .0,21

    x q q q q q q x q

    rq C C x C t q

    + + + + + + =

    = + + + +

    (3)

    2) [18]:

    *1

    O20,21exph

    b

    sk hr

    w

    =

    ; (4)

    2

    * * *1 2 1

    CO * *1 2

    0,21 exp exphb b

    k sk h sk hrk k w w

    =

    ; (5)

    2 2*

    O COCO *

    0,21 (1 ) 0,21 0,5 0,79

    h r rr

    =+ +

    , (6)

    * 3 0,79(H 0,126O 0,429N )C

    r r r

    r

    += .

    :

    ( )2 O CO CO2 2N 1h h h hr r r= + + , (7) h , . (3)(7): q, q, q1, q2, q3 , ,

    , , -, , , ( - 27; 66; 116; 227 375 1 ); q , , , , 1230 1 ; C.., .., .. - , - ( 9,68; 19,2; 25/ 1 -; t , ;

    3 4 5 61 ( ) q q q q= + + + , q3; q4; q5; q6 - , , =0,8;

    2COr CO2 ; 0,21

    CO2; 2CO10,21r

    -

    (2). 1x -

  • 1. . ., . ., . .

    76

    , ( x=1 760C); [19] -:

    *6 (1 )mf

    k k

    zs

    d

    = , (8)

    * *(1 )n k z z= + , ; n k ( ) , 3760 1650/3; z* , 1 ; mf - [20]; dk , . 1,21 CO2 0,21 0 -

    *

    CO21

    wwr

    =+

    ,

    0CO2

    CO0,21 *21

    0,90,21

    drw

    rw w

    += =

    , w*

    .

    t p * 0(273 )

    0,9273p

    t pw w

    p+

    = , p0, p -

    , . ( )(1 )p mf mf

    b mf

    w w w

    =

    , p mf -

    , 3/3 [5]. k1*, k2* - O2 CO2 , [19] - , 3/(2c) :

    [21] 3111065

    3 10 exp273

    kt

    = +

    ;

    CO2 3217621

    35 10 exp273

    kt

    = +

    .

    O2 -

    *1

    1

    11

    Sh

    k d sk D

    =+ +

    , D

    , 2/ [22]. CO2 -

  • 77

    *2

    2

    11

    Sh

    k d sk D

    =+ +

    , -

    : ( )0

    6 ( )

    0.9 0,71

    hp mf

    b p mf

    K w wdh

    d w w g d

    =

    + ,

    , ( )0,4 0,7 0,53 mfd w w h= , K, / 0,25

    0,5

    0,75 0,9 0,975mfgK w D

    d

    = +

    .

    ,

    : 0,5

    0,333Sh 0,24Ar

    dd

    =

    ; Ar

    [20]; dk du ( ), .

    O2 CO2 . - (. 1), (4), (5).

    ( )2 2O2

    O Op h

    mf p mf

    p

    w r w w rr

    w

    + = ;

    ( )2 2CO2

    O Op h

    mf p mf

    p

    w r w w rr

    w

    + = . (6)

    2Or 2COr COr - . O2

    pr CO2pr O2 CO2

    (. 1). 1

    ( 0,1, 0,5) [23]

    t, C , % .

    CO CO2 N2 650 17 11 72 750 27 5 68 800 32 2 66 850 33 1,55 65,45 900 33,5 1,1 65,4 950 34 0,65 65,35 1000 3,5 0,2 65,3

  • 1. . ., . ., . .

    78

    760...1000C 50C, (4)(7) , -

    ( ) ( )22 1 2 3 3

    3 2

    CO H

    1 0,21

    ( )

    rq C C t q q q q q q q qx

    C C t q q

    + + + +

    =

    .

    x ( 1x) , CO . xrCO , - , .

    xrCO . - . - CO.

    , CO

    3(1 ) xx q x=0,92, 820C, 3680/3.

    - 0,2. - 0,5, 0,32. ( 2, ), (% ): Wr=33; Ar=7,4; Cr=46,6; Hr=3; Nr=0,6; Or=13,2; Vdaf=47; Qri=15280/. - z*=0,1 1 , dk=0,32103, mf=0,2183/3, S7002/3. h=1. 25,4/, 1053/, - 503/, 13...553/, 820C. - 2%. . 2.

    2

    , % .

    2COr

    2Or

    2Nr

    COr 4CHr

    2Hr

    7,7 3,1 61,7 19,5 1,2 6,8 11,3 3,0 64,9 20,8 0 0

  • 79

    x 1x .

    w*=0,56/. -. . 2.

    1 0,65 760 1000C, 14 26%, Q 2400 4100/3, . . .

    . 2 N BxQ= , B ,

    3/, . N x=0,92, N=47.

    . 2. , - ,

    1 2,03.

    ,%: 2,0 3680 0,92 1002,0 100 44

    15280x ri

    Q xQ

    = = =

  • 1. . ., . ., . .

    80

    1. -

    , .

    2. - . 830C ( x=0,92), - 3860/3.

    3. , - - .

  • 81

    53.087.45 . . , . . , . . . ., . ., . .

    . ., . ., . .

    , ,

    , ... 16- - . - - -, , . - . - -.

    : , , , -, .

    In the real work the 16-channel automated measuring complex for measurement of temperature conditions of work of heat-transmitting system on the basis of steam adjustable heating of a traction site of the thermosyphon is considered. This complex consists of an analog-to-digital converter compatible to the personal computer, the multiplexer, temperature sensing devices. It allows to make in the automatic mode at the same time measurements of temperature in spatial-ly the points removed from each other with formation of a data file in memory of the computer. Examples of the interface of the working program for communication of an analog-to-digital con-verter with the computer are given.

    Keywords: measuring complex, ADC, automated measurements, thermosyphon, exchanger.

    - - - . . - - . - , 7 . . - - [1].

  • 1. . ., . ., . .

    82

    16- , - , . .

    16- - - - . . 1.

    . 1. :

    1 , 2 , 3 , 4, 5 , 6, 8 ,

    7 , 9 , 10 , 11 .

    12-, 16- 12 ( ) 16 0 +5 200

    ( ) : ) 12-, 16- - (. 2);

    1

    2

    3

    4

    5

    6

    7 8

    9

    10 11

    380V

  • , ...

    83

    . 2. 12-, 16- -

    ) 10- (. 3);

    . 3. 10-

    ) (. 4);

    . 4.

    ) COM-. : (-

    75), - ( 12), ( - 16 .), 1, - 10, RS-232.

    LM35, 50 150. ,

    GND 16 15 14 13 12 11 10 9

    GND 8 7 6 5 4 3 2 1

    LPT

    COM1

    +

    GND 110

    1 10

    1

  • 1. . ., . ., . .

    84

    1 10. - 0,25.

    10 , , RC- (. 5).

    . 5.

    (- ) - , LPT-, COM-. COM- 1- (COM-1), LPT.

    9 20. (- ), .

    , GND.

    , - Windows, XP.

    : ADC.exe ; Smport.sys WinXP; Smport.vxd Win9x; Data.txt ; Main.ini . ADC.exe. -

    (. 6).

    . 6.

    - Windows. .

  • , ...

    85

    . 7.

    : 1 , ; 2 .

    , ; 3 .

    ; 4 . x

    . cos, sin, tan, , /, +, ; 5 , ; 6 ; 7 , ; 8, 9 / . Excel.

    Excel. -

    , . , .

    1 2 3 4 5 6

    7

    8

    9

  • 86

    330.131.7 . . . .

    . .

    . , . - . - .

    : , , , spin-off , .

    The article describes a model of open innovation. The reasons for the transition to a model of open innovation and the main ways of its implementation were analyzed. Considerable problems and risks of using the model in Russia were identified. Recommendations to manage risk were given.

    Keywords: technology commercialization, open innovation, risks, spin-off, technology parks.

    - . - , . XXI - [3]. - - . - .

    . - . - . , , , . , [4]. - - - ( ), , .

    -: c , -, , -

  • 87

    , , - , - , . . [4]

    - . - ( ), ( -) . - -- . - - - , , - [5].

    . - - . , - , , , , .

    - , , . . . spin-ff-: -, [2].

    -, - [1]. . - , , . . , -. , .

    . - , , . . - . - , , -. .

  • 1. . .

    88

    1. . . // . 2001. 8.

    2. . . // . 2008. 1.

    3. . ., . - // . 2008. 1.

    4. . . . [. .]. .: , 2007.

    5. http://rostec.ru/about/strategy.

  • 89

    621.791.725 . A. , . . . A., . .

    . A., . .

    3D 3D

    3D ... (SLM) 3D . Digimat Ansys - . Al . -.

    : SLM, , , , Ansys, Digimat.

    The paper is devoted to computer modeling of temperature distributions and experimental data analysis of the selective laser melting process (SLM) in 3D printing technology, on the example of aluminum powder.

    Keywords: SLM, selective laser melting, laser radiation, modeling, Ansys, Digimat.

    - () 3D . - . , ( ) , - , , : , -, (), - , . . - , , , () .

    , - , . , , , .

    -, (20...100) -

  • 1. . A., . .

    90

    , , , - .

    , SLM - . , 1...1,1 , 25...65% [1] , - .

    , - , - .

    (1) - 12, - [2].

    , , , - , -, (V>103/) [2]. - .

    Digimat, - ( . .), - , , [3].

    [4]:

    22(1 ) 0,864 cyl

    Pe qR

    = = q ,

    P , R , .

    [5]

    ( )TC k T qt

    = +

    & ,

    , , k , -, q& .

    : : T=T0 ( -):

    qconv=h(TT0), qconv , h - .

  • 3D ...

    91

    Al , - 20, - 12 17%, (. 1). . , - Al 0,33, ~0,12.

    . 1.

    , - 28% .

    Digimat [3]. . 1 -

    SLM-. 1

    SLM 400 2 378 / 100 40 40 100 140

    20

    (. 2), (ALSI 310) , . 5 , 1. .

  • 1. . A., . .

    92

    . 2. ) )

    , - .

    : , (. 3). , : , () 160...220, 38...48, . . - , : , .

    . 3. 1497, III

    . . 3 4 14 -. 20%.

  • 3D ...

    93

    . 4.

    , : , 0,7 (. 5), - 650 (. 5) 230, .

    ) ) . 5. ) ) 3 -

    . , , -, , , (. 6).

  • 1. . A., . .

    94

    . 6.

    , - , (. 2). . . - 40- .

    2 1 2 3 4 5 , C 692 783 784 781 784

    , - 2- . 2378/ 55 (. 7).

    . 7.

    - , . - SLM, - , .

    . 1 , 180 55. , , . . : -

  • 3D ...

    95

    . - 2 , (. 8).

    . 8. -

    . - . - . .

    - - ( ).

    1. Yin J., Zhu H. et al. Simulation of Temperature Distribution in Single Metallic Powder Layer

    for Laser Micro-Sintering // Computational Materials Science. 2012. Vol. 53(1). P. 333339. 2. Digimatto Ansys. Document. Version 1.0. October 2007. P. 310. 3. Crafer R. C., Oakley P. J. Laser Processing in Manufacturing // Chapman & Hall.1993. Vol. 10.

    P. 195200. 4. Chen W.-L., Yang Y.-C., Lee H.-L. Estimating the Absorptivity in Laser Processing by Inverse

    Methodology // Applied Mathematics and Computation. 2007. Vol. 190(1). P. 712721. 5. . . . .: , 1984. 312 . 6. Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress

    Report // Wohlers Report. 2013. P. 130153. 7. . ., . ., . . ANSYSWORKBENCH: . . , 2013. 140 .

    8. Stefanescu D. M. Fundamentals of Solidification, Metallography and Microstructure. ASM Handbook, ASM International, 2004. Vol 9. 157 p.

  • 96

    535.376 . . , . . , . . , . . . ., . ., . ., . .

    . ., . ., . ., ...

    ... () 100 . 5 500...1250C. -, : - Al2O3 () -Al2O3 -Al2O3. , - 2,1...2,65, - F-. 1100...1250C - Cr3+ (1,78) Mn4+ (1,82).

    : -Al2O3, , , F-, .

    Anodic aluminum oxide (AAO) membranes with 100m thickness were synthesized in galvanos-tatic mode in oxalic acid solution. Obtained samples after annealing in 500...1250C range for 5h were analyzed by X-ray diffraction. Phase composition of annealed AAO changes in the following order: amorphous Al2O3 (cubic) -Al2O3 -Al2O3. It was found that there is a broad ca-thodoluminescence band in the region of 2,1...2,65eV due to F-type oxygen deficient centers in amorphous membranes. Intensive red emission caused by Cr3+ (1,78eV) and Mn4+ (1,82eV) impurities dominates in AAO samples with crystalline structure after high temperature annealing in 1100...1250C range.

    Keywords: -Al2O3, X-ray diffraction analysis, anodizing, F-centers, chrome and manganese ions.

    () - - [1]. , [2]. , , [3]. - () .

  • ...

    97

    (Al99,5%, Fe Si

  • 1. . ., . ., . ., ...

    98

    . 1.

    . , C

    1 2 500 3 700 4 900 Al2O3 () 5 1100 -Al2O3 -Al2O3 6 1200 -Al2O3 7 1250 -Al2O3

    . 2 . , - . 1 2...3 - 1,78. 2 3 : 2,1 2,65. 4- 2,4 1,78. 57 2,3...2,5 1,78 1,82.

    , (F-, F+-, F2- . .) , [79]. - , , 13. , -

  • ...

    99

    ( 47) - 1,78 1,82, Cr3+ Mn4+ [10], -. .

    2 3 4 50

    100

    ,

    0

    100

    500 oC

    0

    270

    700 oC

    0

    950

    ,

    .

    900 oC

    0

    3500

    1100 oC

    0

    4000

    1200 oC

    0

    4000 1250 oC

    . 2.

    , - , . , . -

  • 1. . ., . ., . ., ...

    100

    , - 2,1...2,65, - (F-, F+-, F2- . .). -Al2O3 1100C , Cr3+ (1,78) Mn4+ (1,82).

    1. Jani et al. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerg-

    ing applications / Progress In Material Sciences. 2013. 8. P. 636704. 2. Huczko A. Template-based synthesis of nanomaterials / Appl. Phys. A. 2000. 70. P. 365376. 3. Mukhurov N. I. et al. Influence of electrolyte composition on photoluminescent properties

    of anodic aluminum oxide / Journal of Applied Spectroscopy. Vol. 75. No. 2. 2008. P. 214218. 4. 618-73. . . ., 2002. 10 .

    5. Kirchner et al. Structural characterisation of heat-treated anodic alumina membranes prepared using a simplified fabrication process / Journal of Membrane Science. 2007. 287. P. 264270.

    6. Yuan et al. Mechanism of one-step voltage pulse detachment of porous anodic alumina mem-branes / Electrochimica Acta. 2006. 51. P. 45894595.

    7. Ning X., Kai-di M., Qian W. The photoluminescence and thermoluminescence properties of nanoporous alumina films which processed in different annealing conditions / Eighth Inter-national Conference on Thin Film Physics and Applications // Proc. of SPIE. 2013. Vol. 9068. P. 906811-112.

    8. Gao T., Meng G., Zhang L. Blue luminescence in porous anodic alumina films: the role of the oxalic impurities / J. Phys.: Condens. Matter. 2003. 15. P. 20712079.

    9. . . F- // . 2010. . 77. 4. . 591595.

    10. . ., . ., . . - / : , - : . . . . (, 1012 . 2013 .). 2 . . 2 // : ., 2013. C. 225229.

  • 101

    616-073.756.8-027.44:001.891.53 . . . .

    . .

    () , . . , - . - , . , -. , - . - , , - .

    : , , - , .

    Modern CT scanner is a complex system consisting of many components, the maintenance of which requires specialist who is knowledgeable in the technical component of the device and the biological effects of this method of research on the living organism. For training with the skills necessary for teaching special courses and laboratory stands, giving an idea of the principle of operation of such sophisticated diagnostic devices. Thus we made a detailed analysis of X-ray CT, chose prototype for the development of the laboratory stand. Was created block diagram of the laboratory stand, created a 3D model in a specialized software package and developed a sys-tem of rotation of the sample and recording the emission of radiation. Finally, we produced proto-type of laboratory stand by which students can work and learn how to work with computed to-mography in practice.

    Keywords: study of the principle of X-ray CT, a semiconductor laser radial light meter, the stepper motor.

    , . . - , . , - . - , , , , - . - , -, - , .

  • 1. . .

    102

    , , . , . - , - . . -- , . . - .

    , . , - , . . , -, , , -, - , , -, .

    . 600 800. - . - , , , , . , , -, .

    , . , . . - , - . - .

    W=5, I=40 (. 1).

    - . 620...760. - 600...800.

  • 103

    . 1.

    , - : . 3- - . , - - - (. 2). . - --.

    . 2.

    , (). , , - : . - , 0 120 11 11 . -, 3- . 3- , -. 3- , - . , -. 600 800.

  • 1. . .

    104

    ,

    , - , - . - . - (. 3):

    . 3.

    , , . .

    : , , , , . - . , . . , , .

    1. . . : . .: , 1987. 64 .

    2. . . : . . 2-, . . -: -, 2006. 380 .

    3. . ., . . . .: , 1988. 346 .

    4. : http://stepmotor.ru/.

  • 105

    544.018.2 . . , . . , . . , . . . ., . ., . ., . .

    . ., . ., . ., ...

    ... KCl-AlCl3 - . - d- . MoCl3, NiCl2 FeCl3 KCl-AlCl3 350. , .

    : , ; , -; , .

    Chloroaluminate melts are prospective media for the second loop of molten salt nuclear fast reac-tor. However the application of chloroaluminates in such technologies is limited by the problem of absences of information on the physico-chemical properties of typical fission products in such media. In the present study the electrochemical properties of MoCl3, NiCl2 and FeCl3 in melts KCl-AlCl3 at 350 were studied. It was also shown that cyclic voltammogrammetry can be used for estimation of corrosion products content of structural steels and alloys in the melt.

    Keywords: chloroaluminate melt, nickel chloride, molybdenum chloride, iron chloride, construction materials, cyclic voltammetry.

    , , - . , - . , - - .

    - (, ) Cl-AlCl3, .

  • 1. . ., . ., . ., ...

    106

    , .

    , -, , - (), . . . [1], Ni2+ El/2=+0,83 () AlCl3-NaC1-KCl - 60:26:14.% 140. NaAlCl4 (. 1) [2]. , 1,2 ( ) - , Ni2+ Ni, - Ni2+ .

    c. 1. (pC1=5,8), Ni2+ 175C. - 100/. Ni2+, /: A 1,215103, B

    7,3103, C 0. Fe/Fe2+ Fe2+/Fe3+ -

    AlCl3-NaCl , , -, [3]. - Fe3+/Fe2+ =1,4

  • ...

    107

    , Fe2+/Fe =0,62 .

    - AlC13-BPC A1C13-MEIC [4]. , MoCl5 - , [MoC16]2/[MoC16]3 (. 2). - - 0,1380,003 , - .

    . 2. AlCl3-MEIC (44,4/55,6.%) 40.

    50/. MoCl5: a 103, b 4,8103

    (. 3) - .

    , - ( , -), ( 99%, , Acros) MBraun Unilab . 0,9 1,35. - - 0,09 1.%.

  • 1. . ., . ., . ., ...

    108

    . 3.

    (Alfa Aesar, 99,95%) . - ( ) 250...300 6 . MBraun Unilab.

    KCl-AlCl3 ( K3MoCl6, ).

    / Autolab PGStat 302N, . , - GPES 4.9. - Microsoft Office Excel.

    , -- Optima 2100 DV (Perkin Elmer).

  • ...

    109

    , (KCl:AlCl31) - AlCl4, Al2Cl7 Ni2+ 0; 1,3 1,9 - (. 4). , .

    . 4. KCl-AlCl3-NiCl2. 200/. KCl/AlCl3=0,800,03. 0,33.%:

    14 , : 0,3...3,2; 0,1...3,2; 0,1...3,2; 1,0...3,2,

    . 5. KCl-AlCl3-NiCl2. 200 /. -

    KCl/AlCl3=1,120,03. , .%: 1 0,40, 2 0,21

    , , (. 5). , - NiCl42.

  • 1. . ., . ., . ., ...

    110

    , . , - , 600. , - Al2Cl7, : Al2Cl7+Cl2AlCl4.

    , d- [5], - K:Al

  • ...

    111

    . 7. KCl-AlCl3-MoCl3. 200/. KCl/AlCl3=1,09. 0,35.%

    - ( ) ( , - 1.%) (3505).

    KCl-AlCl3-NiCl2 , - , 600.

    , , Fe3+Fe2+ Mo4+Mo3+. , d- - , (, , ) , - - .

    1. De Fremont R.M., Rosset R., Leroy M. Polarographie dans leutectique chlorure daluminium

    chlorure de sodium chlorure de potassium fondu // Bulletin de la Socit Chimique de France. 1964. 4. P. 706.

    2. Gilbert B., Osteryoung R.A. Electrochemistry of Ni() and the Behavior of Oxide Ions in Chlo-raluminate Melts // Journal of the American Chemical Society. 1978. Vol. 100(9). P. 27252730.

    3. Boxall L. G., Jones H.L., Osteryoung R.A. Electrochemical Studies on Ag, Fe and Cu Species in AlCl3-NaCl Melts // Journal of the Electrochemical Society: Electrochemical Science and Tech-nology. 1974. Vol. 121(2). P. 212219.

    4. Charles L. L. Hussey. Molybdenum Chloro Complexes in Room-Temperature Chloroaluminate Ionic Liquids: Stabilization of [MoCl6]2- and [MoCl6]3-// Inorganic Chemistry. 1983. Vol. 22(15). 20992100.

    5. Karpov V. V., Volkovich V. A., Polovov I. B., Rebrin O. I. Solubility of Transition Metal Halides in Chloroaluminate Melts // ECS Transactions. 2014. Vol. 64(4). P. 211216.

  • 112

    53.043 . . , . . , . . , . . . ., . ., . ., . .

    . ., . ., . ., ...

    Ni- Ni-

    Ni- - , . : , . - , , - , . Ni-.

    : , , , -, .

    In the article, ordered nickel arrays were obtained by electrochemical deposition, structural and electrical properties depending on the pore diameter of template matrix were studied. Analysis of the deposition chronoamperograms showed the following: increasing diameter of pores and porosity of the template matrix lead to increasing time of nanostructures deposition. X-ray diffrac-tometry studies showed that the samples are mono-phase with FCC structure and the crystal lattice parameter different from the reference value. Increasing the diameter of nanotubes and surface conductivity lead to decreasing resistance and the conductivity of Ni-nanotubes was increased.

    Keywords: nanotechnology, nanotubes, track membranes, magnetic nanotubes, nanowires

    , , . . - . , , , 50/2, . - 100 , - .

    -: -, . - , ,

  • Ni-

    113

    . . , - - . - Ni - - , [111].

    -, - , - . , - . , , , . -.

    , - .

    - Hostaphan - Mitsubishi Polyester Film () 4,0+0,7, 12 180 380. DC-60, 1,75/. - 1,5 . : NiSO46H2O (100,14/), H3BO3 (45/), 686 (1,5/).

    - Agilent 34410A . Hitachi TM3030 Bruker XFlash MIN SVE 15. - - JEM-100 100.

    D8 ADVANCE u-

  • 1. . ., . ., . ., ...

    114

    . : 40, 40. 20...100 2, 0,02 2. , . . >1.

    HP 66312A Agilent 34401.

    4,0+0,7/2, 12. 2NaOH 85,00,1C : 1,0% . . 1 - .

    . 1. .

    1,5. . 2 -.

    160

    240

    320

    400

    150 200 250 300

    ,

    ,

  • Ni-

    115

    . 2.

    :

    ( ), . -, . . - - .

    - , . 3, -, 12 .

    - . , . 4, , 99,5% , 0,5% , , - .

    4

    8

    12

    16

    0 400 800 1200

    ,

    ,

    180

    250

    300

    380

  • 1. . ., . ., . ., ...

    116

    180

    250

    300

    380

    . 3. - Ni-

    180

    250

    300

    380

    . 4. Ni-

    2 4 6 8 10 12 14keV

    0

    1

    2

    3

    4

    5

    6

    cps/eV

    Ni Ni

    2 4 6 8 10 12 14keV

    0

    1

    2

    3

    4

    5

    6

    cps/eV

    Ni Ni

    2 4 6 8 10 12 14keV

    0

    1

    2

    3

    4

    5

    6

    cps/eV

    Ni Ni

    2 4 6 8 10 12 14keV

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5 cps/eV

    Ni Ni

  • Ni-

    117

    - (). - . 5. . 5 -, .

    180

    250

    300

    380

    . 5. Ni- Ni-

    . 2=10...100 0,03 9 . , , - , . . 6 - . - , (52), -. . 6.

  • 1. . ., . ., . ., ...

    118

    )

    )

    . 6. ) Ni-; ) Ni-

    , .

    3,516

    3,519

    3,522

    3,525

    150 220 290 360

    ,

  • Ni-

    119

    ,

    ,

    2 ,

    FWHM L,

    180 -Ni:

    =(3,51730,0007)

    44,559 0,402 28,97 51,930 0,654 20,58

    L=24,77

    250 -Ni:

    =(3,51900,0004)

    44,540 0,398 29,25 52,020 0,719 18,75

    L=24,00

    300 -Ni:

    =(3,52220,0008)

    44,517 0,400 29,09 51,885 0,581 23,14

    L=26,11

    380 -Ni:

    =(3,52370,0005)

    44,523 0,402 28,95 51,861 0,584 23,01

    L=25,98

    , . . . . , , , , , . , , , . - . . 7. -, Ni-.

    . 7.

    Ni-

    0,8

    0,815

    0,83

    0,845

    160 240 320 400

    ,

    ,

  • 1. . ., . ., . ., ...

    120

    - , - . Ni- - , , , . : . - - , 12 . , 99,5% , 0,5% , , . , , - , . - - Ni-.

    , 45 12.02.2015 .

    1. Hulteen J. C., Martin C. R., Mater J. Chem. V. 7. 1997. P. 1075. 2. Chakarvarti S. K., Vetter J. Radiation Measurements. V. 29. 1998. P. 149159. 3. Piraux L., Dubous S., Demoustier-Champagne S. Nuclear Instr. Meth. Phys. Res., V. B 131.

    1997. P. 357. 4. Fink D., Petrov A. V., Rao V. et al. Rad. Meas. V. 36. 2003. P. 751. 5. Foss C. A., Hornyak G. L., Stockert J. A., Martin C. R. Journal of Physical Chemistry. V. 98.

    1994. P. 2963. 6. Martin C. R. Advanced Materials. V. 3. 1991. P. 457. 7. Martin C. R., Parthasarathy R. V., Menon V. Synthetic Metals. V. 55. 1993. P. 1165. 8. Xiang-Zi Li, Xian-Wen Wei, Yin Ye. Materials Letters. V. 63. 2009. P. 578580. 9. Dionde A., Meier J. P., Doudin B., Anserment J. Ph. Appl. Phys. Letters. 1994. V. 65(23),

    P. 30193021. 10. Sellmyer D. J., Zheng M., Skimski R. Magnetism of Fe, Co and Ni nanowires in self-assembled

    arrays. // J. of Phys. Condens. Matter V. 13: R433. 2001. 11. Chien C. L. Granular magnetic solids. // J. Appl. Phys. V. 69. 1991. P. 5267.

  • 121

    538.913 . . , . . . ., . .

    . ., . .

    - . , , . - .

    : , Valence Force Field, .

    In the article the research has been conducted to determine the quantum states of the vibrational motion of atoms in amorphous silicon nanowires. The effect of a strong drop in phonon group velocities and lattice thermal conductivity is observed in such nanocompounds, explained by size quantization of the phonon spectrum due to a disordering of atomic bonds that form quasi-one-dimensional nanostructures. The conducted investigations show the prospect of amorphous nan-owires' using as semiconductor thermoelectric cells to convert thermal energy into electrical ener-gy.

    Keywords: quasi-one-dimensional amorphous nanostructures, Valence Force Field model, phonon transport.

    [13]. [4, 5]. , , [6]. - - . , - ; -, . - , .

  • 1. . ., . .

    122

    , - , - .

    , , [710]. (a-Si) [11]. , , , , - . , , , - . - (c-Si) , - . . , -. , . - . - .

    - . - (. 1) - (ML). - , Valence Force Field (VFF) - [12, 13]. : stretching, bending, stretching-stretching, stretching-bending bending-bending.

    i

    2,

    ( ) ( , ) ( , ) ( , ) ( , , ) ( , ) j

    M i u q i D i i u q i D q i j u q j= + r r r r , (1)

    , , , x y z= . (1) qr , 2 ur ( - , ), M(i) i, D

  • 123

    ( , )( , ) ( , ); ( , , ) ( , ) iqn j i j j

    D i i i j D q i j i j e rrr , (2)

    ( , ) i j , ( , ) i jn i j r r= r r r

    - i j.

    . 1. 8ML8ML ( )

    ( ) 90% [100] VFF

    . 1 , -, , 64 85 90% . , -. , (. 1, ) 53 , (. 1, ) 35 , - - - .

    , - (3) (4) - (rep ) ( DOS, . 2, 3)

  • 1. . ., . .

    124

    ( , . 4) - (amorph90%). , , -:

    0% 0%

    lim ( ) lim ( ) 1g

    for all nanostructures for all nanostructuresDOS vamorph amorph

    rep amorph rep amorph< > = . (3)

    8 8 8 890% 90%

    lim ( ) lim ( ) 120g

    NW x MLs NW x MLsDOS vamorph amorph

    rep amorph rep amorph< > = . (4)

    . 2.

    1, 60, 120 180 88MLs 90% -

    . - (. 3), . , [13], - .

  • 125

    . 3.

    . 4.

    Si-

    (. 4). - , ,

  • 1. . ., . .

    126

    . 50% - - . - , - , - , - .

    (. 5) 1D, [13]:

    max

    2 21 2

    , 21 2 0

    ( )exp( )( )1 ( ) ( ) ( )

    ( )2 (exp( ) 1)

    s

    q s B

    D s tot s s sB

    B

    E q q k T

    E dqE qk T d d qk T

    =

    , (5)

    kB , d1 d2 , ( )tot s ,

    , E = h , s -. - , , , [14].

    . 5. 88MLs 25, 50, 90% ( 15 )

  • 127

    - - : , , 88 , -, 4,5/ 2,8/ - .

    - , -. - - . - , , - , - , , . figure of merit ZT=S2T/(ph+el) - (ph el ), - (- S) ZT . - - .

    - 15.817.02.29F ASM-STCU-5937.

    1. Zorn R. Boson peak in confined disordered systems // Phys. Rev. B. 2010. Vol. 81. P. 054208-1

    054208-10. 2. Schirmacher W., Diezemann G., Ganter C. Harmonic Vibrational Excitations in Disordered

    Solids and the Boson Peak // Phys. Rev. Lett. 1998. Vol. 81. P. 136139. 3. Finkemeier F., von Niessen W. Boson Peak Amorphous silicon: a Numerical Study // Phys.

    Rev. B. 2001. Vol. 63. P. 235204-1235204-6.

  • 1. . ., . .

    128

    4. Wada H., Kamijoh T. Thermal Conductivity of Amorphous Silicon // Jpn. J. Appl. Phys. 1996. Vol. 35. P. L648L650.

    5. Lee Y. H., Biswas R., Soukoulis C. M., Wang C. Z., Chan C. T., Ho K. M. Molecular-dynamics simulation of thermal conductivity in amorphous silicon // Phys. Rev. B. 1991. Vol. 43. P. 65736580.

    6. Inoue A., Hashimoto K. Advances in Materials Research: Amorphous and Nanocrystalline Ma-terials. Berlin: Springer, 2001.

    7. . . .: , 1986. 8. ., ., . : -. .: , 1982.

    9. Liu X., Feldman J. L., Cahill D. G., Crandall R. S., Bernstein N., Photiadis D. M., Mehl M. J., Papaconstantopoulos D. A. High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film // Phys. Rev. Lett. 2009. Vol. 102. P. 035901-1035901-4.

    10. Freeman J. J., Anderson A. C. Thermal onductivity of Amorphous Solids // Phys. Rev. B. 1986. Vol. 34. P. 56845690.

    11. Zallen R. The Physics of Amorphous Solids. New York: Wiley InterScience, 1998. 12. Camacho D., Niquet Y. M. Application of Keating's Valence Force Field Model to Non-ideal

    Wurtzite Materials // Physica E. 2010. Vol. 42. P. 13611364. 13. Crismari D. V., Nika D. L. Thermal Conductivity Reduction in Si/Ge Core/Shell Nanowires //

    J. of Nanoelectronics and Optoelectronics. 2012. 7(7). P. 701705. 14. Nika D. L., Cocemasov A. I., Crismari D. V., Balandin A. A. Thermal Conductivity Inhibition

    in Phonon Engineered Core-shell Cross-section Modulated Si/Ge Nanowires // Appl. Phys. Lett. 2013. Vol. 102. P. 213109-1213109-5.

  • 129

    539.213.2 . . , . . , . . , . . . ., . ., . ., . .

    . ., . ., . ., ...

    ... -/ / (: Ir, Au, Ag .) , ( ).

    : , -, , .

    Analyzing MD simulation data on the thermic evolution of G/M, Si/M interface there are have been established the specificities and criteria of functional stability of atomic, electron (conserving Dirac cone) structures, as main condition of excellent electronic properties (superconductivity including).

    Keywords: graphene, ring clusters, thermal stability, silicone.

    - Si, Sn Ge [15]. , CVD () , Si [3], Ge [4].

    in situ - . - (DFT-TB) () - n- -, - (, ) [2]. - - , - ( , (111)-Ni) (N~5), - [6, 7]. - , .

  • 1. . ., . ., . ., ...

    130

    , - ( , / , /Si) (-), , . [2].

    - [1, 2], [3, 5] [5] - - CN/Me, SiN/Me, - , - 2D- (CN, SiN) , - .

    - , , - - -C , - [2]. , (TMe) (G-2D- ) - * C (. . , - , ). (G/Ni: Ec=91,331022/C u/G: Ec=24,811022/C), , . . 18,70 Ni/G 2,92 u/G [2]. , - Cu/G - - .

    EAM - Ni, Cu - TB tight binding - [2] Pd), - , TM/G. . VIII (Fe, Co, Ni) Pd ( ) , [5]. Al, Cu, Ir, Ag, Au Pt (2- ) , - sp2 sp3, , - - d- (111).

  • ...

    131

    . 1. 1300K 200

    - (111) (Ni/G1/Ni) [2]

    Me/G- - - (residual), (transfer length [6]). , - Rc Rt (-) Rc=1/2(RtRG), RG - /G, , (: back-gate) SiO2/Si (

    2SiOd ~90). Rc Me (Al, Au,

    Ag, Pd, Ni, Ti) I (RG=V/I - V I ) , d- Al/G.

    (. 2), , E- 1 11 8- - [6]. , - - ( E-~40).

  • 1. . ., . ., . ., ...

    132

    . 2. Rc(T)/Rc(297K)

    nL (n=1...12): Cr/Au (10...20) 2L, 3L, 14, 200 ( );

    Ti/Au (10...20) 8L, 12L ; Ni (25) 1L [6]

    / / - () Dxy Dz, - , - ( xy Dxy, - Dz, - - , , 2 xyr

    2z ). -

    Cu Ni, Gn (. . : n=1, 2) [2]. - - (: Ni/G/Ni, . 1) Ni Al (Ni/Al/G/Ni) . 3.

    , Ni- (. 1) (. 3, (I)) ( Pd/G), (. 3, (II)), ( - , Pd/G, Cu/G) - G [2].

  • ...

    133

    Ni (Dxy) (Dz) 1800K - Ni, (2-3%) -, .

    (I)

    1000 1500 2000 2500 30000,00

    0,05

    0,10

    0,15D

    Z, 1

    0-6

    2 /

    T, K

    0,0

    0,5

    1,0

    DXY

    , 10-

    6

    2 /

    (II) . 3.

    Dxy Dz : (I) Ni ( 1) Ni/G - Ni/G/Ni ( 2 3, Ni) [7];

    (II) Al Ni/Al/G/Ni [5]

    ( -) () - - (111) (001)-Ag, (111)-Pt [3]. (), SiN - (111) Ag, Ir, Au, 2D- GeN Pt, . . ( - Au) [6] 4 . ( Si-Me 1,6), (), sp2/sp3 , Si- ( [2]). , 2D-() SiN (111)-Ag 3D-.

  • 1. . ., . ., . ., ...

    134

    - (~105...106/) [15] ( E(k) ).

    (111)-Ag, , sp2 , (111)-Rh sp3- , 3D-.

    . 4. (I-III) [5],

    , Si (111)-Ag [8]:

    () , () . (111)-Ag Z (~0,1)

    .

    (111)-Ag - sp2/sp3 - SiN. Me/ ( - ), 2D-SiN - ( E(k)), (. 4) ( -) [3].

    (. 5) , - (. 5) . (- : L, M, T .) - , ( kxkx, ).

  • ...

    135

    ) ) ) ) . 5. :

    ) ) (k=2/R) - Ag () ( - ) ();

    ) ( ) ; ) [11]

    - - 3p-Si 4d-Ag. (=12...21, =15...118), sp2/sp3 [4]. , 3p , , - sp2-.

    ( Al d- Cu, Ag, Pt, Au) Ni, Ti, Co, Pd pz- d- [5]. - () - , Me/G/Me ( CVD) , (. . d- : Au, Cu, Pt, Al [5]). , - [2] (-) - . - / (M:Ag, Pt, Au Ir) - , , sp2/sp3 [3].

  • 1. . ., . ., . ., ...

    136

    ab-initio Ag - [2]. - Pt, Al Au . - - , - .

    [2] [4] (31/231/2) 2D-Si (111)-Ag Si Ag. - /Ni - (M:Na, K, Cs [5]), sp- ( Al, . 6) d- (Au, Cu) Ni (. 6) [5] - . - ( ) - Si- .

    Ni Al Ni

    ) ) . 6. Ni/Al/G/Ni:

    Ni, Al G (a), () (111)-Ni

    - (. 5), - , *- , ( ) ( ) , - , vF=3106/ . E(k)=hvFk,

  • ...

    137

    , () ( ). -, E(k) k. ( ) .

    , /, , /, - , - sp2sp3 - 3D- - ( ). - : - Cu, Au, Al, - .

    1. Kosimov D. P., Dzhurakhalov A. A., Peeters F. M. Carbon Clusters: from Ring Rtructures

    to Nanographene // Phys. Rev. B. 2010. Vol. 81. P. 195414. 2. Polukhin V. A., Vatolin N. A. Stability and Thermal Evolution of Transition Metal and Silicon

    Clusters // Russ. Chem. Rev. 2015. Vol. 84(5). P. 498539. 3. Vogt P., De Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M. C., Resta A.,

    Ealet B., Le Lay G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon // Phys. Rev. Lett. 2012. Vol. 108. P. 155501.

    4. Dvila M. E., Xian L., Cahangirov S. Germanene: a Novel Two-dimensional Germanium Allo-trope Akin to Graphene and Silicone // New J. Phys. 2014. Vol. 16. P. 095002 (110).

    5. Generalov A. V., Voloshina E. N., Dedkov Y. S. Structural and Electronic Properties of Gra-phene-Based Junctions for Spin-Filtering: the Graphene/Al/Ni(111) Intercalation-Like Sys-tem // Appl. Surf. Sci. 2013. Vol. 267. P. 811.

    6. Polukhin V. A., Kurbanova E. D. Dependence of the Thermal Stability of the Interface States of d Metals (Cu, Pd, Ti, Ni) and Al with Graphene on the Character of Sorption and Diffusion Mobility in a Contact Zone // Russian Journal of Physical Chemistry A. 2015. Vol. 89. 3. P. 531546.

    7. Galashev A. Y., Polukhin V. A. Computer Investigation of the Stability & Structure of Si & SiO2 Nanoparticles. USA, New York: Nova Science Publishers, Inc., 2012.

  • 138

    070.1 + 32.001 . . , .