40
ハハハハハハハハハハハハハハ ハハハハハハハハハハハハハハ Hypernovae and Black Holes Hypernovae and Black Holes 野野野(Nomoto, Ken’ichi) 野野野(Maeda, Keiichi) 野野野野野野野野野野野野野野野野野野 University of Tokyo, School of S cience, Department of Astronomy

ハイパーノバとブラックホール Hypernovae and Black Holes

  • Upload
    arnon

  • View
    38

  • Download
    3

Embed Size (px)

DESCRIPTION

ハイパーノバとブラックホール Hypernovae and Black Holes. 野本憲一 (Nomoto, Ken’ichi) 前田啓一 (Maeda, Keiichi) 東京大学大学院理学系研究科天文学専攻 University of Tokyo, School of Science, Department of Astronomy. E ~ 30×10 51 ergs. E ~ 1×10 51 ergs. SN 1998bw. SN 1987A. =. SN 1998bw. - PowerPoint PPT Presentation

Citation preview

Page 1: ハイパーノバとブラックホール Hypernovae and Black Holes

ハイパーノバとブラックホーハイパーノバとブラックホールル

Hypernovae and Black HolesHypernovae and Black Holes野本憲一 (Nomoto, Ken’ichi)前田啓一 (Maeda, Keiichi)

東京大学大学院理学系研究科天文学専攻University of Tokyo, School of Science, De

partment of Astronomy

Page 2: ハイパーノバとブラックホール Hypernovae and Black Holes

SN 1998bw

=

SN 1987A

E ~ 30×1051ergs E ~ 1×1051ergs

Page 3: ハイパーノバとブラックホール Hypernovae and Black Holes

SNe Ic SNe IInSN GRB SN GRB

1998bw 980425 1997cy 9705141997ef 971115 1999E 9809101999as 1988Z2002ap 1999eb 9910021997dq1998ey1992ar

Hypernova CandidatesEkinetic > (5-10)×1051ergs SN 1998bw

GRB 980425

Page 4: ハイパーノバとブラックホール Hypernovae and Black Holes

• Observations: Spectra, Light Curves– Progenitors, Energetic, M(56Ni)

• The properties of Hypernova Explosions– Features unexpected by spherical models– Black Hole Formation

• Jet-Driven Explosion Model– Explains the above features?– Predictions

• Evolution of the central black hole. • Nucleosynthetic features (e.g., 56Ni)• Gravitational wave (?) - Optical Display - Abundances

Page 5: ハイパーノバとブラックホール Hypernovae and Black Holes

Possible Gravitational Wave from Hypernovae?

• MBH ~4M

• Low Viscosity Case M (R<300km)– 0.0033 M

• High Viscosity Case – 2.21 M– j~1017 cm2s-1

• Self-Gravity• Large EROT/|EGRAV|

Macfadyen et al. 1998

Page 6: ハイパーノバとブラックホール Hypernovae and Black Holes

Bar Mode Instability?

R ~100km at Bounce

M~1M

J Conserve

j~1016cm2s-1

R ~100kmMDISK~2M

J Conserve

j~1017cm2s-1

h~4×10-20 (1Mpc/D) (j/1017cm2s-1) (M/M) (f/1000Hz)

f~1000 (j/1017cm2s-1) (100km/R)2 e.g., Fryer et al.2002

SN at 10Mpc (1SN/year); f~100 Hz, h~4×10-

23

HN at 100Mpc (1HN/year); f~1000 Hz, h~8×10-22

Page 7: ハイパーノバとブラックホール Hypernovae and Black Holes

Ia

Ic

Ib

94I

97ef98bw

HeCaO

SiII

Hyper  -novae

Spectra of Supernovae & Hypernovae

Hypernovae :   broad features     blended lines   “ Large mass at hi

gh velocities”

Ic: no H,

no strong He,

no strong Si

Page 8: ハイパーノバとブラックホール Hypernovae and Black Holes

Light Curves of Supernovae & Hypernovae

Light Curve Broadness

SN1998bw >> SN1994I

Ejected Mass

SN1998bw >> SN1994I

Progenitor’s Mass

SN1998bw >> SN1994I

Page 9: ハイパーノバとブラックホール Hypernovae and Black Holes

Parameters [Mej, E, M(56Ni)]

Si

C+O

HeH-rich

MC+O

Fe Collapse56Ni

56Co

56Fe

Mms/M MC+O/M

~ 40 13.8~ 35 11.0~ 22 5.0

Light Curve Spectra

~ [dyn • diffusion]1/2

~ • RV R c

Mej 1/2

½Mej¾E -¼

E Mej3

E Mej

CO Star Models for SNeIc   

56 Ni

Page 10: ハイパーノバとブラックホール Hypernovae and Black Holes

Spectral Fitting: SN1997ef

Model

Normal SN

Small Mej

Too Narrow Features

Page 11: ハイパーノバとブラックホール Hypernovae and Black Holes

Spectral Fitting: SN1997ef

Model

Hypernova

Large Mej

Broad Features

Page 12: ハイパーノバとブラックホール Hypernovae and Black Holes

Progenitors’ Mass – E – M(56Ni)

Page 13: ハイパーノバとブラックホール Hypernovae and Black Holes

Most Stars (>25M) explode as Hypernovae?

• The Contribution of Hypernovae is Large.– Hypernovae are Not so Rare Events.

Page 14: ハイパーノバとブラックホール Hypernovae and Black Holes

Distribution of HNe

Distance – Absolute Magnitude of SNe Ib/c

10 100 Mpc

• 1 HN per 1 year in R<100Mpc.

• 1 SN per 1 year in R<10Mpc.

Page 15: ハイパーノバとブラックホール Hypernovae and Black Holes

Hypernova Rate

• Large Fraction of Massive O (or He) Star with M>20M Explodes as Hypernovae. Depending on Binary Evolution?

Local SN Rate (SN/100yr/1010L) h=H0/100

Ia Ib/c II All0.36±.11h2 0.14±.07h2 0.71±.34h2 1.21±.36h2

Corrected1)

Observed2) 111 18 54 1831)Cappellaro et al. 99, 2)Richardson et al. 01

HNIb/c

SNIb/c= 3(+1+2)/18

~ 0.15 – 0.3

N(20M-50M)

N(8M-20M)~ 0.3 (Salpeter IMF)

Page 16: ハイパーノバとブラックホール Hypernovae and Black Holes

Properties of Hypernova Explosions

(1) Deviation from spherical explosion models(2) Black hole formation

Page 17: ハイパーノバとブラックホール Hypernovae and Black Holes

1) Asphericity in Core-collapse SNe (in general)

HST Image of SN1987A

Wang et al. 2002Optical Spectropolarimetry of

SNe 1993J, 1996cb, Wang et al. 1999

SN1987A: Asymmetrical, but not spherical, ejecta

Optical Polarization in core-collapse SNe > 0.5 %(in SNe Ia < 0.2 - 0.3%)

Page 18: ハイパーノバとブラックホール Hypernovae and Black Holes

1998bw

1997ef

2002ap

1998bw

1997ef

2002ap

High Density

Spherical Hydro Model

Low Density

(Vacuum)

2) Light Curves of Hypernovae

Maeda et al. 2003, ApJ, submitted

Page 19: ハイパーノバとブラックホール Hypernovae and Black Holes

ObserverExpansion

Fe

O

Spherical

FeII] 5200A

[OI] 6300A

Observation

FWHM

3) Late time spectra of SN1998bwLine Width Inversion between Fe and O

Broader Fe lines than O lines in the observations.

Low velocity O-rich Matter: SNe1998bw, 1997ef

Page 20: ハイパーノバとブラックホール Hypernovae and Black Holes

56Fe

16O

Spherical

Aspherical

15 deg

FeII] 5200A

[OI] 6300A

Maeda et al. 2002

Observation

Interpretation as an Aspherical explosion

Page 21: ハイパーノバとブラックホール Hypernovae and Black Holes

• Enhancement of O,Mg,Si,S,Ti by a factor of 6-10. Israelian et al. 1999

Abundances in Nova Sco

-0.5

0

0.5

1

1.5

N O Mg Si S Ti Fe

[X/H

]

SN matter

BH

[X/H]=log10(X/H)-log10(X/H)

4) BH Formation

Page 22: ハイパーノバとブラックホール Hypernovae and Black Holes

Hypernova model for the formation of the BH in Nova Sco

Abundance in Nova Sco

00.20.40.60.8

1

He C O Ne Mg Si S Ca Ti Fe

[X/H

]

E51=30BH mass in the model

4.8M at the explosion

5.4M now (Post SN)

SN

BH

MMS=40M, MHe=16M, E51=30

MBH at the explosion ~ 5M

Black hole formation with a Hypernova explosion.Podsiadlowski et al. 2002

Page 23: ハイパーノバとブラックホール Hypernovae and Black Holes

The properties of hypernova explosions

• High velocity material (Fe)• Low velocity & high density material (O)

– Contrary to conventional spherical models. • forms a black hole, but explodes with large

E51 (= E/1051ergs > 10).– Black hole formation does not always leads to

a failed supernova.

Do jet-induced explosions satisfy these conditions?

Page 24: ハイパーノバとブラックホール Hypernovae and Black Holes

16MHe (MMS=40), 8M

He (MMS=25), (Nomoto&Hashimoto 1988)

MRem0 1.0 – 3.0M

Ejet = Mc2 , 0.01

Model: Jet-induced Explosion

Newtonian  Gravity

Radiation+ Pairs 15o

Postprocessing

222 isotopes (Tielemann et al.)K. Maeda, in preparation

Page 25: ハイパーノバとブラックホール Hypernovae and Black Holes

Hydrodynamics

Collimated jets (Z) + Bow shock (All direction)

M Lateral expansion

Radial Velocity/cLog (Density[g cm-3])

R/1010cm

Page 26: ハイパーノバとブラックホール Hypernovae and Black Holes

Hydrodynamics (Center)

Accretion from the side

Continue to accrete, MBH

Radial VelocityDensity

R/1010cm

Page 27: ハイパーノバとブラックホール Hypernovae and Black Holes

0.7 s

1.5 s

E51=11, MBH(final)=5.9M, M(56Ni)=0.11MOutflow

Inflow

R/1010cm

Page 28: ハイパーノバとブラックホール Hypernovae and Black Holes

Density Distribution

Jet (z) (E51=11)

Jet (R)

Sph (E51=10)

Sph (E51=1)

High density core at the central region

High velocity material along z

Page 29: ハイパーノバとブラックホール Hypernovae and Black Holes

Growth of a central remnant

Time (sec)

MBH

20 400

4

8 Inefficient Jet

efficient Jet

MREM can be ~ 5 – 10M, starting from 1.5 – 3M.

Still a strong explosion follows (E51>10).

A hypernova with a stellar mass black hole (X-ray Novasco; Large Si,S with black hole formation).

Page 30: ハイパーノバとブラックホール Hypernovae and Black Holes

Final Remnants’ masses and Kinetic Energies

• A more massive star makes a more energetic explosion         (As seen in ‘Hypernova Branch’).

11 6.9

1.95.9

E51=E/1051ergs MBH(M)

Page 31: ハイパーノバとブラックホール Hypernovae and Black Holes

Peak Temperature & Density

• High T + Low Material are preferentially ejected.

R

Z

R

ZEjected

Accreted

T/109K

0

4

8

Log(Density[g cm-3])864

Spherical

Ejected Accreted

Page 32: ハイパーノバとブラックホール Hypernovae and Black Holes

High Velocity Fe Low Velocity O

6

4

2

02 4 6

Vz (/109cm s-1)

0.50.10.01

E51(=E/1051ergs)=10, MREM=6M, M(56Ni)=0.1M

16O56Ni(56Fe)

Fe, O Distribution

Vr

Page 33: ハイパーノバとブラックホール Hypernovae and Black Holes

Relation in MREM and M(56Ni)

(M)

(M)

L Opt

ical

Efficient

e.g., rotation

inefficient

40M

20M

GW: GW:

Page 34: ハイパーノバとブラックホール Hypernovae and Black Holes

Fe

MnO

Zn

Velocity Inversion of isotopes

V(Fe) > V(O), V(Zn) > V(Mn)

Spherical; Zn Fe Mn O

T , Inner (smaller V)

Ejection of heavier isotopes with higher V

Prediction

Page 35: ハイパーノバとブラックホール Hypernovae and Black Holes

Jet (Z) Jet (R)

Spherical Jet (all direction)

O Fe and heavier

Page 36: ハイパーノバとブラックホール Hypernovae and Black Holes

Spherical, 1052ergs, 0.1M Ni

Jet-Driven, 1052ergs, 0.1M Ni

O, MgMn

Co, Zn

Abundances in the whole ejecta

Page 37: ハイパーノバとブラックホール Hypernovae and Black Holes

Possible Contribution to the early Galactic Chemical Evolution

Jet model: [Zn/Fe] ,[Mn/Fe]

Agrees with the abundances in old stars.

Past

[X/Y] = log(X/Y) – log(X/Y)

More Massive Star

Page 38: ハイパーノバとブラックホール Hypernovae and Black Holes

-1

-0

.5

0

-1

-0

.5

0

[S/Si]

-0.6

-0

.4

-0.2

0

-0.6

-0

.4

-0.2

0

[Si/O]

40M25M

MBH/M

0 1 2 30 5 10

56Ni

S Si O

Accretion

Sph

Jet

Accretion

[S/Si],[Si/O]

Page 39: ハイパーノバとブラックホール Hypernovae and Black Holes

0 5 10 0 1 2 3MBH/M-0

.2

0

0.2

0

.4

-0.2

0

0

.2

0.4

-1.4

-1

.2

-1

-0

.8

-1.4

-1

.2

-1

-0

.8

40M25M

[Mg/O]

[C/O]

O,Mg C

Accretion

Sph

Jet

Accretion

[Mg/O] ,[C/O]

Page 40: ハイパーノバとブラックホール Hypernovae and Black Holes

Summary• The studies on hypernovae indicate;

– Velocity inversion of Fe and O – Dense core– Black hole formation

• Jet-induced explosions satisfy the above condition!– Blow up heavy isotopes (e.g., Fe, Zn) to the surface.– A black hole grows, with an energetic explosion.

• Possible site of gravitational wave emission?• Depending on angular momentum, HNe may be able to be detect

ed more easily than normal SNe.

– MBH efficiency of the jets (e.g., rotation?)

– MBH ( inefficient Jets) LOpt

– MBH Abundances (e.g., MBH [S/Si], [O/C] )