11
13 2013 交通运输工程学报 JournalofTrafficandTransportationEngineering Vol.13 No.4 Aug .2013 犚犲犮犲犻狆狋 犇犪狋犲 20130412 犚犲狊犲犪狉犮犺犘狉狅犼犲犮狋狊 NationalNaturalScienceFoundationofChina 51208054 ); SpecialFundforBasicScientificResearchofCentralColleges 2013G1211005 CHD2011JC056 犃狌狋犺狅狉 犚犲狊狌犿犲 LIYan 1983 ), Male Hengshui Hebei LecturerofChanganUniversity PhD ResearchonTrafficSignalControl 862982334636 lyan chd.edu.cn. 文章编号16711637 2013 04011611 过饱和状态交通信号控制方法综述 赵志宏 李鹏飞 黄身森 陈宽民 1. 长安大学 公路学院陕西 西安 710064 2. 长安大学 信息工程学院陕西 西安 710064 3. 东南大学 交通学院江苏 南京 210096 4. 阿尔伯塔大学 智能交通中心阿尔伯塔 埃德蒙顿 T6G2R3 为向拥堵状态城市路网的交通控制优化提供依据综述并评价了过饱和状态的交通信号控 制策略分析了过饱和状态交通流的特征提出了过饱和状态交通信号控制的对应优化原理从单 点交叉口协同控制交叉口及路网 个层次对过饱和状态交通控制方法进行了总结与评价应用 VISSIM 仿真环境评价了已有控制策略的适用性总结了具备处理过饱和状态能力的自适应交通 信号控制系统的控制策略仿真结果表明过饱和状态的交通信号控制应优先优化道路空间的分 配矛盾排队管理策略对过饱和交通流具有较好的优化效果建议在进行过饱和交通信号控制优化 结合实时交通信息采用排队管理关键路径通行能力最大等控制策略在交叉口群或路网层面 对交通信号控制方案进行优化关键词交通信号控制过饱和状态控制策略排队管理交通仿真 中图分类号U491.51 文献标志码犚犲狏犻犲狑狅犳狋狉犪犳犳犻犮狊犻 狀犪犾犮狅狀狋狉狅犾犿犲狋犺狅犱狊狌狀犱犲狉狅狏犲狉狊犪狋狌狉犪狋犲犱犮狅狀犱犻狋犻狅狀狊 LIYan ZHAOZhihong LIPengfei HUANGShensen CHENKuanmin 1.SchoolofHighway ChanganUniversity Xian710064 Shaanxi China 2.SchoolofInformation Engineering ChanganUniversity Xian710064 Shaanxi China 3.SchoolofTransportation SoutheastUniversity Nanjing210096 Jiangsu China 4.CentreforSmartTransportation UniversityofAlberta EdmontonT6G2R3 Alberta Canada 犃犫狊狋狉犪犮狋 Toprovidereferencesfortrafficcontroloptimizationatcongestedurbanroadnetwork various trafficsignalcontrolstrategiesunderoversaturatedconditionswerereviewedandevaluated.Basedon theanalysisofthecharacteristicsofoversaturatedtrafficflow thecorrespondingoptimizationprinciples oftrafficsignalcontrolunderoversaturatedconditionswereproposed.Thetrafficcontrolstrategiesfor isolatedintersection coordinatedintersectionsandroadnetworkweresummarizedandevaluatedbyusing VISSIMsimulationenvironment.Thecontrolmeasuresofadaptivetrafficsignalcontrolsystemwiththe capabilitytodealwithoversaturatedconditionsweresummarized.Simulationresultindicatesthattraffic signalcontrolstrategiesunderoversaturatedconditionsshouldoptimizetheallocationofroadspacein thefirstplace.Thequeuemanagementstrategyhasbetterperformanceonoptimizingtrafficsignalunder oversaturatedconditions.Itissuggestedthatthestrategieslikequeueratiomaintenanceandthroughput maximizationforcriticalrouteshouldbeutilizedwithrealtimetrafficinformationfortheoptimizationat theintersectiongrouporroadnetworklevel.4tabs 7figs 56refs.

过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

  • Upload
    vantu

  • View
    277

  • Download
    2

Embed Size (px)

Citation preview

Page 1: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

第13卷 第4期

2013年8月

交 通 运 输 工 程 学 报

JournalofTrafficandTransportationEngineering

Vol.13 No.4

Aug.2013

犚犲犮犲犻狆狋  犇犪狋犲:20130412

犚犲狊犲犪狉犮犺犘狉狅犼犲犮狋狊:NationalNaturalScienceFoundationofChina(51208054);SpecialFundforBasicScientificResearchofCentralColleges

(2013G1211005,CHD2011JC056)

犃狌狋犺狅狉 犚犲狊狌犿犲:LIYan(1983),Male,Hengshui,Hebei,LecturerofChanganUniversity,PhD,ResearchonTrafficSignalControl,

+862982334636,lyan@chd.edu.cn.

文章编号:16711637(2013)04011611

过饱和状态交通信号控制方法综述

李 岩1,赵志宏2,李鹏飞3,4,黄身森1,陈宽民1

(1.长安大学 公路学院,陕西 西安 710064;2.长安大学 信息工程学院,陕西 西安 710064;3.东南大学 交通学院,

江苏 南京 210096;4.阿尔伯塔大学 智能交通中心,阿尔伯塔 埃德蒙顿 T6G2R3)

摘 要:为向拥堵状态城市路网的交通控制优化提供依据,综述并评价了过饱和状态的交通信号控

制策略;分析了过饱和状态交通流的特征,提出了过饱和状态交通信号控制的对应优化原理;从单

点交叉口、协同控制交叉口及路网3个层次对过饱和状态交通控制方法进行了总结与评价,应用

VISSIM仿真环境评价了已有控制策略的适用性;总结了具备处理过饱和状态能力的自适应交通

信号控制系统的控制策略。仿真结果表明:过饱和状态的交通信号控制应优先优化道路空间的分

配矛盾;排队管理策略对过饱和交通流具有较好的优化效果;建议在进行过饱和交通信号控制优化

时,结合实时交通信息,采用排队管理、关键路径通行能力最大等控制策略,在交叉口群或路网层面

对交通信号控制方案进行优化。

关键词:交通信号控制;过饱和状态;控制策略;排队管理;交通仿真

中图分类号:U491.51   文献标志码:A

犚犲狏犻犲狑狅犳狋狉犪犳犳犻犮狊犻犵狀犪犾犮狅狀狋狉狅犾犿犲狋犺狅犱狊狌狀犱犲狉狅狏犲狉狊犪狋狌狉犪狋犲犱犮狅狀犱犻狋犻狅狀狊

LIYan1,ZHAOZhihong2,LIPengfei

3,4,HUANGShensen1,CHENKuanmin1

(1.SchoolofHighway,ChanganUniversity,Xian710064,Shaanxi,China;2.SchoolofInformation

Engineering,ChanganUniversity,Xian710064,Shaanxi,China;3.SchoolofTransportation,

SoutheastUniversity,Nanjing210096,Jiangsu,China;4.CentreforSmartTransportation,

UniversityofAlberta,EdmontonT6G2R3,Alberta,Canada)

犃犫狊狋狉犪犮狋:Toprovidereferencesfortrafficcontroloptimizationatcongestedurbanroadnetwork,various

trafficsignalcontrolstrategiesunderoversaturatedconditionswerereviewedandevaluated.Basedon

theanalysisofthecharacteristicsofoversaturatedtrafficflow,thecorrespondingoptimizationprinciples

oftrafficsignalcontrolunderoversaturatedconditionswereproposed.Thetrafficcontrolstrategiesfor

isolatedintersection,coordinatedintersectionsandroadnetworkweresummarizedandevaluatedbyusing

VISSIMsimulationenvironment.Thecontrolmeasuresofadaptivetrafficsignalcontrolsystemwiththe

capabilitytodealwithoversaturatedconditionsweresummarized.Simulationresultindicatesthattraffic

signalcontrolstrategiesunderoversaturatedconditionsshouldoptimizetheallocationofroadspacein

thefirstplace.Thequeuemanagementstrategyhasbetterperformanceonoptimizingtrafficsignalunder

oversaturatedconditions.Itissuggestedthatthestrategieslikequeueratiomaintenanceandthroughput

maximizationforcriticalrouteshouldbeutilizedwithrealtimetrafficinformationfortheoptimizationat

theintersectiongrouporroadnetworklevel.4tabs,7figs,56refs.

Page 2: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

No.4 LIYan,etal.Reviewoftrafficsignalcontrolmethodsunderoversaturatedconditions

犓犲狔狑狅狉犱狊:trafficsignalcontrol;oversaturatedcondition;controlstrategy;queuemanagement;

trafficsimulation

0 犐狀狋狉狅犱狌犮狋犻狅狀

Trafficsignalcontrolplaysanevidentlyimportant

roleinurbantransportationsystem management.

However,the commonly used traffic control

method,such as TRRL (transport and road

researchlaboratory)method[1],HCM (highway

capacity manual)method[2] oradaptivetraffic

controlsoftwarelikeSCATS(Sydneycoordinated

adaptivetrafficsystem)[3]andSCOOT(splitcycle

offsetoptimizing technique)[4],can not work

efficiently enough when the traffic demand

approachesorexceedsthecapacity[5].Themajor

reasonthatthesematuretrafficcontrolstrategies

havelowefficiencyunderoversaturatedconditions

isthatthey can notrespondtothe primary

restrictionsofoversaturatedtrafficsystem,which

changesfromtheallocationofpassingtimetothe

spatialspacelimitationalongroadsection[6].Thus,

specificsignalcontrolstrategiesareneededforover

saturatedtrafficsystem[7].Duringthepast50years,

manytrafficcontrolstrategiesweredesignedforover

saturatedtrafficsystem.Thepurposeofthispaperis

tosummaryandevaluatetheexistingtrafficcontrol

strategiesforoversaturatedconditions,andprovidesa

referencewaytooptimizetrafficsignalcontrolfor

congestedurbanroadnetwork.

 Trafficcontrolstrategiesunderoversaturated

conditionsarefirstlyimplementedforisolated

intersections.Specificcoordinatedtrafficsignal

controlstrategiesforthearterialandroadnetwork

arethendevelopedforthepurposeofdealingwith

congestionstatus.Beginningwithdistinguishing

the conceptions of approaching saturation,

saturationandoversaturation,theoversaturated

trafficcontrolstrategiesforvariousscalesare

summarizedand evaluated.As a part ofthe

advancedtrafficmanagementsystem (ATMS)[8],

adaptivetrafficsignalcontrolsystems withthe

capabilitiesofhandlingoversaturatedflowarealso

discussed.

1 犇犲犳犻狀犻狋犻狅狀犪狀犱犮犺犪狉犪犮狋犲狉犻狊狋犻犮狊狅犳

狅狏犲狉狊犪狋狌狉犪狋犻狅狀

Trafficstatusisgenerallydeterminedbytraffic

intensity,i.e.犞/犆(volume/capacity)ratio.Fora

roadsection,approachingsaturationusuallyrefers

tothesituationof犞/犆ratiolargerthan0.9[9],and

oversaturationisthetrafficstatuswith犞/犆ratio

greaterthan1.0,thesaturationstatushasa犞/犆

ratioexactlyequals1.0.Theconceptionsoftraffic

conditions at intersection are similar to the

conceptionsatroadsection.Ifthetrafficdemand

ofoneapproachoftheintersectionexceedsits

capacity,thisintersectionisunderoversaturated

status.AsshowninFig.1,becauseitisdifficult

tomeasuretheactualtrafficdemandandcapacity

whenthetrafficsystemiscongested,theover

saturationatsignalizedintersectioncanbedefined

asthe condition of having an approach with

residualqueue[6].Thequeueinformationcanbe

directlyestimated byloop detectors[10],mobile

sensors[11]orvideo

[12]databyusingshockwave

theory.

Fig.1 Residualqueuesatintersections

 Trafficflow willbecomeunstableunderover

saturationorapproachingsaturationconditions.A

smallfluctuationfromanyvehicleinaplatoonmay

cause adverse consequences and reduce the

efficiency oftraffic system sharply.Thelow

stabilityofsaturatedtrafficflow putsforward

morestringentrequirementstothetrafficcontrol

system.

 Generally,oversaturatedconditionwillfirstly

appearatoneorseveralisolatedintersectionswith

relativelyhighsaturationdegrees.Asshownin

711

Page 3: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

JournalofTrafficandTransportationEngineering 2013

Fig.2,whenintersectionBcantdischargethe

queue,itturnsintooversaturatedstatus.The

queuewillcontinuallygrowuntilitexceedsthe

roadsectionbetweenintersectionsAandB.Atthe

momenttheresidualqueuereachintersectionA,

bothintersectionsareundertheoversaturated

conditions.Noeffectivetrafficcontrolstrategy

existsatthismoment,buttopreventanyvehicle

fromenteringoversaturatedroadsection.This

detrimentaleffectisnamedspillback,whichshould

beavoidedinthefirstplace.Intersectionsalong

theroutewithlargertrafficvolumesmayspread

thecongestion muchfasterthan otherroutes.

Finally,thewholeroadnetworkwillbecongested,

evenunderalockoutstatus[13].Itisimportantto

implement traffic signal control strategies to

preventoversaturatedconditionsinthefirstplace,

ratherthantoreacttotheissuesafterthefact.

Oncethetrafficdemandgoesbacktothenormal

level,thefrequentlyusedtrafficcontrolstrategy

willmakethepractitionersmanagethetrafficflow

easily.Thecauseofoversaturatedstatusindicates

thatthedeclineofcapacitycausedbydetrimental

effectsisacriticalinterferingfactor.Therefore,

theessenceoftrafficcontrolstrategiesunderover

saturatedstatusistoeliminatethedetrimental

effectsbyadjustinggreentime,cyclelengthand

offset.

Fig.2 Spillbackatintersections

2 犗狏犲狉狊犪狋狌狉犪狋犲犱犮狅狀狋狉狅犾狊狋狉犪狋犲犵犻犲狊

犳狅狉犻狊狅犾犪狋犲犱犻狀狋犲狉狊犲犮狋犻狅狀

2.1 犈狓犻狊狋犻狀犵狋狉犪犳犳犻犮狊犻犵狀犪犾犮狅狀狋狉狅犾狊狋狉犪狋犲犵狔

2.1.1 Optimizationoffixedtiming

SinceWebsterconnectedtheaveragedelaywith

thesignaltimingparametersandtheobserved

variables by using cumulative diagram,these

parameterscanbeoptimizedby minimizingthe

delayofsignalizedintersection(knowingasTRRL

method)[1].Similarto TRRL method, many

optimizationobjectivesarealsoappliedinsignal

timingoptimizationprocess,suchasminimizingcycle

failures[14],minimizingstops

[15]andminimizingaverage

saturationdegree[2].However,becauseofthe

principleofalgorithm,theycanhardlybeutilized

under oversaturated conditions. Although the

coordinate transformation model[1617] and the

deterministicmodel[18]wereestablishedtoestimate

thedelayorqueueinthesignalizedintersection

withrelativelyhighsaturationdegree,thetraffic

signalcontrolcandonothingbuttoallocatemore

greentimetoreducethedelay.

2.1.2 Switchingofgreen

Whenthegreentimebecomesflexible,switching

ofgreenisthefirstandsimplesttrafficcontrol

strategyfortheoversaturatedintersections.This

strategycanallocatetheunusedgreentimefrom

uncongested phaseto oversaturated phaseto

ensurethe elimination ofresidual queue.By

applyingthiscontrolphilosophy,thetotaldelays

can be minimized by maximizing intersection

productivity, while keeping the queues

developmentwithinacceptablelevelsatthesame

time.A maximum greentimeisgiventothe

movementwiththehighersaturationflowuntilthe

queueisdissipated,whileothermovementsreceive

theminimumgreentime[19].

 Widelyusedtechnologiesofthisstrategyinclude

semi/fullactuated control,NEMAs (national

electrical manufacturesassociation)ringbarrier

phasemodelinNorthAmerica,andphasestage

model[2023]in Europe.Intheactuated control

system,controllercanextendorterminatethe

currentphasetoallocatetheunused greento

congested phase. NEMAs ringbarrier phase

modelextendstheideaofactuatedcontrol.As

illustratedinFig.3,thedualringcontrolunitcan

givemorepriority(i.e.moregreentime)totraffic

flowofspecificintersectionapproachbyadjusting

thebarriersbetweenphases1,5(3,7)and2,6

(4,8).Phasestage modelcangroupallthe

unconflicted movements and order them by

811

Page 4: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

No.4 LIYan,etal.Reviewoftrafficsignalcontrolmethodsunderoversaturatedconditions

priorities. The phase associated with critical

movementgroupcangetmoregreentime.

Fig.3 TypicaldualringcontrolunitofNEMA

 Theswitchingofgreenstrategydoesimprove

theefficiencyoftrafficsignalsystem,especially

forthesituationofintersectionwithonlyoneor

twomovementsbeingcongested.However,when

the volumes of all movements exceed their

capacity,thesealgorithmswillextendallphasesto

maximumgreentime.Atthattime,trafficcontrol

systemhasnodifferenceswithfixedtimecontrol.

Ingeneral,minimizingdelayviasplitswitchingis

notanonlinehighlyresponsivepolicy,butan

optimizationpolicybasedonadvancedmathematics

andthedetailedknowledgeofdemand[24].

2.1.3 Maintainingqueueratio

The nature of green adjustment policeisto

reallocatethetemporalresourcesforthepurpose

ofimprovingtheirefficiencies.However,when

theroadspacebecomestherestriction ofthe

system,maintainingqueueratioshouldbeselected

astheoptimizationobject[25].Underthisstrategy,

thegreentimeshouldbeadjustedtobalancethe

queuesatintersectionsapproaches.Theobjective

istominimizethenumberofblockedintersections

by managing queuesofcriticalintersection[26].

Thisstrategyinvolvestheuseofsampledloopdata

ateachintersection[10,27]ormobilesensorsdata

[11].

Recent studies indicated that the signalized

intersection wont maximize its capacity and

minimizeits delay at the same time under

approaching saturated or oversaturated

conditions[28].Inthis way,signaloptimization

objectivesshouldbeswitchedtothemeasuresof

reducingthequeuelengthatthebottleneckand

minimizingthe detrimentaleffects underover

saturated status.These optimization objectives

involvethethroughputmaximizationorthequeue

minimizationofcriticalroute.

2.2 犛犻犿狌犾犪狋犻狅狀犫犪狊犲犱犲狏犪犾狌犪狋犻狅狀

2.2.1 Simulationenvironment

Inordertoevaluatetheperformanceoftraffic

control strategies for oversaturated isolated

intersection, fixed timing method (TRRL

method),Synchro method (HCM method),

actuated control method, NEMAs dual ring

controlunit,phasestagemodelandqueueratio

maintenancemethodareevaluatedintheprevailing

microscopictrafficsimulationenvironmentbased

onVISSIMsimulationsystem.Theadvantagesof

VISSIM overothersimulationpackagesinclude

someaspectsasfollows.

 (1)VISSIM providesthelargestflexibilityfor

userstocalibratedriving behaviorsandtraffic

conditions.

 (2)VISSIMisdevelopedunder.NETframework,

which brings flexibility for addon program

development.

  (3)VISSIM providesthebesttoolsforthe

developmentofsignalcontrolstrategies,suchas

NEMA controller emulator, vehicle actuated

programming (VAP)language,signalcontrol

application programminginterfaces (SCAPIs),

etc.

 VISSIMSCAPImethodisusedtodevelopsignal

controlemulatorinthisresearch.SCAPIsare

writteninC+ +/CLRlanguageandtheoriginal

version of SCAPIs controller requires signal

controlalgorithms be embeddedinto a single

dynamiclinklibrary(DLL)file.Tofacilitatethe

development,a middlewareisdeveloped,which

can synchronously collect all the realtime

detectors/phasesstatesfromtheVISSIMnetwork

tothecontrolleremulatorthenreturnthenew

desired phase states back to the VISSIM

network[29].Ateachtimestep,controllerrunsthe

algorithm, makes decisions according to the

currentstate,thenreturnsthenewdesiredphase

statestotheVISSIMnetwork.Theconceptofthis

simulationenvironmentisillustratedasinFig.4.

911

Page 5: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

JournalofTrafficandTransportationEngineering 2013

Fig.4 SimulationenvironmentofVISSIM

2.2.2 Experimentaldesign

Fig.5 Intersectiongeometry

A simplefour wayintersectionisselectedto

evaluatetheselectedalgorithms.Thegeometric

characteristicsoftheintersectionareshownin

Fig.5.Theexperimentalconfigurationsarelisted

inTab.1.Alltheneededdatacanbedirectly

obtainedfromtheVISSIMsoftware.Alltheinput

parametersareoptimizedinadvance,andthenare

inputtotheVISSIMenvironment.TheVISSIM

softwarehasabuiltinfixedtimecontrollerto

achieveTRRL methodand HCM method.The

CrossingsoftwareandVisVAPmoduleinVISSIM

are applied to program the actuated control

method,phase stage model and queue ratio

maintenance method. The VISSIM standard

NEMAeditorisutilizedtoevaluatethedualring

controlunit.

      犜犪犫.1 犈狓狆犲狉犻犿犲狀狋犪犾狋狉犪犳犳犻犮狏狅犾狌犿犲狊 pcu·h-1

MovementEastbound Westbound Northbound Southbound

Low High Low High Low High Low High

Leftturn 65 90 30 45 30 45 10 60

Throughput620 880 700 990 370 530 510 720

Rightturn 35 50 20 45 20 25 50 70

2.2.3 Resultanalysis

Eachscenariorunsfor50timestoconductstatistical

analysis.Throughputvehiclesandaveragequeueratio

areselectedtocomparetheselectedtrafficcontrol

methods.AsshowninTab.2,itcanbeindicated

thatundernormalconditions,theactuatedcontrol

method,theNEMA methodandthephasestage

methodallhavesimilarperformances.Theflexible

greencontrolstrategies,suchasactuatedcontrol,

NEMAandphasestage,haverelativelybetter

performance than the fixed timing control

strategies(TRRL,HCM).Althoughthequeue

ratiomaintenancemethodhasgoodperformancein

managingthequeueratio,thiscontrolstrategyis

notthemostefficientoneundernormalconditions.

However,underoversaturatedconditions,the

queue ratio maintenance method has better

performancethanallotherstrategies,andthus,it

is suitable to be utilized under congested

conditions.Ifthetrafficdemand continuesto

grow,specifictrafficcontrolstrategiesforlarger

rangeareneededtobeconcerned.

犜犪犫.2 犆狅犿狆犪狉犻狊狅狀狅犳犲狏犪犾狌犪狋犻狅狀狉犲狊狌犾狋狊

AlgorithmsThroughputvehicles/pcu Averagequeueratio

Normal Oversaturated Normal Oversaturated

TRRL 2294 2986 0.46 >1.00

HCM 2298 3018 0.44 >1.00

Actuatedcontrol 2325 2996 0.45 >1.00

NEMA 2322 3041 0.43 >1.00

Phasestagemethod 2318 3008 0.44 >1.00

Queueratiomaintenance 2309 3328 0.41 0.99

3 犛狋狉犪狋犲犵犻犲狊犳狅狉犮狅狅狉犱犻狀犪狋犲犱犻狀狋犲狉狊犲犮狋犻狅狀狊

3.1 犈狓犻狊狋犻狀犵犮狅狅狉犱犻狀犪狋犲犱狋狉犪犳犳犻犮犮狅狀狋狉狅犾狊狋狉犪狋犲犵犻犲狊

3.1.1 Optimizationofprogressionband

Signalcoordinatedcontrolstrategiestrytoseekfor

themaximumprogressionbandbyadjustingthe

021

Page 6: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

No.4 LIYan,etal.Reviewoftrafficsignalcontrolmethodsunderoversaturatedconditions

offsetsbetweengreenphasesundersteadytraffic

conditions.Withpredefined maximumlikelihood

offsets,coordinatedtiming plansaregenerally

designedfortrafficflowundersteadystates.As

theintersectionsbecomemoresaturated,residual

queuesstarttodisrupt movementatupstream

intersections.Then,theprogressionbandisnot

applicableanylonger[30].Ifthe oversaturated

conditionlastsforaconsiderabletimeperiod,

fixedtiming signal coordination is likely to

aggravatemovementdisturbance,whichmaycause

spillback[31]intoupstreamintersections

[32].

Fig.6 Dynamicoffsetsinactuatedcoordination

  Variablebandwidth progression[3334] is then

establishedtoadjusttheoffsetsaccordingtothe

traveltimeinformationinrealtime.Asshownin

Fig.6, the variablebandwidth progression

improvestheefficiencyofcoordinatedcontrol,and

makesitworkatmostconditions.The Monte

Carlomethod[35]canbeutilizedtooptimizethe

bandwidthtopreventtheearlystartedcoordinated

greenphaseintheactuatedsignalsystem.Underover

saturatedconditions,therealtimeinformationishard

toobtain.Meantime,inordertomakemorevehicles

passthroughtheprogressionband,thebandwidths

tendtobelarge,whichmakessignaltimingtobe

fixed (maximum greenatthecriticalrouteand

minimumgreenatotherroute)[36].

3.1.2 Maximumstoragecapacity

Insteadofsearchingthe maximum progression

band,thestrategyofmaximumstoragecapacities

ofapproachesisutilizedtooptimizequeuesat

intersectionapproaches[37].Thismethodresponds

totherestrictionsofroadspaceundertheover

saturatedconditions,andtriesto makeefficient

useof upstream links storage capacity.The

procedureofusingsimultaneousoffsetsalongthe

arterialandnegativeoffsetswithflaringofgreen

alongcrossroadsisthentestedundertheover

saturatedarterialnetwork.Becauseofmarkedly

decreasedspillbackblockages,theprocedureof

offsetsettinghaslargerthroughputvehiclenumber

thantraditionaloffsetsetting,and witha20%

reductionin overalltraveltime[38]. With the

possibilityofhighresolutiontrafficdata,recent

researchesdescribedsimplecontrollerlogicfor

truncating a phase early when faced to a

downstreamrestrictionofflow[3940]andtoavoid

detrimentaleffectlike “spillback”or “defacto

red”[13].Defactoredassumesthatnoflowona

detectorwhenthelightisgreenindicatingthat

thereisnowhereforthevehicletogo,andthusit

isbetterforoverallintersectionoperationstomove

ontoanotherphase[41].

3.2 犛犻犿狌犾犪狋犻狅狀犲狏犪犾狌犪狋犻狅狀

3.2.1 Evaluationsetup

Anarterialisselectedtoevaluatetheperformance

ofmaximumprogressionbandstrategy,variable

bandwidth progression strategy,and maximum

storagecapacitiesstrategy.Thearterialisabout

8.85kmlong,fourwaysfortwodirections,and

sixsignalizedintersections.Fig.7showsitslayout

andtrafficmovementcounts.Thefiledobserved

121

Page 7: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

JournalofTrafficandTransportationEngineering 2013

trafficiscongestedorclosetocongested.Allsix

signalizedintersectionsarecontrolledbytheEconolite

ASC/3signalcontrollersandinductiveloopdetectors

withfourwaypedestrianphases.

 TheVISSIMSCAPImethodisalsoutilizedto

evaluatethecoordinatedtrafficcontrolstrategies.

Theoriginaltrafficsignaltimingplanisgenerated

bySynchro,aprevailingsignaltimingoptimization

package in North America, using maximum

progressionbandstrategy.Fig.7alsoshowsthe

optimized fixed timing plans of the selected

intersections.Thevariablebandwidthprogression

strategyandmaximumstoragecapacitiesstrategy

areimplementedbyCrossingsoftwareandVisVAP

module.

Fig.7 Selectedroadnetwork

3.2.2 Resultanalysis

Duringtheprocessofevaluation,eachscenario

runsfor50timesandsummarizestheaverage

value.Wheneverthetimingplansareupdatedand

aplatoonisidentified,only phase splits are

adjustedwhereasthecyclelengthsandoffsetsare

keptunchanged.Thereforethecoordinationwill

notbe destroyed on the mainline.Sincethe

expected advantages ofthe maximum storage

capacitiesstrategyincludeprovidingsignaltimings

to avoid queue spillback and queue clearance

withoutdestroyingcoordination.Thefollowing

MOEs(measuresofeffectiveness)arechosento

evaluatethe performance ofthe ACS control

strategy:linktraveltime,totalstops,theaverage

controldelay,andthemaximumqueueratioonthe

mainline.Tab.3summarizestheMOEsforallthe

threetrafficcontrolstrategies.

犜犪犫.3 犕犗犈狊犮狅犿狆犪狉犻狊狅狀

Performance

Maximum

progression

band

Variable

bandwidth

progression

Maximum

storage

capacities

Southboundlinktraveltime/s 1156 1278 1029

Northboundlinktraveltime/s 1043 1032 970

Southboundtotalstop/veh 6765 7254 5683

Northboundtotalstop/veh 4064 4147 3576

Averagecontroldelay/s 30 33 29

Southboundmaximumqueueratio >1.00 >1.00 0.97

Northboundmaximumqueueratio 0.91 0.90 0.87

 From Tab.3,itisclearthatthe maximum

storagecapacitystrategycanreducethelinktravel

timeandvehiclestoponthemainlinebyfrom5%

to 15%. However, the variablebandwidth

progressionstrategyhasissuesonoptimizingthe

signalofsouthboundtraffic,andcauseserious

221

Page 8: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

No.4 LIYan,etal.Reviewoftrafficsignalcontrolmethodsunderoversaturatedconditions

congestion during simulation. Although the

performanceofnorthboundisslightlybetterthan

thefixedtimescenario,thevariablebandwidth

progressionstrategyisnotsuggestedtobeutilized

underoversaturatedconditions.The maximum

storagecapacitystrategy doesnotsignificantly

reducethemaximumqueueratioorcontroldelays

atintersections,becausethedistancesbetween

intersectionsarerelativelylongandtheconstraints

regarding the relationship of the estimated

maximumqueuelengthandlinklengthbarelyplay

aroleduringtheoptimization.Itisexpectedthat

morebenefitofqueuespillbackavoidancewillbe

acquiredifmaximumstoragecapacitystrategyis

deployedatcloselyspacedintersections.

4 犛狋狉犪狋犲犵犻犲狊犳狅狉狉狅犪犱狀犲狋狑狅狉犽

Thesignalcontrolstrategiesintheroadnetwork

levelare the extension ofthe strategies for

coordinatedintersections.Similartothestrategies

forcoordinatedintersections,thestrategiesfor

roadnetworkcanbedividedintoadaptivesignal

controlandmetering/gatingpolice.Theadaptive

controlstrategiestrytoseekforarelativelybetter

allocationofthepassagetimeatthenetworklevel

byapplyinghillclimbingmethodorotherheuristic

algorithms. When the road space becomes a

limitationfortrafficsignaloptimization,itis

suggestedtodistributethetrafficdemandoverthe

network,andmakefulluseoftheentireroadspace

withintheselected area.The metering police

extendsthequeue managementstrategy.This

strategyimpedestrafficinputatasuitablepointor

points upstream to preventthe demand from

reaching criticallevels at critical downstream

locations[42].Itcanmanagetherateofflowinto

andwithinhightrafficdensitynetwork[43].One

wellknownrealtimetrafficcontrolpolicy for

congested arterialsis RT/IMPOST (realtime/

internalmeteringpolicytooptimizesignaltiming),

whichisdesignedtocontrolqueuedevelopmenton

everysaturated approach by suitable metering

trafficto maintain stablequeues[44].A traffic

controlstrategyforintersectiongroupunderover

saturatedconditionfurtherdevelopedthe RT/

IMPOSTstrategybyaddingcriticalroutelayer[5].

Thisprocedureensuresthecriticalroute[4546]isthe

primary optimization object for oversaturated

intersectiongroup.Inordertoaccomplishtheroad

networkcontrolstrategies,anumberofmodels

were developed to identify the queue,queue

dischargetime,available downstream storage,

etc[4749].

5 犃犱犪狆狋犻狏犲狋狉犪犳犳犻犮狊犻犵狀犪犾犮狅狀狋狉狅犾狊狔狊狋犲犿

犳狅狉狅狏犲狉狊犪狋狌狉犪狋犲犱犮狅狀犱犻狋犻狅狀狊

Forthereasonthattheoptimizationobjectsunder

oversaturatedconditionsaredifferentfrom the

onesatsteadystates,specifymodulesorfunctions

areneededtobuiltinthetrafficsignalcontrol

systemtodealwiththeoversaturatedconditions.

Generally,anadaptivetrafficsignalcontrolsystem

withthecapabilityofworkingunderoversaturated

conditions should contain traffic status

identification module, congestion cause

identification moduleandseveralsignalcontrol

parametersoptimizationalgorithms.Commonly

usedcommercialadaptivetrafficcontrolsystems

generally have the capability of calculating

saturationdegreeinapproximatelyrealtime,such

asthesaturationpercentageinSCOOT[4],orthe

degree of saturation in SCATS[3]. However,

becauseofthereasonthatnospecifyalgorithmis

designedforoversaturatedconditions,whenthe

saturateddegreeapproaches1,thestabilityof

thesesystemsdropssharply[50].Todealwiththe

traffic congestion management problem,some

adaptivetrafficcontrolsystemsaredesignedto

avoidcongestionoroversaturatedconditions[51],

suchasSCOOT MC3[52],MOVA

[5354],TUC[55],

andMOTION[56].Detailmeasuresappliedinthese

systemsaresummarizedinTab.4.

6 犛狌犿犿犪狉狔狅犳犾犻狋犲狉犪狋狌狉犲狉犲狏犻犲狑

 Accordingtotheoptimizationprinciples,the

trafficsignalcontrolstrategiescanbedividedinto

twocategories:the allocation oftemporalor

spatialresources.Understeadystates,theefficiency

321

Page 9: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

JournalofTrafficandTransportationEngineering 2013

犜犪犫.4 犆犺犪狉犪犮狋犲狉犻狊狋犻犮狊狅犳狋狉犪犳犳犻犮犮狅狀狋狉狅犾狊狔狊狋犲犿狊犳狅狉犱犲犪犾犻狀犵狑犻狋犺狅狏犲狉狊犪狋狌狉犪狋犲犱犮狅狀犱犻狋犻狅狀狊

Adaptivetrafficcontrolsystems Optimizationobjects Controlstrategies

SCOOTMC3(SpiltCycleOffsetOptimization

Technique,ManagingCongestion,Communi

cationsandControl)

Roadnetwork

1.Trafficstatusidentificationandcongestioncause

identification

2.Congestionimportancefactorconsideration

3.Trafficguidanceoftrafficdemandfromtheoverloaded

junctiontoothers

MOVA(MicroprocessorOptimizedVehicle

Actuation)

Isolatedintersectionextendedfor

SCOOTinlatestversion

1.Trafficstatusidentification

2.Specifyoptimizationobjectiveforoversaturated

condition

TUC(TrafficresponsiveUrbanControl) Roadnetwork

1.Twolevelsstructure

2.Metering/gatingpolice

3.Specifyoptimizationalgorithmforcyclelength,split

andoffsetunderoversaturatedcondition

MOTION(MethodfortheOptimizationof

Traffic Signals in Online Controlled

Networks)

Roadnetwork

1.Trafficstatusidentification

2.Metering/gatingpolice

3.Specifyoptimizationobjectiveforoversaturated

condition

4.Higherpriorityforcriticalroute

canbeimprovedbyassigningmoreunusedgreento

the movement withrelatively highersaturation

degree. However, under oversaturated

conditions,theroadspacebecomesarestriction

thatmustbeconsidered.Iftoomuchgreentimeis

assignedtoonespecifymovement,thedownstream

road or otherintersections will exceed their

capacities,whichmayleadtothelockoutstatus.

Hence,traffic control strategies under over

saturatedconditionsmustconsidertherestriction

ofroadspace.Suggestedcontrolstrategiesat

differentlevelsarelistedasbelow:maintaining

queueratio atisolatedintersectionlevel,the

maximumstoragecapacitiesofapproachesatthe

coordinatedintersectionlevel,andmeteringpolice

at road network level. These measures are

suggestedtobeutilizedatthecriticalrouteatthe

networkorcriticalintersections,whichcanbe

identifiedbyhighresolutiontrafficdata.

 Trafficsignalcontrolstrategiesforhandling

oversaturated conditions still haveissues for

improvements,whicharelistedasbelow.

 (1)Realtimeinformationisstrictlyneededto

achievetheproposedtrafficcontrolstrategies,

particularly at the road network level. The

implement of the proposed traffic control

strategies,suchas meteringoradaptivetraffic

control,needtrafficinformation,likequeuelength

orcriticalroute,tobeupdatedatleasteveryfive

minutes. Further development of traffic

informationacquisition method,likefusingthe

fixedlocationdataandmobilesensordata,should

beprocessedtosupporttheproposedintegration.

  (2)The detrimentaleffectscaused by over

saturationmayspreadtothewholeroadnetwork

in a very shorttime. Traffic signal control

strategiesshouldoptimizethetrafficflowalongthe

routewithcriticalconflictsinthefirstplace.In

thisway,trafficcontrolstrategiesshouldconcern

onintersections with strong trafficrelevance,

whichcanbenamedasintersectiongroup.

 (3)TrafficflowinChinaisdifferentfromother

countries.Trafficsignalparameters,suchasgreen

flashing,allred,shouldalsobecalibratedwith

localfiled data before applying the selected

strategies.Specifictrafficsignalcontrolstrategies

particularly for Chinese urban road networks

shouldalsobeconsideredtostudy.

犚犲犳犲狉犲狀犮犲狊:

[1] WEBSTERFV.Trafficsignalsettings[R].London:Road

ResearchLaboratory,1958.

421

Page 10: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

No.4 LIYan,etal.Reviewoftrafficsignalcontrolmethodsunderoversaturatedconditions

[2] YINY.Robustoptimaltrafficsignaltiming[J].Transportation

ResearchPartB:Methodological,2008,42(10):911924.

[3] SIMSAG,DOBINSONKW.TheSydneycoordinatedadap

tivetraffic(SCAT)systemphilosophyandbenefits[J].IEEE

TransactionsonVehicularTechnology,1980,29(2):130137.

[4] BRETHERTONRD,BOWENGT.Recentenhancements

toSCOOT—SCOOTversion2.4[C]∥IEEE.Proceedingsof

the3rdConferenceonRoadTrafficControl.London:IEEE,

1990:9598.

[5] LIYan,GUOXiucheng,YANGJie,etal.Mechanismanaly

sisandimplementationframeworkfortrafficsignalcontrolof

oversaturatedintersectiongroup[J].JournalofTransporta

tionSystemsEngineeringandInformationTechnology,2011,

11(4):2834.

[6] DENNEY R W,HEAD L,SPENCER K.Signaltiming

undersaturatedconditions[R].Washington DC:Federal

HighwayAdministration,2008.

[7] PAPAGEORGIOUM,DIAKAKIC,DINOPOULOUV,etal.

Reviewofroadtrafficcontrolstrategies[J].Proceedingsof

theIEEE,2003,91(12):20432067.

[8] WANGFeiyue.Parallelcontrolandmanagementforintelli

genttransportationsystems:concepts,architectures,and

applications[J].IEEETransactionsonIntelligentTranspor

tationSystems,2010,11(3):630638.

[9] DONGChunjiao,SHAOChunfu,MAZhuanglin,etal.

Temporalspacialcharacteristicofurbanexpresswayunder

jamflowcondition[J].JournalofTrafficandTransportation

Engineering,2012,12(3):7379.

[10] WU Xinkai,LIU H X,GETTMAN D.Identificationof

oversaturatedintersectionsusinghighresolutiontrafficsignal

data[J].TransportationResearchPartC:EmergingTech

nologies,2010,18(4):626638.

[11] BANXuegang,HAOPeng,SUNZhanbo.Realtimequeue

lengthestimationforsignalizedintersectionsusingtravel

timesfrommobilesensors[J].TransportationResearchPart

C:EmergingTechnologies,2011,19(6):11331156.

[12] SHIZhongke,QIAO Yu.Detection methodofqueuing

vehiclesonurbanroad[J].JournalofTrafficandTransportation

Engineering,2012,12(5):100109.

[13] ABBASM M,ADAMZ M,GETTMAND.Development

andevaluationofoptimalarterialcontrolstrategiesforover

saturatedconditions[J].TransportationResearchRecord:

JournaloftheTransportationResearchBoard,2011(2259):

242252.

[14] URBANIKT,BEAIRDS,GETTMAND,etal.Trafficsignal

statetransitionlogicusingenhancedsensorinformation[R].

WashingtonDC:TransportationResearchBoard,2003.

[15] HEJiajia,HOUZaien.Antcolonyalgorithmfortraffic

signaltiming optimization[J].Advancesin Engineering

Software,2012,43(1):1418.

[16] AKCELIKR,ROUPHAIL N M.Estimationofdelaysat

trafficsignalsforvariabledemandconditions[J].Transporta

tionResearchPartB:Methodological,1993,27(2):109131.

[17] PARKBB,LIChenyang.Ananalyticalapproachforesti

matingthehighwaycapacitymanualsignalizedintersection

delayvariability[J].ComputerAidedCivilandInfrastructure

Engineering,2011,26(4):327333.

[18] KIMBERRM,HOLLISEM.Peakperiodtrafficdelaysat

roadjunctionsandotherbottlenecks[J].TrafficEngineering

andControl,1978,19(10):442446.

[19] GAZISDC.Optimumcontrolofasystemofoversaturated

intersections[J].OperationsResearch,1964,12(6):815831.

[20] MICHALOPOULOSPG,STEPHANOPOULOSG.Over

saturatedsignalsystemswithqueuelengthconstraints—Ⅰ:

singleintersection[J].TransportationResearch,1977,11(6):

413421.

[21] MICHALOPOULOSPG,STEPHANOPOULOSG.Over

saturatedsignalsystemswithqueuelengthconstraints—Ⅱ:

systemsofintersections[J].TransportationResearch,1977,

11(6):423428.

[22] CHANGTH,SUNGY.Modelingandoptimizationofan

oversaturated signalized network[J]. Transportation

ResearchPartB:Methodological,2004,38(8):687707.

[23] CHANGTH,SUNGT.Optimalsignaltimingforanover

saturatedintersection[J].TransportationResearchPartB:

Methodological,2000,34(6):471491.

[24] LIU Hongchao,BALKE K N,LIN Weihua.Areverse

causaleffectmodelingapproachforsignalcontrolofanover

saturatedintersection[J].TransportationResearchPartC:

EmergingTechnologies,2008,16(6):742754.

[25] LONGLEYD.Acontrolstrategyforacongestedcomputer

controlledtrafficnetwork[J].Transportation Research,

1968,2(4):391408.

[26] ZHANGMengmeng,JIALei,ZOUNan,etal.Robustoptimal

trafficsignaltimingofurbansinglepointintersection[J].Journal

ofHighwayandTransportationResearchandDevelopment,

2011,28(1):107111.

[27] MUCSIK,KHANAM,AHMADIM.Anadaptiveneuro

fuzzyinferencesystemforestimatingthenumberofvehicles

forqueuemanagementatsignalizedintersections[J].Trans

portationResearchPartC:EmergingTechnologies,2011,

19(6):10331047.

[28] DIONF,RAKHAH,KANGYS.Comparisonofdelayesti

matesatundersaturatedandoversaturatedpretimedsignal

izedintersections[J].Transportation Research Part B:

Methodological,2004,38(2):99122.

[29] LIPengfei,ABBASM.Stochasticdilemmahazardmodelat

highspeedsignalizedintersections[J].JournalofTransporta

tionEngineering,2010,136(5):448456.

[30] HEQing,HEAD KL,DINGJun.PAMSCOD:platoon

basedarterialmultimodalsignalcontrolwithonlinedata[J].

TransportationResearchPartC:Emerging Technologies,

2012,20(1):164184.

[31] LIUYue,CHANGGanglen.Anarterialsignaloptimization

521

Page 11: 过饱和状态交通信号控制方法综述transport.chd.edu.cn/Upload/PaperUpLoad/b3734f86-7331-43...intensity,i.e.犞/犆(volume/capacity)ratio.Fora roadsection,approachingsaturationusuallyrefers

JournalofTrafficandTransportationEngineering 2013

modelforintersectionsexperiencingqueuespillbackandlane

blockage[J].Transportation ResearchPartC:Emerging

Technologies,2011,19(1):130144.

[32] LIUHX,WUXinkai,MAWenteng,etal.Realtimequeue

lengthestimationforcongestedsignalizedintersections[J].

TransportationResearchPartC:Emerging Technologies,

2009,17(4):412427.

[33] STAMATIADISC,GARTNERNH.MULTIBAND96:a

programforvariablebandwidthprogressionoptimizationof

multiarterialtrafficnetworks[J].TransportationResearch

Record,1996(1554):917.

[34] HUPeifeng,TIANZongzhong,YUANZhenzhou,etal.

Variablebandwidthprogressionoptimizationintrafficopera

tion[J].JournalofTransportationSystemsEngineeringand

InformationTechnology,2011,11(1):6172.

[35] LIPengfei,GUOXiucheng,LIYan.AnATMSdatadriven

methodforsignalizedartrialcoordination[J].Journalof

SoutheastUniversity:EnglishEdition,2012,28(2):229235.

[36] LUKai,ZENGXiaosi,LILin,etal.Twowaybandwidth

maximizationmodelwithprorationimpactfactorforunbal

ancedbandwidthdemands[J].JournalofTransportation

Engineering,2012,138(5):527534.

[37] GORDONRL.Atechniqueforcontroloftrafficatcritical

intersections[J].TransportationScience,1969,3(4):279287.

[38] RATHIA K.A controlschemeforhightrafficdensity

sectors[J].Transportation ResearchPartB:Methodological,

1988,22(2):81101.

[39] BEAIRDS,URBANIKT,BULLOCKDM.Trafficsignal

phasetruncationineventoftrafficflow restriction[J].

TransportationResearchRecord,2006(1978):8794.

[40] CHENJuan,XULihong,YUANChangliang.Hierarchy

controlalgorithmanditsapplicationinurbanarterialcontrol

problem[J].JournalofSystemSimulation,2008,20(15):

41224127,4131.

[41] PUTHA R,QUADRIFOGLIO L,ZECHMAN E.Com

paringantcolonyoptimizationandgeneticalgorithmapproaches

forsolvingtrafficsignalcoordinationunderoversaturation

conditions[J].ComputerAided CivilandInfrastructure

Engineering,2012,27(1):1428.

[42] LIU Qin,XU Jianmin.Coordinated control modelof

regionaltrafficsignals[J].JournalofTrafficandTransporta

tionEngineering,2012,12(3):108112.

[43] RATHIAK.Trafficmetering:aneffectivenessstudy[J].

TransportationQuarterly,1991,45(3):421440.

[44] LIEBERMANEB,CHANGJ,PRASSASES.Formulation

ofrealtimecontrolpolicyforoversaturatedarterials[J].

TransportationResearchRecord,2000(1727):7788.

[45] LIYan,YANGJie,GUOXiucheng,etal.Criticalroute

identificationmethodatrelatedintersectiongroupbasedon

wavelettransform[J].ChinaJournalofHighwayandTransport,

2012,25(1):135140.

[46] LIYan,GUOXiucheng,YANGJie,etal.Routesclassifi

cationmethodatintersectionsgroupusingwavelettransform

andspectrumanalysis[J].JournalofSoutheastUniversity:

NaturalScienceEdition,2012,42(1):168172.

[47] PARKES,RILETTLR,SPIEGELMANCH.AMarkov

chainMonteCarlobasedorigindestinationmatrixestimator

thatisrobusttoimperfectintelligenttransportationsystems

data[J].JournalofIntelligentTransportationSystems:Tech

nology,Planning,andOperations,2008,12(3):139155.

[48] LERTWORAWANICH P,KUWAHARA M,MISKA M.

Anew multiobjectivesignaloptimizationforoversaturated

networks[J].IEEETransactionsonIntelligentTransporta

tionSystems,2011,12(4):967976.

[49] WEIHeng,PERUGU H C.Oversaturationinherenceand

trafficdiversioneffectaturbanintersectionsthroughsimula

tion[J].JournalofTransportationSystemsEngineeringand

InformationTechnology,2009,9(4):7282.

[50] KOUVELASA,ABOUDOLASK,KOSMATOPOULOSEB,

etal.Adaptiveperformanceoptimizationforlargescaletraf

ficcontrolsystems[J].IEEE TransactionsonIntelligent

TransportationSystems,2011,12(4):14341445.

[51] MIRCHANDANIPB,ZOUNing.Queuingmodelsforanalysis

oftrafficadaptivesignalcontrol[J].IEEETransactionson

IntelligentTransportationSystems,2007,8(1):5059.

[52] BRETHERTOND,BODGERM,COWLINGJ.SCOOT—

managingcongestion,communicationsandcontrol[J].Traffic

EngineeringandControl,2006,47(3):8892.

[53] VINCENTRA,YOUNGCP.Selfoptimisingtrafficsignal

controlusingmicroprocessors—theTRRL MOVAstrategy

forisolatedintersections[C]∥IEEE.SecondInternational

ConferenceonRoadTrafficControl.London:IEEE,1986:

102105.

[54] TENEKECIG.A modellingtechniqueforassessinglinked

MOVA[J].ProceedingsoftheInstitutionofCivilEngineers:

Transport,2007,160(3):125138.

[55] DINOPOULOU V,DIAKAKIC,PAPAGEORGIOU M.

ApplicationsoftheurbantrafficcontrolstrategyTUC[J].

EuropeanJournalofOperationalResearch,2006,175(3):

16521665.

[56] BIELEFELDTC,BUSCHF.MOTION—anewonlinetraf

ficsignalnetworkcontrolsystem[C]∥IEEE.SeventhInter

nationalConferenceonRoadTrafficMonitoringandControl.

London:IEEE,1994:5559.

621