68
D:\MAG\2010-06-91/VOL16\COVER.VFT —1PPS/P 第三届国家期刊奖百种重点期刊 | 中国科技核心期刊 中国科技论文统计源期刊 | 中国五大文献数据库收录期刊 ISSN 1009-6868 CN 34-1228/TN 2011年8月第4期 www.zte.com.cn/magazine ZTE TECHNOLOGY JOURNAL O ZTE TECHNOLOGY JOURNAL ZTE TECHNOLOGY JOURNAL 专题:三网融合演进技术与业务 1

中兴通讯技术 ZTETECHNOLOGYJOURNAL - zte.com.cn€¦ · d:\mag\2011-04-97/vol17\cover23.vft——1pps/p 中兴通讯2011年第1季度 pct专利申请量 居全球企业首位

Embed Size (px)

Citation preview

  • D:\MAG\2010-06-91/VOL16\COVER.VFT1PPS/P

    |

    |

    ISSN 1009-6868CN 34-1228/TN

    201184www.zte.com.cn/magazine

    ZTE

    TECHNOLOGY

    J OURNAL

    O

    ZTE TECHNOLOGY JOURNALZTE TECHNOLOGY JOURNAL

    1

  • D:\MAG\2011-04-97/VOL17\COVER23.VFT1PPS/P

    20111 PCT

    LTE

    2011 7 4

    LTE ZXSDR BS8920

    LTE

    30%

    30% LTE

    TCO

    LTE

    LTE

    BS8920 LTE

    eNodeBRRU

    LTE

    LTE

    LTE

    LTE

    2011 4 18 LTE

    70

    (WIPO)

    2011 1

    974 (PCT)

    559 2011

    1 PCT 5

    2010 1 863

    2011 1 2010

    2011 PCT

    2011

    10%

    4 200

    2010

    1.1

    3.5

    7 000

    LTE

    2010 107

    LTE7%

    2

  • D:\MAG\2011-04-97/VOL17\COVER23.VFT1PPS/P

    CDMA/LTE4T4R

    2011 6 17 Frost

    & Sullivan IPTV

    2011 2011 IPTV

    IPTV

    3 IPTV

    Frost &

    Sullivan ICT Jayesh Easwaramony

    IPTV Frost & Sullivan

    11% IPTV

    IPTV

    TCO

    IPTV

    OTT

    IPTV

    5 000 000

    9 000 000 33

    IPTV

    IPTV IPTV

    4

    2011 6 16

    CDMA/LTE 4T4R4 4

    (MIMO) 22 44

    MIMO

    SDR CDMA 2000 1XEV-DO

    LTE CDMA LTE

    CDMA&LTE

    CDMA LTE

    CDMA-LTE

    CDMA-LTE

    Uni-RAN CDMA LTE

    CDMA&LTE

    18

    LTE70CDMA

    5 2011 1

    CDMA 31 32.5%

    CDMA

    Frost & Sullivan 2011IPTV

    3

  • D:\MAG\2011-06-98/VOL17\EDITOR.VFT1PPS/P

    | | |

    1998

    20062020

    2010

    20105

    863

    (1)

    (NGB)

    (2)

    (3) 100 Mbit/s

    (4)

    (5)

    863

    201116

    1

    P

    3

    4

    5

    6

    2

    4

  • D:\MAG\2011-06-98/VOL16\CONTENT.VFT1PPS/P

    ZHONGXINGTONGXUNJISHU

    1995 9920118 174

    Paul Sleswick

    450

    230041

    www.zte.com.cn/magazine

    www.zte.com.cn/paper

    magazinezte.com.cn

    (0551)5533356

    (0551)5850139

    2011810

    0058

    10.0060.00

    ISSN 1009-6868CN 34-1228/TN

    CN 34-1228/TN1995b1664zhP10.0015000142011-08

    :

    01

    04

    07

    10

    14

    19

    23

    29

    33

    37

    43 LTE-AdvancedQoS

    48 Wi-Fi

    52 1588v2

    58 (1)

    ZXR1O T8000 100G (57) (62)

    |

    |

    ISSN 1009-6868CN 34-1228/TN

    201184www.zte.com.cn/magazine

    ZTE TECHNOLOGY JOURNALZTE TECHNOLOGY JOURNAL

    5

  • D:\MAG\2011-06-98/VOL16\CONTENT.VFT1PPS/P

    ZTE TECHNOLOGY JOURNAL Vol.17 No.4 Aug. 2011

    (

    Contents

    Operational Application

    Lecture Series

    Expert View

    Development Field

    Special Topic: Technology and Business of Tri-Network Convergence

    Research Paper

    01 Development Course and Targets for Tri-Network Convergence WU Jiangxing

    04 Development of Telecommunication Technology and Networksin Tri-Network Convergence ZHAO Huiling, HAN Suchuan, HUO Xiaoli

    07 Trialing and Industrializing Tri-Network Convergence Usinga Large-Scale National Testbed LU Xiaoyuan, LI Yi

    10 Development of Optical Transport Network Technologyfor Tri-Network Convergence ZHANG Haiyi, JIN Yaohui, ZHANG Jie

    14 Next-Generation Broadcast Network Wireless Systems FENG Songlin, XIE Wei

    19 Integration and Broadcasting Platform and Technologiesin Tri-Network Convergence ZHANG Shile, LU Wei, LU Baofeng

    23 Common Security and Control Frameworkin Tri-Network Convergence LI Yufeng, LAN Julong, XUE Xiangyang

    29 Cooperative Wireless Technologies in Tri-Network Convergence XU Ling, FANG Huiying

    33 Business Models and Future Development Strategyof Tri-Network Convergence ZHOU Qi

    37 Distributed Cache of Cloud Computing Technology and Its Applicationin the Internet of Things GAO Hong, DONG Zhenjiang

    43 Study of the Mapping of QoS Parameters in LTE-A Systems KONG Xiangyi, ZHAO Jihong

    48 A New Option for Broadband Wireless Network: Wi-Fi Offload WEI Yuan

    52 Standardization of 1588v2 for Applicationin Telecommunication Networks SU Fei, HE Li, LI Zhengqi

    58 OFDM Technology and its Applicationin Optical Fiber Communication (1) CHEN Zhangyuan, LI Juhao, YANG Chuanchuan

    6

  • D:\MAG\2011-08-99/VOL17\F2.VFT4PPS/P

    Development Course and Targets for Tri-Network ConvergenceDevelopment Course and Targets for Tri-Network Convergence

    /WU Jiangxing(

    450002)(National Digital Switching System Engineering& Technological Research Center, Zhengzhou

    450002, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0001-03

    This paper analyzes the significance of tri-network convergence in China

    and discusses some development trends, features, and goals of tri-network

    convergence. This paper suggests that tri-network convergence is not just a simple

    convergence of telecommunications networks, cable TV, and the Internetits ultimate

    goal is to meet increasing service requirements. With the support of a new service

    module, network resources can be integrated into a converged network, coverage can

    be improved, power consumption can be significantly reduced; and fast, convenient,

    and green broadband information services can be provided. This greatly improves the

    overall level of the information industry.

    tri-network convergence; next generation network; network

    transformation

    Keywords:

    Abstract:

    1

    21 2007

    20 50

    01Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    7

  • D:\MAG\2011-08-99/VOL17\F2.VFT4PPS/P

    1961

    5

    (/)

    2

    2.1

    IT

    --

    -

    [1]

    2.2

    20 90

    1997 4

    (20062020 )

    2010 1 13

    2012 2015

    2.3

    (3TNet)

    4

    /

    3TNet

    ()

    3TNet

    (ACR)

    3TNet 2008 12

    3TNet

    3 863

    02 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    8

  • D:\MAG\2011-08-99/VOL17\F2.VFT4PPS/P

    2.4

    (ICT)

    (ITU)

    [2] 22%

    50%

    1993 NII (

    )

    1996

    2010

    3

    [3]

    1994

    CATV

    2002

    2008

    (FP7)

    ICT

    2001 1 13 IT

    2009 7

    i-Japan 2015[4]

    3

    10

    (1)

    2015

    (2)

    (20102012 )

    18

    03Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    9

  • D:\MAG\2011-08-99/VOL17\F1.VFT3PPS/P

    Development of Telecommunication Technology and NetworksDevelopment of Telecommunication Technology and Networks

    in Tri-Network Convergencein Tri-Network Convergence

    /ZHAO Huiling/HAN Suchuan

    /HUO Xiaoli(

    100035)(China Telecom Corporation Limited BeijingResearch Institute, Beijing 100035, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0004-03

    Wireless access in vehicular environments (WAVE) systems based on IEEE

    802.11.p will be the infrastructure for intelligent transportation system applications that

    improve transport safety, efficiency, and convenience. This paper discusses the

    background, technical challenges, and broader impacts of WAVE systems and reports

    on recent activities at the Center for Vehicular Communications and Networks at the

    University of Michigan-Dearborn. These activities include research into a WAVE

    prototype based on field programmable gate array (FPGA) and research into a vehicular

    network simulator.

    tri-network convergence; telecommunication network; service network;

    network architecture

    Keywords:

    Abstract:

    04 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    2010 1 13

    [1-4]

    1

    1.1

    (1)

    (EPON)

    (GPON)

    10G

    EPON10G GPON

    10G EPON

    10G

    GPON

    PON

    (FTTH)

    FTTH

    10

  • D:\MAG\2011-08-99/VOL17\F1.VFT3PPS/P

    05Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    (PON)(VDSL)

    LTE

    Wi-Fi3GLTE

    CDMA Wi-Fi

    C+W LTE Wi-Fi

    (2)

    40G

    100G

    IEEE

    2010 6 18

    40GE 100GE IEEE

    802.3ba-2010

    100GE

    ITU-T

    SG15 100GE (OTN)

    100G OTN

    (OIF) 100G

    (WDM)

    80

    100G WDM

    100G

    IP

    1.2

    FTTH

    FTTX

    IP

    (1)

    (QoS)

    (QoE)

    QoE

    QoS

    QoE

    / QoS

    (Diffserv+)

    QoS

    QoS

    QoS

    QoS

    QoS

    IP

    (QoS

    )

    (2)

    11

  • D:\MAG\2011-08-99/VOL17\F1.VFT3PPS/P

    P2P

    IP DPI

    NETStream

    PPPOEAAA

    DPI

    (BRAS)

    (SR)

    P2P

    2

    2.1

    IPTV

    P2P

    (1)

    (CDN)

    (2)CDNP2P

    / CDN

    CDN

    (3)

    SVC

    2.2

    (1)

    /

    Flash

    (2)

    (3)

    (

    )

    GPU

    3

    4

    06 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    1001212147

    ASON WDMOTN101

    [1] 100G ultra long haul DWDM frameworkdocument [R]. OIF(Optical InternetworkingForum), 2009.

    [2] Rich Communication Suite (RCS), Release 2Functional Description v1.1 [S]. GSMAssociation, 2010.

    [3] Rich Communication Suite (RCS), Release 2Technical Realization v0.5 [S]. GSMAssociation, 2009.

    [4] IEEE std 802.3av-2009. Physical layerspecifications, Amendment 1: Physical layerspecifications and management parametersfor 10Gb/s passive optical networks [S]. 2009.

    2011-04-25

    12

  • D:\MAG\2011-08-99/VOL17\F5.VFT4PPS/P

    Trialing and Industrializing TriTrialing and Industrializing Tri-Network Convergence Using a-Network Convergence Using aLarge-ScaleLarge-Scale National TestbedNational Testbed

    /LU Xiaoyuan/LI Yi

    ( 200336)

    (National Engineering Research Center forBroadband Networks & Applications, Shanghai

    200336, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0007-03

    20 100

    The Next Generation Network and National Service Testbed is a typical

    network innovation platform in China. It is the worlds largest network and service

    testbed. At the end of the Eleventh Five-Year program, this national testbed now

    covers one million users in 20 cities across China. It can be used to reform the

    networks of institutions, test new networking technologies, verify new network

    equipment, and demonstrate emerging services. It also acts as a long-term trial

    platform on a national scale, providing services to content providers, network

    operators, equipment providers, and other broadband network industries. The platform

    leads Chinas broadband network industry. This article briefly addresses the function

    and structure of the testbed as well as issues in trialing and industrializing tri-network

    convergence.

    national testbed; tri-network convergence; scale trial; industrialization

    Keywords:

    Abstract:

    1

    IP

    [1]

    GENI FIRE

    JGNI[2-3]

    (3TNet)

    863

    (SNG

    Testbed) 3

    1

    (NGB)

    1.1

    IP[4]

    5

    ()

    1.2

    (863)(2009AA01A333)

    07Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    13

  • D:\MAG\2011-08-99/VOL17\F5.VFT4PPS/P

    10

    30 Mbit/s

    1.3 NGB

    3TNet

    3TNet

    NGB

    NGB

    100

    19

    2

    2.1

    (NGI)

    IP

    Clean Slate

    863

    NGI

    IP 3

    3

    2.2

    863

    (3TNet)

    IP

    (FTTH)

    (1) IP

    3Tnet

    2 3 2006 11 18

    8 000

    2

    3T

    38 000

    NBA

    3TNet

    IPTV

    1

    08 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    14

  • D:\MAG\2011-08-99/VOL17\F5.VFT4PPS/P

    IP

    IPTV

    (2)FTTH

    1 500

    FTTH

    FTTH

    3TNet FTTH

    3 IP

    2.3

    3TNet

    (1) 3TNet

    (2) 3Tnet

    IP

    (3)

    4E

    2008

    3TNet

    (NGB)

    50

    50NGB

    450

    10 1.6

    NGB

    3

    4

    23TNet

    38 0003TNet

    15:20:1615:17:1615:14:1615:11:1615:08:1615:05:16

    5.0

    4.0

    3.0

    2.0

    1.0

    0.0

    09:56:2109:53:2109:50:2109:47:2109:44:2109:41:21

    5.0

    4.0

    3.0

    2.0

    1.0

    0.0

    4311 1 2

    La Trobe 105

    [1] PETERSON L, ANDERSON T, BLUMENTHALD, et al. GENI design principles [J].Computer, 2006,39(9):102-105.

    [2] CHERRY S. A telecom diet rich in fiber [J].IEEE Spectrum, 2009,46(7):56.

    [3] FELDMANN A. Internet clean-slate design:What and why? [J]. ACM SIGCOMMComputer Communication Review, 2007,37(3):59-64.

    [4] KOBAYASHI K, KATSUNO S, NAKAMURA K,et al. JGN IPv6 network [C]//Proceedings ofthe International Symposium on Applicationsand the Internet Workshops(SAINT03),Jan27-31,2003, Orlando, FL, USA. LosAlamitos, CA,USA: IEEE Computer Society,2003: 161-166.

    2011-05-04

    09Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    15

  • D:\MAG\2011-08-99/VOL17\F4.VFT4PPS/P

    Development of Optical Transport Network Technology for Tri-Network ConvergenceDevelopment of Optical Transport Network Technology for Tri-Network Convergence

    /ZHANG Haiyi 1

    /JIN Yaohui 2

    /ZHANG Jie 3(1.

    1001912. 2000303. 100876)

    (1. China Academy of TelecommunicationResearch of MIIT, Beijing 100191, China;

    2. Shanghai Jiao Tong University, Shanghai200030, China;

    3. Beijing University of Posts andTelecommunications, Beijing 100876, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0010-04

    (OTN)

    (PTN) 100G

    Converging networks raises the requirements for flattened architecture as

    well as increased transparency and capacity. Flexible high-capacity scheduling is also

    needed in the transport network. The transport network is the basic bearing network

    and should be safe, flexible, broadband, and capable of transmitting over long

    distances. The transport network in optical transport networks (OTNs), packet transport

    networks (PTNs), and in 100G technology is preparing the way for better convergence

    and the development of the transport network.

    tri-network convergence; transmission; optical transport network;

    packet transport network

    Keywords:

    Abstract:

    10 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    IP

    IPTV

    [1-3]

    1

    (973)(2010CB3282002010CB328201)

    16

  • D:\MAG\2011-08-99/VOL17\F4.VFT4PPS/P

    11Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    2011

    35 10

    100 Mbit/s

    20 Mbit/s

    2011

    (FTTH

    100 Mbit/s )3 000

    34 000

    ( ) 8

    Mbit/s 20 Mbit/s

    70%

    20 Mbit/s 80%

    2013 ()

    20 Mbit/s

    8 000

    1

    20 Mbit/s

    100 Mbit/s

    1

    +1 ++

    512 kbit/s4 Mbit/s 23

    +2

    ++

    820 Mbit/s

    +2

    +++

    50100 Mbit/s

    Web

    2

    (1) IP

    IP

    IP

    IP

    IP

    IP

    (OTN)

    (OAM)

    50 ms (PTN)

    OAM

    (2)

    40 Gbit/s

    (WDM)

    100 Gbit/s WDM

    (3)

    SDH VC

    WDM

    PTN

    (WSON)

    PTN

    1

    ()

    100 kbit/s5 Mbit/s

    100 kbit/s

    100 kbit/s

    100 kbit/s

    500 kbit/s

    500 kbit/s

    100 kbit/s1 Mbit/s

    210 Mbit/s

    23 Mbit/s

    810 Mbit/s

    100 kbit/s

    500 kbit/s

    500 kbit/s

    100 kbit/s8 Mbit/s

    1

    13

    12

    1

    1

    1-2

    13

    100 kbit/s5 Mbit/s

    100300 kbit/s

    100200 kbit/s

    100 kbit/s

    500 kbit/s

    500 kbit/s1 Mbit/s

    100 kbit/s3 Mbit/s

    210 Mbit/s

    29 Mbit/s

    820 Mbit/s

    100 kbit/s

    500 kbit/s

    500 kbit/s1 Mbit/s

    100 kbit/s24 Mbit/s

    17

  • D:\MAG\2011-08-99/VOL17\F4.VFT4PPS/P

    12 20118 174 Aug. 2011 Vol.17 No.4

    PTN

    3 OTNPTN

    3.1

    (OTN)

    SDH

    OAM&P

    WDM

    WDM

    OTN

    ( ODU1

    2.5 Gbit/s)

    OAM

    (TCM)

    (FEC)

    OTN 10

    OTN OTN

    ODUk

    OTN

    (ROADM)

    OTN

    SDH

    (ODU0

    ODU4)

    SDH WDM

    ROADM

    (OEO)

    10 Gbit/s

    40 Gbit/s

    OTN

    OTN

    ROADM

    16

    OTN

    ODUk

    OTN

    OTU5

    3.2

    PTN

    T-MPLS/MPLS-TP

    PBB-TEPBB

    MPLS-TP PTN

    PTN

    (MPLS-TP)

    IP

    (MPLS)

    (

    PHPLSP

    (LSP Merge)(ECMP)

    )

    OAM

    PTN

    (1)

    TDM/ATM

    (2)

    /

    (P2P)(P2MP)

    (3) QoSTDM/ATM

    QoS

    (4)

    OAM

    (5) (TCO)

    T-MPLS ITU-T

    2005 5 2007

    T-MPLS

    G.8110.1T-MPLS G.8112

    T-MPLS G.8121T-MPLS

    G.8131 G.8132

    T-MPLS OAM G.8114

    2007 IETF MPLS

    2008 2 ITU-T

    IETF (JWT)

    T-MPLS MPLS

    IETF

    MPLS-TP

    OAM

    2011 12

    3G

    3G IP

    PTN

    PTN

    (PTN)

    ZTE TECHNOLOGY JOURNAL

    18

  • D:\MAG\2011-08-99/VOL17\F4.VFT4PPS/P

    13Aug. 2011 Vol.17 No.4 20118 174

    PTN

    PTN

    PTN

    PTN

    20

    3.3

    40 Gbit/s POS

    40 Gbit/s

    2010

    40 Gbit/s WDM

    40 Gbit/s WDM

    100GE

    100 Gbit/s

    100G IEEE

    ITU-T(OIF)

    IEEE

    100G

    100GE

    2010 6 17 100GE

    103.125 Gbit/s

    1010 Gbit/s

    7 m

    100 m425 Gbit/s

    10 km 40 km

    OTU4

    111 809 973.568 kbit/sODU4

    104 794 445.815 kbit/s

    100GE OTN

    (FEC)

    OIF

    IEEE

    DP-QPSK 100 Gbit/s

    ITU-T

    100 Gbit/s

    -( ) (PDM-(D)

    QPSK)

    (OFDM)

    (DSP)

    100 Gbit/s

    PDM-QPSK

    (ADC) DSP

    100 Gbit/s

    100 Gbit/s

    WDM

    (OSNR)

    100 Gbit/s

    40 Gbit/s OSNR

    4 dB

    OSNR

    OSNR

    12 dB OSNR

    100 Gbit/s WDM 1 000 km

    FEC

    OSNR

    4

    5

    ZTE TECHNOLOGY JOURNAL

    [1] , . [J]. , 2011,13(1): 15-18.

    [2] . 100G [N]. , 2010,10.

    [3] , . PTN [J]. , 2010,16(3):1-4.

    2011-05-25

    OTNPTNWDM SDH MSTP30

    11

    Internet 1010010

    1

    APOC2007PS2009 ACP2009/2010/2011OECC2009ONDM2010 TPC101006

    121

    19

  • D:\MAG\2011-08-99/VOL17\F7.VFT5PPS/P

    Next-Generation Broadcast Network Wireless SystemsNext-Generation Broadcast Network Wireless Systems

    /FENG Songlin/XIE Wei

    (1. 201203

    2. 100045)

    (1. Shanghai Advanced Research InstituteChinese Academy of Science, Shanghai

    201203, China;2. Television Technology Research Institute,Academy of Broadcasting Science, Beijing

    100045, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0014-05

    (NGB-W)

    NGB-W

    NGB-W(UHF)

    This paper proposes two network architectures in which broadcast and

    bidirectional communications are converged. These architectures are based on the

    next-generation broadcast wireless network (NGB-W). This paper discusses the

    application prospects of NGB-W and key technologies such as downlink broadcast

    transmission, data push of converged broadcast and communications, bidirectional

    wireless access, and spectrum sensing. It suggests that by using a converged

    broadcast and bidirectional communication network, the NGB-W system can make

    better use of ultrahigh frequency (UHF) spectrum resources, distribute network and

    spectrum resources more efficiently, choose suitable transmission schemes for

    various services, and improve efficiency in wireless spectrum use.

    next-generation broadcast (NGB) network; NGB-wireless (NGB-W);

    broadcast and communication convergence; network architecture; push service

    Keywords:

    Abstract:

    14 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    (2009ZX03005-004)

    2011

    2015

    92%

    2015

    26 [1]

    [2-5]

    [6-8]

    2008

    12

    20

  • D:\MAG\2011-08-99/VOL17\F7.VFT5PPS/P

    15Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    (CMMB) [9]

    4

    (NGB)

    2015

    (UHF)

    (NGB-W)

    1 NGB-W

    NGB-W

    (CMMB)

    NGB-W UHF

    B3G/4G

    NGB-W

    NGB-W

    ( CMMB DVB

    ) ( LTE eMBMS

    )

    NGB-W

    NGB-W

    NGB-W

    NGB-W

    2 NGB-W NGB NGB

    NGB

    NGB

    NGBNGB

    (NGB-C) NGB

    NGB-C

    NGB-W

    NGB

    NGB-W NGB-W

    NGB-W

    NGB-W

    NGB-W

    NGB-C

    NGB-W

    NGB-W

    NGB NGB-W

    NGB-W

    2.1

    NGB-W

    NGB-W

    NGB-W NGB

    1

    NGB-W

    NGB-C NGB-W

    1 NGB-W

    NGB-C

    NGB-W

    NGB-W

    NGB-W

    21

  • D:\MAG\2011-08-99/VOL17\F7.VFT5PPS/P

    16 20118 174 Aug. 2011 Vol.17 No.4

    2.2

    NGB-W

    NGB-W

    2

    NGB-W

    3 NGB-W NGB-W

    NGB-W

    /

    3.1 NGB-W

    NGB-W

    CMMB

    DVB-T2

    DVB-NGH

    (1)

    NGB-W

    /

    NGB-W

    NGB-W

    (LDPC) Turbo

    [10]

    (2)

    NGB-W

    NGB-W

    (MIMO)

    MIMO

    MIMO (

    ) MIMO

    (

    ) MIMO

    MIMO MIMO

    MIMO (

    STBC)

    MIMO

    NGB-W

    MIMO

    (3)

    NGB-W

    [11]

    NGB-W

    NGB-W

    NGB-W

    ZTE TECHNOLOGY JOURNAL

    2 NGB-W

    NGB-CNGB-W

    NGB-CNGB-W

    NGB-W

    NGB-W

    22

  • D:\MAG\2011-08-99/VOL17\F7.VFT5PPS/P

    17Aug. 2011 Vol.17 No.4 20118 174

    3.2 /

    NGB-W

    ()

    ()

    3

    NGB-W

    ([12] )

    NGB-W

    NGB-W

    NGB-W(

    )

    3.3

    NGB-W

    NGB-W

    NGB-W

    NGB-W

    NGB-W

    (1)

    NGB-W

    NGB-W

    /-(OFDMA/

    SC-FDMA)

    NGB-W

    NGB-W

    (2)

    NGB-W

    (

    LDPC )

    (3)

    NGB-W UHF

    NGB-W

    2 GHz

    (4)

    NGB-W UHF

    NGB-W

    NGB-W

    NGB

    3.4

    NGB-W

    [13]NGB-W

    NGB-W

    NGB-W

    NGB-W

    NGB-W

    NGB-W

    4 NGB-WNGB-W

    VoIP

    5

    ZTE TECHNOLOGY JOURNAL

    23

  • D:\MAG\2011-08-99/VOL17\F7.VFT5PPS/P

    18 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    NGB-W

    NGB-W

    NGB

    NGB-W

    6 [1] Cisco visual networking index: Global mobile

    data traffic forecast update, 2010-2015 [R].Cisco Systemc Inc, 2011.

    [2] ETSI EN 302 755 V1.1.1. Digital videobroadcasting (DVB): Frame structure channelcoding and modulation for a secondgeneration digital terrestrial televisionbroadcasting system (DVB-T2) [S]. 2009.

    [3] ETSI EN 300 744 V1.6.1. Digital videobroadcasting (DVB): Frame structure, channelcoding and modulation for digital terrestrialtelevision [S]. 2009.

    [4] 3GPP LTE Release 10 and beyond [R]. to bereleased.

    [5] IEEE P802.16m/D8. IEEE draft amendmentstandard for local and metropolitan areanetworks - Part 16: Air interface for fixedand mobile broadband wireless accesssystems - advanced air interface [S]. 2010.

    [6] ROADiBROM (roadmapping digitalbroadcasting / mobile convergence RTD2015) [R/OL]. [2009-11-23]. http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=80515.

    [7] ETSI TS 102 468 V1.1.1. Digital videobroadcasting (DVB): IP datacast over DVB-H:Set of specifications for phase 1 [S]. 2007.

    [8] 3GPP TS 26.346 V10.0.0. Multimediabroadcast/multicast service(MBMS):protocols and codecs:(Release 10) [S]. 2011.

    [9] GY/T 220. [S]. 2006.[10] NOUR C A, DOUILLARD C. Improving BICM

    performance of QAM constellations forbroadcasting applications [C]//Proceedingsof the 5th International Symposium onTurbo Codes and Related Topics,Sep 1-5,2008,Lausanne, Switzerland. Piscataway,NJ, USA: IEEE, 2008:55-60.

    [11 RATASUK R, TOLLI D, GHOSH A. Carrieraggregation in LTE-advanced [C]//Proceedings of the 71st VehicularTechnology Conference (VTC-Spring10),

    May 16-19, 2010, Taipei, China.Piscataway, NJ,USA: IEEE, 2010:5p.

    [12] SHOKROLLAHI A. Raptor codes [J]. IEEETransactions on Information Theory, 2006,52(6):2551-2567.

    [13] ZHANG Y, ZHENG J, CHEN H. Cognitiveradio: Architecture, protocols, and standards[M]. Boca Raton, FL, USA: CRC Press, 2010.

    2011-05-05

    863973 (Fellow)100

    20

    (20132015 )

    IP

    IPTV

    IPTV

    4

    5

    12

    [1] . (NGB) [J]. , 2010(4):20-25.

    [2] HOURCADE J C, NUEVO Y, WAHLSTER W,et al. Future Internet 2020: Visions of anindustry expert group [R]. Brussels, Belgium:European Commission Information Societyand Media, 2009.

    [3] KRUGER L G, GILROY A A, GOLDFARB C B,et al. The national broadband plan [M].Hauppauge, NY, USA: Nova SciencePublishers, 2010.

    [4] i-Japan Strategy 2015 [R]. The Japanese ITStrategic Headquarters, 2009.

    2011-06-06

    3

    24

  • D:\MAG\2011-08-99/VOL17\F3.VFT4PPS/P

    Integration and Broadcasting Platform and Technologies in Tri-Network ConvergenceIntegration and Broadcasting Platform and Technologies in Tri-Network Convergence

    /ZHANG Shile/LU Wei

    /LU Baofeng( 200072)

    (Shanghai Interactive Television Co. Ltd.,Shanghai 200072, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0019-04

    3

    With improving technologies, the transmission network of cable TV has

    extended to the telecom network and Internet. Integration and broadcasting platforms

    that are being built for business lack uniform technical and operation specifications and

    are not easy to manage and scale up. Manually censoring and monitoring content is

    insufficient for integrating business and mass content in tri-network convergence.

    Current broadcasting platforms are independent and unable to support business

    collaboration between content providers and network operators. There is also no

    mechanism for copyright protection. In this paper, we propose a platform for

    integration and broadcasting and research technologies that solve these problems from

    three aspects: content integration, content broadcasting and the collaborative

    operating.

    tri-network convergence; integration and broadcasting; content

    censoring; content protection; collaboration operating

    Keywords:

    Abstract:

    1

    2

    1

    (1)

    (2)

    (3)

    (VOD)

    (UGC)

    (4)

    (863)

    (2011AA01A107863)

    19Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    25

  • D:\MAG\2011-08-99/VOL17\F3.VFT4PPS/P

    3

    3

    3

    2

    2.1

    [1]

    2.2

    (

    )

    3

    3.1

    1

    2

    IPTV ()

    ( CCTV)

    ( SiTV)

    ( CNTV)

    ()

    P2P ( PPStream)

    + IPTV +

    ()

    ( CNTV)

    ()

    ()

    ()

    20 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    26

  • D:\MAG\2011-08-99/VOL17\F3.VFT4PPS/P

    (EPG)

    [2]

    H.264

    (SVC)[3]

    SVC

    SVC

    [4]

    [5]

    EPG

    EPG

    EPG

    EPG

    3.2

    H.264/AVC

    (SVC)

    H.264/AVC

    3

    EPG

    21Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    27

  • D:\MAG\2011-08-99/VOL17\F3.VFT4PPS/P

    ()(

    )

    4

    4.1

    4.2

    /

    5

    6 [1] PRITCH Y, RAV-ACHA A, PELEG S.

    Nonchronological video synopsis andindexing [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2008,30(11): 1971-1984.

    [2] SUN Huifang, CHEN Xuemin, CHIANG Tihao.Digital video transcoding for transmissionand storage [M]. New York, NY,USA:CRCPress, 2005.

    [3] SCHWARZ H, WIEN M. The scalable videocoding extension of the H.264/AVC standard[J]. IEEE Signal Processing Magazine, 2008,25(2): 135-141.

    [4] COX I J, MILLER M L, BLOOM J A, et al.Digital watermarking and steganography [M].2nd ed. Amsterdam, Netherland: MorganKaufmann, 2008.

    [5] ROSENBLATT B, TRIPPE B, MOONEY S.Digital rights management: Business andtechnology [M]. New York, NY,USA: HungryMinds/John Wiley & Sons, 2001.

    [6] COOPER J O, HERON T E, HEWARDW L.Applied behavior analysis [M]. 2nd ed. UpperSaddle River, NJ,USA: Prentice Hall, 2007.

    2011-05-05

    8 ( SCI 1 EI 1)

    105(3)

    IPTV2013(7)

    22 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    28

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    Common Security and Control Framework in Tri-Network ConvergenceCommon Security and Control Framework in Tri-Network Convergence

    /LI Yufeng 1

    /LAN Julong 1

    /XUE Xiangyang 2(1.

    4500022.

    201203)(1. National Digital Switching System

    Engineering & Technological Research Center,Zhengzhou 450002, China;

    2. School of Computer Science, FudanUniversity, Shanghai 201203, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0023-06

    This paper proposes a Common Security and Control Framework (CSCF) for

    application security, network security, information security, and behavioral security in

    tri-network convergence. CSCF has an independent architecture and can be operated

    transparently across the whole network. It treats the network link as the control object

    and can perform functions such as link traffic identification and link traffic analysis. It

    can also check and control a security problem at one point and initiate a whole-system

    response. CSCF is based on a distributed security and control platform with high

    scalability. This paper discusses the development of techniques used to establish a

    security system that proactively defends against threats, flexibly reacts to and blocks

    threats as they occur, and traces threats.

    common security and control framework; control center; control platform

    Keywords:

    Abstract:

    (863)

    (2009AA01A346)

    IP

    (1)

    (2)

    (3)

    23Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    29

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    (4)

    1

    [1]

    -

    1.1

    (1)

    1

    2

    1

    3

    4

    24 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    30

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    1

    (2)

    2 4

    (DPI)

    (DFI)

    (DCI)

    (DBI)

    (3)

    3

    DPIDFIDCIDBI

    (4)

    4

    (5)

    5

    1.2

    (1)

    2

    3

    DBI DCI DFI DPI

    DBI

    DCI

    DFI

    DPI

    DPI

    DFI

    DCI

    DBI

    DBI DCI DFI DPI

    25Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    31

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    (2)

    (3)

    (4)

    (5)

    4

    5

    Ddos

    DDOS

    /

    26 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    32

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    2

    2.1

    (1)

    (2)

    (3)

    2.2

    (

    )

    (1)

    ()

    (2)

    URL

    P2P

    (1)

    IP

    DFI

    [2-4]

    (2)(DPI)

    [5-7]

    2.3

    [8][9]

    [10]

    2.4

    ()

    2.5

    27Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    33

  • D:\MAG\2011-08-99/VOL17\F6.VFT6PPS/P

    2.6

    IP

    UUNet Stone

    [11] Burch

    [12]

    Song PPM [13]

    WAPWeb

    (

    )

    3

    4

    7 30 SCI/EI20

    [1] , . [J]. , 2007,20(12):15-18.

    [2] WON Y J, PARK B C, JU H T, et al. A hybridapproach for accurate application trafficidentification [C]//Proceedings of the 4th IEEE/IFIP Workshop on End-to-End MonitoringTechniques and Services(E2EMON06), Apr03,2006,Vancouver, Canada. Piscataway, NJ,USA: IEEE, 2006:8p.

    [3] KARAGIANNIS T, PAPAGIANNAKI K,FALOUTSOS M. BLINC: Mutilevel trafficclassfication in the dark [J]. ACM SIGCOMMComputer Communication Review, 2005, 35(4):229-240.

    [4] ALSHAMMARI R, ZINCIR-HEYWOOD A N.Machine learning based encrypted trafficclassification: Identifying SSH and skype [C]//Proceedings of the 2nd IEEE Symposium onComputational Intelligence for Security andDefense Applications (CISDA09), Jul 8-10,2009, Ottawa, Canada. Piscataway, NJ,USA:IEEE, 2009: 289-296.

    [5] AHO A V, CORASICK M J. Efficient stringmatching: an aid to bibliographic search [J].Communications of the ACM,1975,18(6):330-340.

    [6] KUMAR S, TURNER J, WILLIAMS J.Advanced algorithms for fast and scalabledeep packet inspection [C]//Proceedings ofthe 2006 ACM/IEEE Symposium onArchitecture for Networking andCommunications Systems(ANCS06), Dec3-5,2006,San Jose, CA, USA. New York, NY,USA:ACM, 2006: 81-92.

    [7] NAGHMOUCHI J, SCARPAZZA D P,BEREKOVIC M. Small-ruleset regularexpression matching on GPGPUs:Quantitative performance analysis andoptimization [C]//Proceedings of the 24thACM International Conference onSupercomputing(ICS10), Jun 2-4,2010,Tsukuba, Ibaraki, Japan. New York, NY,USA:ACM, 2010: 337-348.

    [8] LIN Y R, HUANG H Y, HSU W H. Anembedded watermark technique in video forcopyright protection [C]//Proceedings of the

    IEEE 18th International Conference onPattern Recognition (ICPR06): Vol 4, Aug20-24, 2006, Hong Kong, China. Piscataway,NJ,USA: IEEE, 2006:795-798.

    [9] SUN Q, HE D, TIAN Q. A secure and robustauthentication scheme for video transcoding[J]. IEEE Transactions on Circuits andSystems for Video Technology, 2006,16(10):1232-1244.

    [10] WANGW H, FAFID H. Exposing digitalforgeries in video by detecting doubleMPEG compression [C]//Proceedings of theACM Muhimedia and SecurityWorkshop(MM&Sec'06), Sep 26-27,2006,Geneva, Switzerland. New York, NY,USA:ACM, 2006:37-47.

    [11] STONE R. Centertrack: An IP overlaynetwork for tracking DoS floods [C]//Proceedings of the 9th Conference onUSENIX Security Symposium, Aug 14-17,2000,Denver,CO,USA. Berkeley, CA, USA:USENIX Association, 2000:199-212.

    [12] BURCH H, CHESWICK B. Tracinganonymous packets to their approximatesource [C]// Proceedings of the 14thUSENIX Conference on SystemAdministration(LISA00), Dec 3-8,2000,New Orleans, LA, USA. Berkeley, CA, USA:USENIX Association, 2000:319-327.

    [13] SONG D X, PERRIG A. Advanced andauthenticated marking schemes for IPtraceback [C]// Proceedings of the 20thAnnual Joint Conference of the IEEEComputer and Communications Societies(INFOCOM01):Vol 2,Apr 22- 26,2001,Anchorage, AK,USA. Piscataway, NJ,USA:IEEE, 2001:878-886.

    2011-05-07

    28 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    34

  • D:\MAG\2011-08-99/VOL17\F8.VFT4PPS/P

    Cooperative Wireless Technologies in Tri-Network ConvergenceCooperative Wireless Technologies in Tri-Network Convergence

    /XU Ling/FANG Huiying

    ( 518004)(ZTE Corporation, Shenzhen 518004, China)

    TN915; TN94; TP393.03 A 1009-6868 (2011) 04-0029-04

    (ARQ)

    Cooperative wireless technology, especially cross-layer cooperative

    architecture, will contribute to tri-network convergence. This paper proposes

    cooperative technology that provides primary return channel and network-level

    automatic repeat request (ARQ) as well as user and service-oriented transmission by

    means of unified resource management and coordination. Cooperative technology

    improves coverage quality and allows for dynamic spectrum sharing through

    cooperative relay. It also provides a more effective coordination mechanism for

    tri-network convergencewhich creates a new service experience and is suited to

    the development of diverse new services.

    tri-network convergence; cooperative wireless technology; unified radio

    resource management; cooperative relay; spectrum sharing; cognitive radio

    Keywords:

    Abstract:

    (CMMB) 30 MHz 3 000 MHz

    /

    CMMB

    (MIMO)

    1 (WPAN

    WLANWMANWWAN )

    1

    29Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    35

  • D:\MAG\2011-08-99/VOL17\F8.VFT4PPS/P

    (1)

    (CRRM)

    /

    /

    CRRM

    (Joint RRM)

    3GPP

    Internet Offload

    [1]CRRM

    3

    CRRM

    CRRM

    ( RNCeNodeB )

    (2)

    (COMP)

    (JP)(CP/CB)

    (COMP)

    2

    (3)

    (CR)

    (

    )

    CR

    (ETSI)

    CR

    (IMT)

    2G/3G 4G

    CR

    (4)

    [2-5]

    2

    WAN WLAN WPAN GPS

    1

    2 (COMP)

    GPS/

    WAN

    WLAN

    WPAN

    30 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    36

  • D:\MAG\2011-08-99/VOL17\F8.VFT4PPS/P

    4

    (1) 1

    ()

    ()

    (2) 2

    ARQ (NARQ)

    (NARQ)

    3 ARQ

    NARQ

    /

    ( CRRM )

    CRRM

    4

    (3) 3

    5

    2

    2 ARQ

    ARQ

    (4) 4

    3

    ARQ

    4

    5

    ARQARQ

    ARQ

    /

    Internet

    31Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    37

  • D:\MAG\2011-08-99/VOL17\F8.VFT4PPS/P

    6

    7

    3

    6

    7

    [1] PILLEKEIT A. Common radio resourcemanagement - Theory, architectures,algorithms [C]//Summer Academy 2010 ofInternational Graduate School on MobileCommunications, Jul 26-Aug 08,2010,TUIlmenau, Germany. 2010.

    [2] Cognitive radio, spectrum and radio resourcemanagement [R]. WWRF WG6 White Paper.2004.

    [3] VON Hugo D, BOGENFELD E, GASPARD I, etal. Joint RRM as a concept for efficientoperation of future radio networks [C]//Proceedings of the 70th VehicularTechnology Conference (VTC-Fall09),Sep20-23, 2008, Anchorage, AK,USA.Piscataway, NJ,USA:IEEE, 2009: 5p.

    [4] Performance of cognitive collaborativenetwork, management concepts [R].End-to-End Efficiency (E3) Deliverable D3.4.2009.

    [5] GELABERT X, PREZ-ROMERO J, SALLENTO, et al. Radio resource management inheterogeneous networks [C]//Proceedings ofthe 3rd International Working Conference onPerformance Modelling and Evaluation ofHeterogeneous Networks (HET-NETs05),July 18-20, 2005, Ilkley, UK. London, UK:IEEE, 2005:12p.

    2011-05-11

    3

    WiMAX LTE 20

    Internet

    32 20118 174 Aug. 2011 Vol.17 No.4

    ZTE TECHNOLOGY JOURNAL

    38

  • D:\MAG\2011-08-99/VOL17\Expert.VFT4PPS/P

    /ZHOU Qi( 100037)(China Academy of TelecommunicationResearch of MIIT, Beijing 100037, China)

    :

    :

    Abstract:With the emergence of digital broadcast television, tri-network convergence has

    become a trend in the global information industry and an important stimulant of the Chinese

    economy. Influenced by tri-network convergence, telecommunications has now taken on

    some of the features of traditional media, and services offered by telecom operators have

    expanded. Separation of terminals, which characterized the traditional media era, has

    ended. This paper suggests that service element cross-domain integration and

    convergence allows for multistate service development in tri-network convergence. It

    creates new media industries and gives rise to innovative business models.

    Keywords: tri-network convergence; full-service; multiscreen convergence; IPTV

    Business Models and Future Development Strategy of Tri-Network ConvergenceBusiness Models and Future Development Strategy of Tri-Network Convergence

    TN915TN94TP393.03 A 1009-6868 (2011) 04-0033-04

    IP

    1

    [1]

    4

    (1)

    IP

    (IPTV)

    ZTE TECHNOLOGY JOURNAL

    33Aug. 2011 Vol.17 No.4 20118 174

    39

  • D:\MAG\2011-08-99/VOL17\Expert.VFT4PPS/P

    1

    IPTV

    2009

    (2)

    TD+CMMB

    +

    (WEBTV)

    , 2

    Google TV

    APPLE TV BBC iPlayer TV

    (TV BOX

    iTunes

    (3)

    IPTV

    [2]

    IPTV IPTV

    IPTV IPTV

    3

    SeeMeTV ( 3 )

    now TV

    3

    SeeMeTV

    (UGC)

    (MMS)

    10%

    (4)

    FMC

    ARPU

    1 IPTV

    2

    3 SeeMeTV

    UGC

    258 2005

    130

  • D:\MAG\2011-08-99/VOL17\Expert.VFT4PPS/P

    (FMC)

    FMC FMC

    FMC

    FMC

    IPTV

    [3]

    KDDI AU BOX FMBC

    IPTV4

    2 (1)

    BTAT&T

    (2)

    32%

    2009

    76362

    PC

    3G

    (3) IPTV

    IPTV

    IPTV

    IPTV

    (4)

    widget

    SP

    SP

    IPTV

    IPTV

    (5)

    5 2010

    (6)

    2008 2010

    2010

    320 500

    HDTV

    70%

    (STB)

    STB

    4 KDDI FMC

    STB

    PC

    ()()()

    ZTE TECHNOLOGY JOURNAL

    35Aug. 2011 Vol.17 No.4 20118 174

    41

  • D:\MAG\2011-08-99/VOL17\Expert.VFT4PPS/P

    (7) IPTV 2013

    2 000

    2010-2012

    IPTV

    IPTV

    5

    2010 IPTV

    760 2013 2 100

    2009-2013

    46%

    3

    (1)

    IPTV

    (2)

    (CDN)

    (3)

    [4]

    (4)

    (IPQAM)

    4

    5

    CAGR

    [1] .IPTV[J]. , 2006, 4(4):17.

    [2] . [J]. , 2009(9) : 32-35.

    [3] . [J].,2010(5):25.

    [4] , . [J].,2010(Z1): 15-19.

    2011-06-20

    5 2010-2013 IPTV

    6 000

    3 000

    1 000

    02002 2004 2006 2008 2009 2010 2011 2012 2013

    2 000

    1 800

    1 600

    1 200

    800

    40028

    63

    140

    200

    6 497.3

    40 501

    260460

    760

    1 000

    1 300

    2 100

    CAGR=46%

    IPTV

    /

    ZTE TECHNOLOGY JOURNAL

    36 20118 174 Aug. 2011 Vol.17 No.4

    42

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    Distributed Cache of Cloud Computing Technology and Its ApplicationDistributed Cache of Cloud Computing Technology and Its Applicationin the Internet of Thingsin the Internet of Things :

    :

    Abstract: The Internet of Things (IoT) is the product of information technology, and the

    cloud computing platform is the basis of IoT applications. This paper discusses the

    deployment, functional architecture and key technology of cloud computing distributed

    cache, which can be used to overcome certain IoT shortcomings. This paper focuses on

    the advantages of distributed cache, including high performance, throughput, reliability,

    and scalability. Cloud computing distributed cache can solve IoT application problems

    that affect data reliability, large shared memory, consistency in multimodule data

    protection, and linear expansion. These support the bottom layer of cloud architecture in

    the IoT platform.

    Keywords: cloud computing; Internet of things; distributed cache

    /GAO Hong/DONG Zhenjiang

    ( 210012

    (Communication Service R&D Institute, ZTECorporation, Nanjing210012, China)

    TN91 A 1009-6868 (2011) 04-0037-06

    PC

    GoogleAmazonSalesforce IT

    [1-2]

    IT

    (API)

    37Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    43

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    1

    PC

    WEB 2.0

    IT

    2007 10

    Dynamo

    1

    [3-4]

    GoogleAmazon

    (RDBMS)

    Google Amazon

    Key-Value

    Key-Value

    Google BigTableAmazon Dynamo

    Facebook Cassandra

    [5]

    2

    2.1

    API

    telnet

    B/S

    2

    2.2

    3

    3

    /SSD/

    1 Amazon

    S3

    ZTE TECHNOLOGY JOURNAL

    38 20118 174 Aug. 2011 Vol.17 No.4

    44

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    (LRU)SSD

    2.3

    2.3.1 NRW

    NRW

    4 NRW

    N R

    W

    R+W >N

    R W

    W 1

    R

    1

    R W

    2.3.2 Hash

    Hash

    0232

    232

    Hash

    Hash

    Hash

    2

    LRU

    3

    /

    /

    telnet Web

    SSD

    Hash

    LRU

    1

    2

    3

    1 2 3

    39Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    45

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    5 232 Hash

    Hash

    2.3.3

    (1) 10

    3

    ABC

    (2) A A

    10

    3

    A D

    C A

    (3) A A

    10

    A 10

    BC

    10

    BC

    A

    A

    API

    API

    2.3.4

    IP

    6

    (1) 12

    35 4

    12 0

    35

    (2) 4

    1

    2

    (3) 1

    035

    4

    4 NRW

    N,R,W ) (3, 2 ,2)

    5Hash

    Key-Value

    R+W >N

    (N =3W=R=2)

    NNRRWW

    Hash

    232/0

    Key-Value

    ZTE TECHNOLOGY JOURNAL

    40 20118 174 Aug. 2011 Vol.17 No.4

    46

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    4 0

    3 5

    4

    3

    3.1

    Key-Value

    24

    Hash

    I/O

    I/O

    API

    3.2

    (ICT)

    (RFID)

    3

    7 1

    RFID

    2

    3

    3

    8

    (QoS)

    (GPRS)

    (M2M)

    IP

    18 /

    6

    1

    2

    3

    0

    5

    4

    4043

    54

    41Aug. 2011 Vol.17 No.4 20118 174

    ZTE TECHNOLOGY JOURNAL

    47

  • D:\MAG\2011-08-99/VOL16\OA1.VFT6PPS/P

    4

    RFID

    [6]

    5

    DCACHE OMMP NFS DB

    [1] .[M].: , 2010.[2] ,.[J].

    , 2010(12):1-3.[3] DECANDIA G, HASTORUN D, JAMPANI M,et

    al. Dynamo: Amazons Highly AvailableKey-Value Store[C]//Proceedings of the 21thACM SIGOPS Symposium on OperatingSystems Principles (SOSP07), Oct 14-17,2007, Washington, DC, USA. New York, NY,USA: ACM, 2007:205-220.

    [4] CHANG F, DEAN J, GHEMAWAT S,et al.Bigtable: A Distributed Storage System forStructured Data[C]//Proceedings of the 20thACM SIGOPS Symposium on OperatingSystems Principles (SOSP05), Oct 23-26,2005, Brighton UK. New York, NY, USA:ACM, 2005: 205-218.

    [5] LAKSHMAN A,MALIK P.Cassandra: ADecentralized Structured Storage System[J].SIGOPS Operating Systems Review, 2010, 44(2):35-40.

    [6] .[J].(),2010,22(5): 526-531.

    2011-05-25

    8

    INIMS

    SDPP2P3G ICT

    7

    DB

    +

    OMMP

    NFS

    1

    2

    N

    DCACHE 1

    DCACHE 2

    DCACHEm

    1 n 1 n

    ZTE TECHNOLOGY JOURNAL

    42 20118 174 Aug. 2011 Vol.17 No.4

    48

  • D:\MAG\2011-08-99/VOL17\RP2.VFT5PPS/P

    LTE-AdvancedLTE-AdvancedQoSQoS

    Study of the Mapping of QoS Parameters in LTE-A SystemsStudy of the Mapping of QoS Parameters in LTE-A Systems /KONG Xiangyi 1, /ZHAO Jihong 2(1. 7100612. 710049 )(1. School of Communications and Information Engineering, Xian University of Posts and

    Telecommunications, Xian 710061, China;2. School of Electronic and Information Engineering, Xian JiaoTong University, Xian 710049, China)

    TP393 A 1009-6868 (2011) 04-0043-05

    QoS

    QoS LTE-A

    QoSQoS

    LTE-AQoS

    LTE-Advanced

    Abstract: Mapping of QoS parameters provides a mechanism for lower layers to know

    the service QoS information of the upper layer so that transmission quality is

    guaranteed. As LTE-A continues to be evaluated, mapping of QoS parameters is

    becoming more important in satisfying the QoS decision of the system architecture and

    transforming or mapping systems information. This paper analyzes the architecture for

    mapping QoS parameters in LTE-A. It examines the function of each part of the

    architectures framework and specifies the mapping process and rules for specific

    parameters.

    Keywords: LTE-A; QoS; mapping of parameters

    LTE-AdvancedQoSZTE TECHNOLOGY JOURNAL

    (3GPP) LTE-Advanced (ITU-R)

    (IMT-Advanced)

    ITU-R IMT-Advanced

    1 Gbit/s 100 Mbit/s

    [1]

    ITU-R 5D

    3GPP LTE

    Release 10 & Beyond(LTE-Advanced)

    4G

    (QoS)

    QoS

    QoS

    Carl Wijting[2] QoS

    QoS

    QoS

    LTE-A

    IP

    1 QoS

    1.1 QoS

    [3]QoS

    QoS QoS

    QoS

    QoS[4]

    1.2 QoS

    [5] QoS

    QoS

    QoS

    QoS

    3GPP

    QoS

    43Aug. 2011 Vol.17 No.4 20118 174

    49

  • D:\MAG\2011-08-99/VOL17\RP2.VFT5PPS/P

    EPS QCI

    1

    2

    3

    4

    5

    6

    7

    8

    9

    GBR

    GBR

    2

    4

    3

    5

    1

    6

    7

    8

    9

    /ms

    100

    150

    50

    300

    100

    300

    100

    300

    10-2

    10-3

    10-3

    10-6

    10-6

    10-6

    10-3

    10-6

    IMS

    TCPWWWE-mailFTPP2P

    TCPWWWE-mailFTPP2P

    LTE-AdvancedQoSZTE TECHNOLOGY JOURNAL

    LTE-AQoS

    1.3 QoSQCI

    QoS

    QoS (QCI)

    (ARP) (GBR)

    (MBR)

    (AMBR) [6]

    AMBR

    (UE-AMBR)

    (APN-AMBR) QCI

    AMBR

    (EPS)

    (UMTS)

    QCI

    EPS

    (E-RAB) GBR

    GBR QCI ARP

    (SDF)

    QCI IP

    (IP-CAN)

    SDF QCI ARP

    SDF QCI

    QoS

    1 EPS

    QCI

    2 LTE-AQoS

    LTE-Advanced IP

    QoS

    (PCC)

    PCC QoS

    2.1 QoS

    3GPP R7 PCC

    QoS

    PCC

    QoS IP-CAN

    QoS

    [7]

    (AF)

    (PCRF)

    (PCEF)

    (BBERF)(UE)

    QoS

    QoS (SDI)

    (SDP)IP QoS

    QoS QoS

    1

    2.2 QoS

    1 AF AF

    RxPCRFPCRF

    IP QoS QCI

    GBRMBRARP

    1 EPSQCI

    EPSFTP

    GBRIMSIP

    P2PQCIQoS

    TCP

    PCRFPCEF

    BBERFSDI

    AFQoS

    1 QoS

    IP

    IP

    PCEF/BBERF

    SDI

    AF

    PCRF

    AF

    (Rx)

    QoS

    IP QoS

    (Gx/Gxx)

    44 20118 174 Aug. 2011 Vol.17 No.4

    50

  • D:\MAG\2011-08-99/VOL17\RP2.VFT5PPS/P

    PCEF BBERF

    PCC Gx

    Gxx

    QoS

    QoS

    3 QoS

    EPS PCC

    Diameter

    (AVP)

    UE

    AF

    QoS AF

    PCRFPCRF

    IP QoS

    PCC

    PCEF BBERF

    PCEF BBERF PCC

    QoS

    3.1 AFQoS

    AF Rx

    AVP AF

    SDI

    Rx

    PCRF

    Diameter [8]

    AF

    SDP SDP

    [9]

    AVP

    AF

    /

    [10]

    2 SDP

    AVP

    2

    SDP

    UE UE

    SDP

    m-line

    ab[11]

    IP

    IP

    IPIP

    (UDP)

    3.2 PCRFQoS

    PCRF

    R6 R7

    PCRF

    QoS

    PCRF AF

    AF

    PCRF QoS

    QoS

    Rx

    IP QoS

    QCIGBRMBR ARP

    UE

    UE AF IP

    QoS QoS

    QoS 3

    QCI

    3 QCI

    QCI PCRF

    AF AVP

    QCIAF

    AVP

    AVP QCI

    AVPQCI

    3.3 PCEF/BBERFQoS

    PCEF/BBERF PCRF

    IP QoS

    QoS

    QoS

    QoS

    PCEF

    R6

    R7

    PCEF

    GPRS GPRS

    (GGSN)

    (WLAN)

    (P-GW)

    LTE-AdvancedQoSZTE TECHNOLOGY JOURNAL

    2 AF

    ASAVP

    MSRPRTP

    SDPTCPTiASUDP

    =

    =

    *1 000

    b=TiAS:

    b=AS:

    b

    =

    a

    =

    Recovonly sendrecy

    TCPTCP/MSRP

    UDP RTP/AVP b=TiAS:

    =

    b M

    b=AS:b=TiAS:

    =

    UE

    =

    45Aug. 2011 Vol.17 No.4 20118 174

    51

  • D:\MAG\2011-08-99/VOL17\RP2.VFT5PPS/P

    QoS

    BBERF

    (S-GW) Gxx [12]

    PCRF QoS

    GPRS GGSN

    PCRF IP QoS

    /

    (PDP) UMTS QoS

    PDP UMTS QoS

    /

    APN-AMBR

    2 PDP

    IP QoS

    2 QCI 1 2

    [13]34

    5678

    3GPP EPS P-GW

    / P-GW

    GPRS(SGSN)Gn/Gp

    3.4 UEQoS

    UE PCEF/

    BBERF IP-CAN

    IP-CAN

    IP-CAN

    4 UE

    PDP QoS

    (1) IP

    UMTS

    (2)

    UMTS QoS

    (3) SDP SDP

    UMTS

    (4) 1 2

    UMTS QoS 3

    UMTS QoSUE

    3

    UE

    5 SDP

    UE SDP

    UE SDP

    AVP

    4 QoS

    QoS

    3GPP

    QoS

    QoS

    QoS

    LTE-AdvancedQoSZTE TECHNOLOGY JOURNAL

    AFAVPQCIQoSQoS

    RTCP

    3 QCI

    2 QCIPDP

    QCIQoS

    QCI

    12

    34

    5678

    QCI=

    AVP

    QCI=video

    QCI=QCI=1 2

    QCI=6 7 8

    QCI=6

    QCI=9

    AF

    RTCP IP /

    AVPs

    =3 4=4

    =1

    =2

    QCI=

    AF AVP QoS

    QCI=

    46 20118 174 Aug. 2011 Vol.17 No.4

    52

  • D:\MAG\2011-08-99/VOL17\RP2.VFT5PPS/P

    (1) QoS

    (2) QoS

    (3) QoS

    QoS

    3GPP

    CoMP

    QoS

    4G

    5

    LTE-AdvancedQoSZTE TECHNOLOGY JOURNAL

    PDPSDP

    SGSNGPRSUMTS

    UEQoS

    AVPRTPSDPUE

    [1] ITU-R M.2134. Requirements Related toTechnical Performance for IMTAdvancedRadio Interface [S].2008.

    [2] MASRI W, MAMMERI Z. Mapping Density toBandwidth in Tree-Based Wireless SensorNetworks[J].Telecommunication Systems,2010,43(1/2):73-81.

    [3] CHANG Qian, SONG Junde, HOU Chunping.Study of QoS in UTRAN[C]//Proceeding of the2002 IEEE Canadian Conference on Electricaland Computer Engineering (CCECE02), May12-15, 2002 , Winnipeg, Canada.Piscataway,NJ, USA:IEEE,2002:1605-1609.

    [4] DASILVA L A. QoS Mapping Along theProtocol Stack: Discussion and PreliminaryResults[C]//Proceedings of the IEEEInternational Conference onCommunications(ICC00):Vol 2, Jun 18-22,2000, New Orleans, LA, USA. Piscataway,NJ, USA:IEEE, 2000:713-717.

    [5] MARCHESE M, MONGELLI M. Vertical QoSMapping over Wireless Interfaces[J]. IEEEWireless Communications, 2009,16(2):37-45.

    [6] 3GPP TS 23.203. v10.1.0. Policy and ChargingControl Architecture[S].2005.

    [7] 3GPP TS 29.213. v9.4.1. Policy and ChargingControl Signaling Flows and Quality ofService (QoS) Parameter Mapping[S].2010.

    [8] CALHOUN P, LOUGHNEY J, GUTTMAN E,etal.Diameter Base Protocol[R]. IETF. RFC3588.2003.

    [9] 3GPP. TS 29.214 v10.0.1. Policy and ChargingControl over Rx Reference Point[S].2011.

    [10] CASNER S. Session Description Protocol(SDP)Bandwidth Modifier [R]. IETF. RFC3556. 2003.

    [11] HANDLEY M, JACOBSON V, PERKINS C.SDP: Session Description Protocol[R]. IETF.RFC 4566.2006.

    [12] 3GPP TS 29.212. v10.0.0. Policy andCharging Control over Gx Reference Point[S].2010.

    [13] 3GPP TS 23.107.v9.1.0. Quality of Service(QoS) Concept and Architecture[S]2010.

    2011-05-10

    100

    4 UEQoS

    5 SDP

    UMTS

    QoS

    UMTS

    IP

    SDP

    (1) (3)

    (2)

    (4)

    SGSN

    PDP

    SDP

    ==

    ==

    ==

    B=AS

    TS26.234

    A=sendonlyrecvonly

    TS26.234

    SDP

    ==RTP/AVP

    UE

    47Aug. 2011 Vol.17 No.4 20118 174

    53

  • D:\MAG\2011-08-99/VOL17\DF1.VFT4PPS/P

    Wi-FiWi-FiANew Option for Broadband Wireless Network: Wi-Fi OffloadA New Option for Broadband Wireless Network: Wi-Fi Offload

    : iPhone

    Wi-Fi

    AP/AC PMIP IP

    Wi-Fi

    Wi-Fi Internet 2G/3G/LTE

    : Wi-Fi IP

    Abstract: Smartphones and laptop computers have brought about an explosion in data

    traffic, and using Wi-Fi to offload data flow has become a trend. This paper suggests

    that a smart antenna can enhance signal coverage, improved AP/AC can reduce

    handoff time, PMIP can provide IP mobility, and a relatively transparent Wi-Fi network

    can be used to provide new services. It proposes seamless coverage and handoff that

    satisfies medium-speed mobile Wi-Fi and greatly offloads Internet and data traffic.

    The 2G/3G/LTE network continues to carry voice and other high value-added business.

    Key words: seamless coverage; seamless handoff ; Wi-Fi hotspot; IP mobility; open

    system resource interface

    /WEI Yuan(

    210012)(Central Research Institute, ZTE

    Corporation, Nanjing 210012, China)

    TN929.5 A 1009-6868 (2011) 04-0048-04

    2008 Vodafone

    300500 Cisco 2008

    iPhone

    17%

    65% 3 AT&T

    50 iPhone

    AT&T 3% 40%

    [1]

    iPhone

    3G

    (LTE)

    LTE

    (Wi-Fi)

    Wi-Fi

    Wi-Fi

    (WLAN)

    802.11n 2009 9

    600 Mbit/s

    (MIMO)

    (OFDM) Wi-Fi

    [2]

    IP

    Wi-Fi

    2G/3G/LTE

    1 Wi-Fi

    1.1 Wi-Fi

    Wi-Fi

    Wi-Fi

    /

    Wi-Fi

    1

    1.2

    Internet

    (Ethernet)

    WLAN EPON (0G/100G

    Ethernet)(100G Ethernet)[3]

    WLAN Internet

    /

    (MAC) IP

    Wi-Fi ZTE TECHNOLOGY JOURNAL

    48 20118 174 Aug. 2011 Vol.17 No.4

    54

  • D:\MAG\2011-08-99/VOL17\DF1.VFT4PPS/P

    (OSI)

    [4]

    MAC

    1.3 802.11n

    802.11n WLAN

    100600 Mbit/s

    WLAN 10

    Wi-Fi

    PC

    802.11n

    MIMO

    802.11n 12

    1

    20 MHz 140 MHz

    2.25

    1234

    64 QAM 616QAM 4(QPSK)

    2(BPSK) 1

    BPSK 1/2QPSK16QAM 1/2 3/464 QAM 2/33/4

    7/8

    800 ns 1400 ns1.11

    802.11n

    100 Mbit/s 125 Mbit/s22

    20 MHz200 Mbit/s 250 Mbit/s4

    420 MHz300 Mbit/s 250 Mbit/s

    2 240 MHz500 Mbit/s 600

    Mbit/s4440 MHz

    33MIMO

    300 Mbit/s

    1.4 Wi-Fi

    Wi-Fi

    44MIMO

    Wi-Fi

    22MIMO 500 nW

    (AP)

    1000 m (2.5 Mbit/s)

    500 m (5 Mbit/s)

    500 m (12 Mbit/s)

    Wi-Fi

    2[5]

    1.5 MESH

    AP

    Wi-Fi

    Wi-Fi

    802.11s MESH

    MESH AP

    ACAP DPI IMSIP MESH WLAN

    1 Wi-Fi

    1 802.11nMIMO

    /MHz

    /(Mbit/s)

    MIMO

    22MIMO

    20

    12

    1

    2

    6

    0.875

    1

    126

    12

    1

    2

    6

    0.75

    1

    108

    44MIMO

    20

    12

    1

    4

    6

    0.875

    1

    252

    12

    1

    4

    6

    0.75

    1

    216

    22MIMO

    40

    12

    2.25

    2

    6

    0.875

    1

    283.5

    12

    2.25

    2

    6

    0.75

    1

    243

    44MIMO

    40

    12

    2.25

    4

    6

    0.875

    1

    567

    12

    2.25

    4

    6

    0.75

    1

    486

    2

    /(km/h)

    4

    40

    80

    300

    /s

    720

    270

    135

    120

    /s

    45

    34

    17

    15

    IMS IP //DPI

    AC AC

    IP

    MESH

    WLAN

    Wi-Fi ZTE TECHNOLOGY JOURNAL

    49Aug. 2011 Vol.17 No.4 20118 174

    55

  • D:\MAG\2011-08-99/VOL17\DF1.VFT4PPS/P

    MESH AP [6]

    1.6 AP/AC

    AP

    QoS

    AC AP/AC

    /

    AP/AC

    CAPWAP rfc5415

    CAPWAP rfc5416

    802.11 AC

    Wi-Fi AAA

    BOSS

    [7-8]

    1.7 PMIP

    IP Wi-Fi

    MIP Client

    IP (PMIP)

    [9]

    PMIP Wi-Fi

    330%

    (MAG)

    FPMIP MAG MAG

    Wi-Fi

    MAGMAG1MAG3

    STA1

    STA1

    MAG STA1

    (IETF) 2009

    Multimob WG

    (QoS)

    SkypeQQ Global IP

    Sound iLBC

    13.3 kbit/s G.729

    30% IP

    [4]

    802.11

    IETF

    [10]

    Wi-Fi

    1.8 OSR

    Internet (ISP)

    (OSR)

    2

    ISP

    ISP

    (1)

    Google OSR_Request

    Google

    OSR_Response

    (2) ISP

    OSR_Response ISP

    (PDA)PC

    (URL)

    (3) QoS

    QoS

    OSR QoS

    QoS OSR

    QoS QoS

    1.9 Wi-Fi

    Wi-Fi

    IEEE 802.11n

    IEEE 802.11e QoS

    IETF MIFNETEXTMEXT WG

    IETF Hokey Wi-Fi hokey

    FMIPFPMIP

    Wi-Fi

    3GPP TS23.234TS29.234 Wi-Fi offload

    3GPP TS32.252TS33.234

    ISPInternet OSR

    QoSISPInternet

    WLAN

    2 OSR

    OSR

    WLAN

    ISP

    (Google,)

    OSR_Request

    (Qos, )

    OSR_Response

    (Qos, )

    OSR_Pay

    ()

    Wi-Fi ZTE TECHNOLOGY JOURNAL

    50 20118 174 Aug. 2011 Vol.17 No.4

    56

  • D:\MAG\2011-08-99/VOL17\DF1.VFT4PPS/P

    2 Wi-Fi Wi-Fi

    2G/3G/LTE/WALN

    Wi-Fi

    33

    (1)

    3G

    Wi-Fi AC Internet

    (a) Wi-Fi

    Wi-Fi AAA

    (b) SIM 3G

    AAA

    (2)

    Wi-Fi Internet

    (PDG) 3G/LTE

    (3) Wi-Fi

    Wi-Fi

    Internet

    PDG 3G/LTE

    Wi-Fi

    3 Wi-Fi

    3G

    Wi-Fi

    3G

    [11]

    Wi-Fi

    PDG

    Wi-Fi

    EAP-SIM

    iPhone

    Wi-Fi

    Wi-Fi

    Wi-Fi

    4 [1] GHOSAL A. Mobile Data Offload Can Wi-Fi

    Deliver[R]. IntelliNet Technologies Inc,2010.[2] IEEE Std 802.11n. IEEE Standard for

    InformationTechnology-Telecommunications andInformation Exchange BetweenSystems-Local and Metropolitan AreaNetworks-Specific Requirements-Part 11:Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY)Specifications-Amendment 5:Enhancements for Higher Throughput [S].2009.

    [3] IEEE Std P802.3ba/D3.0. 40Gb/s and 100Gb/sEthernet Comments. Draft 3.0 Comments[S].2009.

    [4] The iLBCfreeware org. What is iLBC? [EB/OL]. http://www.ilbcfreeware.org/.

    [5] . WLAN[J]., 2004(2): 12-15.

    [6] IEEE Std P802.11s/D0.01. IEEE Standard forInformationTechnology-Telecommunications andInformation Exchange BetweenSystems-Local and Metropolitan AreaNetworks-Specific Requirements-Part 11:Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY)Specifications-Amendment 10: MeshNetworking [S]. 2009.

    [7] CALHOUN P, MONTEMURRO M,STANLEYD, Control and Provisioning of WirelessAccess Points (CAPWAP) ProtocolSpecification [R]. IETF RFC 5415.2009.

    [8] CALHOUN P,MONTEMURRO M,STANLEYD. Control and Provisioning of WirelessAccess Points (CAPWAP) Protocol Bindingfor IEEE 802.11[R]. IETF RFC 5416.2009.

    [9] GUNDAVELLI S,LEUNG K, DEVARAPALLI V,et al. Proxy Mobile IPv6 [R].IETF RFC5213.2008.

    [10] . (WLAN)[M].:,2004.

    [11] . 3GWi-Fi,[J]. , 2010,37(1):20-22.

    2010-06-09

    Wi-Fi IP IP WLAN IP Wi-Fi 510

    3 3Wi-Fi

    AC LTE PDG

    Wi-FiInternet

    AC

    AAA

    AAA

    3G/LTE

    Wi-Fi

    ACInternet

    AAA

    AAA

    3G/LTEPDG

    Wi-Fi

    3G/LTE

    AAA

    AC

    Internet

    PDG

    Wi-Fi ZTE TECHNOLOGY JOURNAL

    51Aug. 2011 Vol.17 No.4 20118 174

    57

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    15881588vv22Standardization ofStandardization of 15881588vv22 for Application in Telecommunication Networksfor Application in Telecommunication Networks

    : 1588v2 ITU-T

    1588v2

    1588v2(PDV)

    1588v21588v2

    : 1588v2

    Abstract: This article introduces the requirements of 1588v2 for application in

    telecommunication networks and discusses 1588v2 standardization in the ITU-T with

    reference to frequency and time/phase synchronization. Issues affecting the

    application of 1588v2 include network Packet Delay Variation (PDV) limits (which

    impact 1588v2 frequency recovery), and application scenarios and specifications for

    1588v2 end to end frequency transmission. This paper also discusses the

    characteristics and basic thought of 1588v2 in telecommunications deployment.

    Problems arising during standardization are discussed in conclusion.

    Key words: precision time protocol;1588v2; PDV; Global Navigation Satellites System

    /SU Fei/HE Li

    /LI Zhengqi(

    518055)(ZTE Corporation, Shenzhen 518055, China)

    TN929.11 A 1009-6868 (2011) 04-0052-06

    1 1588v2

    1.1 1588v2

    (IEEE) 2000

    PTP 15881588

    [1]

    IEEE 2002

    1588

    2008

    IEEE 1588TM-2008

    1588v21588v2

    1588v2

    1588v2

    (BC)

    (TC) PTP

    PTP

    1588v2

    1588v2

    1588v2

    PTP

    PTP

    (BMCA)

    PTP PTP

    (ITU-T) 1588v2

    Q13/15 ITU-T

    1

    G.8261/

    G.8262/G.8264

    G.8260/G.8265/G.8265.1

    1588v2

    1.2 1588v2

    (TDM)

    1588v2ZTE TECHNOLOGY JOURNAL

    52 20118 174 Aug. 2011 Vol.17 No.4

    58

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    (SDH)(PDH)

    2G

    (RAN)

    TDM

    3G

    TDM

    (TDD) 3G

    1588v2

    (GNSS)

    (UTC)

    PTP

    GNSS

    2 ITU-T

    /

    /

    2

    3~5

    1588v2[2]

    2 1588v2

    2.1 1588v2

    3G

    PTP

    BC TC

    PTP (PTP

    Slave) PTP

    (PTP Master)

    PTP Slave PTP

    Master [3]

    3

    2.2 1588v2

    3

    BCEECOC

    PDVPEC

    PRTC

    ESMCTC

    1 ITU-T Q13/15

    GSMUMTSFDD

    TDDCDMA

    TD-SCDMA

    WiMAXUTRALTE

    2 /

    G.8265.1PTP (OC )

    G.8265

    G.8264 ESMC

    G.8262EEC

    G.8263PEC

    G.8261.2

    G.8261.1 PDV

    G.8261

    G.8265.2

    G.826x

    G.8275.1PTP (BC )

    G.8275

    G.8274OC(Slave)

    G.8271.1 PDV

    G.8271

    G.8275.2

    /G.827x

    G.8271.2

    G.8272PRTC

    G.8273BC/TC

    G.8260

    /

    50 ppb

    GSMUMTS-FDDUMTS-TDDCDMA 2000TD-SCDMALTE

    5

    4

    3

    2

    1

    1s

    1~1.5s

    1.5~5s

    5~100s

    5~500ms

    WiMAX-TDD()

    UTRA-TDDLTE-TDD

    LTE-TDDWiMAX-TDD

    IP

    1588v2ZTE TECHNOLOGY JOURNAL

    53Aug. 2011 Vol.17 No.4 20118 174

    59

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    PTP Slave

    50 ppb 2

    PTP Slave

    50 ppb

    16 ppbITU-T G.812 Type I

    (FDD)E1

    2

    ITU-T G.823 traffic

    [4]

    PTP

    Slave 50 ppb

    PTP Slave

    2 PTP

    Slave

    1 PTP

    (PDV) PDV

    1588v2

    PDV

    PDV

    PDV

    PDV

    PDV

    22

    (MTIE)

    (TDEV)

    PDV

    4

    [5]

    PDV

    PDV

    5[5]

    [5]

    3 1588v2

    PDV

    4

    5

    PDV

    ( 2 Mbit/2 MHz)

    2 1

    1588v2 Slave 1588v2

    1

    1588v2 Master

    1588v2 Master

    1588v2

    ( 1588v2 Slave)

    PDV

    PDV

    PDV

    PDV

    1.17

    90

    180

    1 000

    10 000

    100

    10

    1

    /

    /s

    0.00 1.00 10.36 180.00 2 048.00 1.17/h /s

    ::596 919 :270.020s

    54 20118 174 Aug. 2011 Vol.17 No.4

    1588v2ZTE TECHNOLOGY JOURNAL

    60

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    PDV

    PDV

    MTIETDEV

    PDV

    minTDEV, percentileTDEV, bandTDEV

    xTDEV

    / (MATIE/

    MAFE) xTDEV TDEV

    MATIE/MAFE

    MTIE

    TDEV MTIE

    TDEV

    xTDEV

    MATIE/MAFE

    [6]

    PDV

    PDV

    PDV

    PDV PDV

    PTP

    Slave PDV PDV

    ITU-T G.8261.1

    G.8263

    2.3 1588v2

    1588v2

    ITU-T 1588v2

    G.8265

    G.8265.1 G.8265

    G.8265.1 1588v2

    G.8265

    [7]

    Master Slaver

    SDH

    Slave

    Master

    Slave

    (QL)

    VLAN

    G.8265.1 PTP

    Slave Telecom

    Slave PTP Master

    Grandmaster(GM)

    G.8265.1

    GM 1588v2

    PTP

    GM GM

    Telecom Slave

    GM GM GM

    GM GM PTP

    PTP 6

    [8]

    Telecom Slave

    PTP Master Telecom

    Slave PTP

    Slave Master

    Telecom Slave PTP

    Telecom Slave

    PTP

    OC

    (SOOC)

    SOOC

    GM

    Slave

    7[8]

    Telecom Slave GM

    SOOC

    Announce Sync/Delay_Resp

    GM SOOC

    Announce Sync/Delay_Resp

    Announce GM clockClass

    G.8265.1 PTP

    clockClass (80110)

    clockClass QL GM

    PTP

    6 G.8265.1

    1()PTP =X

    G.8265.1 1 G.8265.1 2 G.8265.1 M

    2()PTP =X

    N ()PTP =X

    PTP

    1588v2ZTE TECHNOLOGY JOURNAL

    55Aug. 2011 Vol.17 No.4 20118 174

    61

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    QL

    QL

    PTP

    SOOC

    Announce Sync/Delay_Resp

    SOOC

    (PTSF) Slave

    PTP

    PTP PDV Slave

    PTSF

    Slave GM

    PDV

    GM GM

    GM

    ITU-T G.781

    Slave PTSF

    QL GM QL

    GM

    GM

    3 1588v2

    ITU-T 1588v2

    3G

    (LTE)

    3G

    3G

    (TD-SCDMA) 2000

    (CDMA 2000) 3G

    GPS

    1588v2 3G backhaul

    15882v2

    ITU-T

    8 [9]

    (1) (PRTC)

    GNSS UTC

    [10]

    (2) PRTC

    PRTC

    1PPS+ToD

    (3)

    (4) Packet

    Slave

    1PPS+ToD

    SOOC PTSF QL

    7 Telecom Slave

    GM#1:_GM#1GM#2:_GM#2GM#N :_GM#N

    GM

    GM

    Ql AnnouncePTSF Sync/Delay_Resp

    SOOC 1 SOOC 2 SOOCN

    SOOC

    QLPTSF

    SOOCPTSF

    SOOCQL

    Announce Sync/Delay_Resp

    1PTP=X

    2PTP=X

    NPTP=X

    56 20118 174 Aug. 2011 Vol.17 No.4

    1588v2ZTE TECHNOLOGY JOURNAL

    62

  • D:\MAG\2011-08-99/VOL17\DF2.VFT6PPS/P

    8 E

    N

    A B N

    PRTC

    C D N

    PRTC E

    N

    1588v2

    BC TC TD-SCDMA

    1.5 us

    1 us

    4 1588v2

    1588v2

    PDV

    1588v2

    OTN, PTN, xPON/

    xDSL

    1588v2

    5

    8

    GNSS

    [1] IEEE1588-2008. IEEE Standard for aPrecision Clock Synchronization Protocol forNetworked Measurement and ControlSystems[S].2008.

    [2] ITU-T G.8261/Y.1361.Timing andSynchronization Aspects in Packet Networks[S].2008.

    [3] JOBERT S. Challenges with PTPv2 SlavesPerformance Testing and Network PDVCharacterization[C]//Proceedings of the 7thTime & Synchronisation in TelecomsSymposium (ITSF09), Nov 3-5, 2009,Rome, Italy.2009.

    [4] FDD node B CES Wander Requirements forG.8261 Deployment Case 2, Application B[C]// ITU-T Q13/15 Meeting,Apr,2008, Miami,FL,USA. 2008.

    [5] Latest Draft of New RecommendationG.8260 (for consent) [C]// ITU-T SG15Meeting, May 31-Jun 11,2010 ,Geneva,

    Switzerland.2010.[6] xTDEV/MAFE Definitions and Usage for

    G.8260 Appendix[C]// ITU-T Q13/15Meeting, Mar 2010, San Jose,CA,USA. 2010.

    [7] Architecture and Requirements for PacketBased Frequency Delivery (for consent) [C]//ITU-T SG15 Meeting, May 31-Jun 11,2010 ,Geneva, Switzerland.2010.

    [8] IEEE1588 Profile for Telecom (frequencydelivery without support from networknodes) (for consent) [C]// ITU-T SG15Meeting, May 31-Jun 11,2010 ,Geneva,Switzerland.2010.

    [9] G.pactiming-bis (G.8271) latest draft ITU-TSG15 Meeting, May 31-Jun 11,2010 ,Geneva, Switzerland.2010.

    [10] YD-T 2022-2009. [S].2009.

    2011-05-21

    A B C D E

    ( GNSS

    )

    N( GNSS)

    / /

    1588v2ZTE TECHNOLOGY JOURNAL

    57Aug. 2011 Vol.17 No.4 20118 174

    Strathclyde 40 4

    2009 7103

    SDHMSTPPTN10

    ZXR1O T8000 100G

    2011 6 14

    100G EANTC 100G

    (EANTC)100G

    ZXR10 T8000 (M600016)

    EANTC

    T8000 IP 2009

    T8000 M6000 BMSG

    Internet

    63

  • D:\MAG\2011-08-99/VOL17\LEC.VFT5PPS/P

    11

    TN929.5 A 1009-6868 (2011) 04-0058-05

    (OFDM)

    OFDM 100 Gbit/s

    3 1 2

    3

    []

    (, 1000871)

    ZTETECHNOLOGYJOURNAL

    1

    (OFDM)[1-2]

    (ISI)

    OFDM

    R.W. Chang 1966

    OFDM 1969

    Weinsten

    (IDFT)/(DFT)

    OFDM 1980

    3

    OFDM [2]

    OFDM 1995

    Telatar Foschini

    OFDM

    OFDM

    OFDM

    20 80

    OFDM

    1985

    Cimini OFDM

    1987 Lassalle Alard

    OFDM 1991

    Cioffi OFDM

    (DSL)

    OFDM

    1995 OFDM

    (DAB)

    OFDM

    (DVB)

    (Wi-Fi) (IEEE 802.11a/g)

    (WiMAX)(802.16e)

    (ADSL) (ITU G.992.1)

    (LTE)[3-4]

    OFDM

    1996

    2001

    OFDM

    OFDM

    OFDM

    OFDM

    OFDM(CO-OFDM) NEC

    101 Tbit/s OFDM [3]

    165 km

    128 QAM

    11 BPS/Hz

    OFDM

    (SCFDM) 1

    Tbit/s

    160 km

    (MIMO)

    (

    ) OFDM

    107 Gbit/s [4]

    :

    (FDM)/(WDM)

    OFDM

    OFDM

    (PON)

    (EPON)(GPON)

    58 20118 174 Aug. 2011 Vol.17 No.4

    64

  • D:\MAG\2011-08-99/VOL17\LEC.VFT5PPS/P

    ZTETECHNOLOGYJOURNAL

    10 Gbit/s PON

    PON

    NEC OFDM

    (OFDM-PON)[5]

    (DSP)

    100 Gbit/s

    NTT

    [6]

    OFDM

    (WSS)

    OFDM

    2 OFDM 1 OFDM

    IDFT DFT

    (S/P)

    IDFT

    IDFT

    (CP),(P/S)

    (DAC)

    OFDM

    IQ

    (RF)

    OFDM

    IQ

    DFT

    (FFT)

    OFDM

    ISI (ICI)

    OFDM

    DFT

    OFDM

    ISI DFT

    ICIOFDM

    DFT

    ISI ICI

    3 OFDMOFDM

    OFDM DSP DSP

    OFDM

    OFDM

    (IM-DD)

    OFDM

    IM-DD

    DSP

    DSP

    OFDM

    [2]

    OFDM

    OFDM

    3

    OFDM[2]

    3.1 OFDM

    OFDM

    OFDM

    (HDTV)DSLWi-Fi

    WiMAXOFDM

    NEC 2008

    (OFC)

    10 Gbit/s OFDM

    [7]

    OOK OFDM

    OFDM

    59Aug. 2011 Vol.17 No.4 20118 174

    CP DFT IDEF P/S S/P

    1 OFDM

    S/P

    IDFT

    CP

    P/S

    CP

    DFT

    S/P

    P/S

    65

  • D:\MAG\2011-08-99/VOL17\LEC.VFT5PPS/P

    [8-14]

    OFDM

    RF

    OFDM

    OFDM OFDM

    OFDM

    OFDM

    OFDM

    OFDM [15]

    OFDM

    OFDM (DCO-OFDM)

    OFDM

    (ACO-OFDM)

    3.2 OFDM

    OFDM

    OFDM

    (DD-OOFDM) CO-OFDM

    2001

    OFDM

    OFDM

    [15]

    -(MZI)

    [16] DSP

    [17-18]

    DD-OOFDM

    OFDM

    CO-OFDM

    OFDM IQ

    OFDM

    OFDM IQ

    CO-OFDM

    4

    DD-OOFDM

    OFDM PD

    OFDM

    DD-OOFDM

    CO-OFDM

    90

    CO-OFDM

    DD-OOFDM CO-OFDM

    DSP

    OFDM

    (PMD) CO-OFDM

    DSP

    DD-OOFDM

    MZ

    CO-OFDM

    MZ

    CO-OFDM

    1 Tbit/s

    CO-OFDM

    NTT

    [19-21] OFC 2011

    11.2 Tbit/s

    CO-OFDM [22]

    1 Tbit/s

    100 Gbit/s

    OFDM

    -

    [23-24]

    D. Hillerkuss1

    26 Tbit/s OFDM

    [23]

    ZTETECHNOLOGYJOURNAL

    60 20118 174 Aug. 2011 Vol.17 No.4

    66

  • D:\MAG\2011-08-99/VOL17\LEC.VFT5PPS/P

    3.3 MIMO-OFDM

    THz

    MIMO

    MIMO-OFDM

    MIMO

    OFDM

    MIMO

    OFDM

    OFDM

    MIMO

    A.Tarighat

    2007 Communication

    Magazine [24]

    (MMF)(FMF)

    MIMO

    MMF FMF MIMO

    MIMO

    OFDM

    [25-29] OFDM

    MIMO

    MIMO 2007

    MIMO-OFDM [30]

    MIMO-OFDM

    2011 OFC

    NEC 355

    km PDM-128

    QAM-OFDM 101.7 Tbit/s

    [3]

    3.4 OFDM

    OFDM

    IQ

    OFDM

    OFDM

    OFDM

    [31-35]

    OFDM

    SCFDM SCFDM LTE

    SCFDM OFDM

    100 Gbit/s SCFDM

    1 850 km, 1 Tbit/s

    SCFDM

    160 km

    4

    ZTETECHNOLOGYJOURNAL

    61Aug. 2011 Vol.17 No.4 20118 174

    [1] SHIEH W, DJORDJEVIC I. OFDM for OpticalCommunications [M]. Burlington, MA, USA:Academic Press/Elsevier, 2010.

    [2] ARMSTRONG J. OFDM for OpticalCommunications [J].Journal of LightwaveTechnology, 2009, 27(3): 189-204.

    [3] JINNO M, TAKARA H, KOZICKI B, et al.Spectrum-Efficient and Scalable ElasticOptical Path Network: Architecture, Benefits,

    and Enabling Technologies [J].IEEECommunications Magazine, 2009, 47(11):66-73.

    [4] CVIJETIC N, QIAN D, HU J. 100 Gb/s OpticalAccess Based on Optical OrthogonalFrequency-Division Multiplexing[J]. IEEECommunications Magazine, 2010, 49(7):70-77.

    [5] LI A, AMIN A A, CHEN X,et al. Reception ofMode and Polarization Multiplexed 107-Gb/sCO-OFDM Signal Over a Two-Mode Fiber[C]//Proceedings of the Conference onOptical Fiber Communication/National FiberOptic Engineers Conference ( OFC/NFOEC11) ,Mar 6-11, 2011, Los Angeles, CA, USA.Piscataway, NJ, USA: IEEE, 2011:PDPB8.

    [6] QIAN D, HUANG M, IP E,et al.101.7-Tb/s(370294-Gb/s) PDM-128QAM-OFDMTransmission over 355-km SSMF UsingPilot-Based Phase Noise Mitigation[C]//Proceedings of the Conference on OpticalFiber Communication/National Fiber OpticEngineers Conference (OFC/NFOEC11),Mar6-11, 2011, Los Angeles, CA, USA.Piscataway, NJ, USA: IEEE, 2011: PDPB5.

    [7] CVIJETIC N, WANG T. WiMAX overFree-Space Optics-Evaluating OFDMMulti-Subcarrier Modulation in OpticalWireless Channels[C]//Proceedings of theIEEE Sarnoff Symposium,Mar 27-28,2006,Princeton, NJ ,USA. Piscataway, NJ, USA:IEEE, 2006:4p.

    [8] CVIJETIC N,QIAN D,WANG T. 10Gb/sFree-Space Optical Transmission UsingOFDM[C]// Proceedings of the Conferenceon Optical Fiber Communication/NationalFiber Optic Engineers Conference (OFC/NFOEC08), Feb 24-28, 2008, San Diego,CA, USA.Piscataway, NJ, USA: IEEE, 2008:3p.

    [9] ALAVI S E, REZAIE H, SUPA'AT A S M.Application of OFDM on Integrated Systemof Visible Free Space Optic with PLC[C]//Proceedings of the IEEE Asia PacificConference on Applied Electromagnetics(APACE'10), Nov 9-11, 2010, Port Dickson,Malaysia. Piscataway, NJ, USA: IEEE, 2010:5p.

    [10] ZHAO Li, LEI Zhiyong, REN Anhu,et al.Research on Light Polarization FSO-OFDMSystem[C]//Proceedings of the 1stInternational Conference on Electrical andControl Engineering (ICECE'10), Jun 25-27,2010, Wuhan, China. Los Alamitos,CA,USA:IEEE Computer Society, 2010:4552-4555.

    [11] BEKKALI A, BEN NAILA C, KAZAURA K, etal. Transmission Analysis of OFDM-BasedWireless Services Over TurbulentRadio-on-FSO Links Modeled byGamma-Gamma Distribution[J]. IEEEPhotonics Journal, 2010, 2(3):510-520.

    [12] DIMITROV S, HAAS H, CAPPITELLI M, et al.On the Throughput of an OFDM-BasedCellular Optical Wireless System for anAircraft Cabin[C]//Proceedings of the 5thEuropean Conference on Antennas andPropagation (EUCAP11),Apr 11-15,2011,Rome, Italy. Piscataway, NJ, USA: IEEE,2011: 3089-3093.

    [13] MARINOS D, AIDINIS C, SCHMITT N, et al.Wireless Optical OFDM Implementation forAircraft Cabin Communication Links[C]//Proceedings of the 5th IEEE International

    67

  • D:\MAG\2011-08-99/VOL17\LEC.VFT5PPS/P

    ZTETECHNOLOGYJOURNAL

    62 20118 174 Aug. 2011 Vol.17 No.4

    100

    302

    152

    Symposium on Wireless PervasiveComputing (ISWPC'10), May 5-7, 2010,Modena, Italy. Los Alamitos, CA, USA: IEEEComputer Society ,2010:465-470

    [14] FREDA M M, MURRAY J M,Low-complexity Blind TimingSynchronization for ACO-OFDM-BasedOptical Wireless Communications[C]//Proceedings of the 2010 IEEE GLOBECOMWorkshops(GC Wkshps),Dec 6-10,2010,Miami,FL,USA. Piscataway, NJ, USA: IEEE,2010:1031-1036.

    [15] Tong Z, Yang Q, Ma Y,et al. 21.4 Gb/sCoherent Optical OFDM Transmission Over200 km Multimode Fiber[J]. ElectronicsLetters, 2008, 44(23): 1373-1374.

    [16] LOWERY A J,ARMSTRONG J. 10Gbit/sMultimode Fiber Link Using Power-EfficientOrthogonal-Frequency-DivisionMultiplexing[J].Optics Express,2005, 13(25):10003-10009.

    [17] WAN Renwei, TONG Zhengrong, XIEXiaofang, et al. Research on AdaptiveModulation Algorithm of Multimode FiberCommunication System Using CoherentOptical OFDM[C]// Proceedings of the 2010International Conference onCommunications and Mobile Computing(CMC10): Vol 2, Apr 12-14, 2010,Shenzhen, China. Piscataway, NJ, USA:IEEE, 2010: 26-29.

    [18] MA Yiran,TANG Yan, SHIEH W. 107 Gb/sTransmission Over Multimode Fiber withCoherent Optical OFDM Using CenterLaunching Technique[C]//Proceedings of the35th European Conference on OpticalCommunication(ECOC09),Sep 21-23,2009, Vienna, Austria. Piscataway, NJ, USA:IEEE, 2009:2p.

    [19] GUO Y X, PHAM V H, YEE M L, et al.Performance Study of MB-OFDMUltra-Wideband Signals Over MultimodeFiber[C]//Proceedings of the IEEEInternational Conference onUltra-Wideband(ICUWB07), Sep 24-26,2007,Singapore.Piscataway, NJ, USA:IEEE,2007: 429-431.

    [20] EZRA B, LEMBRIKOV Y, RAN B I,et al.Experimental and Theoretical Investigationof the Multiband OFDM Ultra-WidebandRadio Over Multimode Fiber Transmission[C]// Proceedings of the IEEE InternationalConference on Ultra-Wideband(ICUWB08), Sep 10-12,2008, Hannover, Germany.Piscataway, NJ, USA: IEEE, 2008:55-58.

    [21] PIZZINAT AURVOAS PCHARBONNIERB. 1.92Gbit/s MB-OFDM Ultra Wide BandRadio Transmission over Low BandwidthMultimode Fiber[C]//Proceedings of theOptical Fiber Communication/National FiberOptic Engineers Conference (OFC/NFOEC07), Mar 25-29, 2007, Anaheim, CA, USA.Piscataway, NJ, USA: IEEE, 2007: OThM6.

    [22] TANG J M, LANE P M, SHORE K A.

    Transmission Performance of AdaptivelyModulated Optical OFDM Signals inMultimode Fiber Links [J]. IEEE PhotonicsTechnology Letters, 2006, 18(1): 205-207.

    [23] JIN X Q, TANG J M, QIU K,et al. StatisticalPerformance Comparisons of Optical OFDMAdaptive Loading Algorithms in MultimodeFiber-Based Transmission Systems[J].IEEEPhotonics Journal,2010,2(6):1051-1059.

    [24] JIN X Q, TANG J M, QIU K,et al.Statistical Investigations of theTransmission Performance of AdaptivelyModulated Optical OFDM Signals inMultimode Fiber Links[J].Journal ofLightwave Technology, 2008, 26(18):3216-3224.

    [25] FRANZ B, SUIKAT D, DISCHLER R,et al.High Speed OFDM Data Transmission over5 km GI-Multimode Fiber Using SpatialMultiplexing with 24 MIMO Processing[C]// Proceedings of the 36th EuropeanConference on OpticalCommunication(ECOC10), Sep 19-23,2010, Turin, Italy. Piscataway, NJ, USA:IEEE, 2010: 3p.

    [26] TANG J M, LANE P M, SHORE K A.High-Speed Transmission of AdaptivelyModulated Optical OFDM Signals overMultimode Fibers Using Directly ModulatedDFBs [J].Journal of LightwaveTechnology, 2006, 24(1): 429-441.

    [27] WATANABE R, HORIUCHI Y, TANAKA H, etal. Optical Modulation Characteristics of 5.8GHz OFDM Signal with Electro-AbsorptionModulator[C]//Proceedings of the 2002 IEEEInternational Topical Meeting on MicrowavePhotonics (MWP02),Nov 5-8,2002, Awaji ,Japan. Piscataway, NJ, USA: IEEE, 2002:221-224

    [28] SHIEH W, BAO H, TANG Y. CoherentOptical OFDM: Theory and Design[J].OpticsExpress,2008, 16(2): 841-859.

    [29] SHIEH W, YI X, MA Y, et al. CoherentOptical OFDM: Has Its Time Come? (Invited)[J]. Journal of Optical Networking, 2008, 7(3): 234-255.

    [30] YU Jianjun, DONG Ze, XIAO Xin.Gerneration, Transmission and CoherentDetection of 11.2Tb/s (112100Gb/s)Single Source Optical OFDM Superchannel[C]// Proceedings of the Optical FiberCommunication/National Fiber OpticEngineers Conference (OFC/NFOEC11),Mar 6-11, 2011, Los Angeles, CA, USA.Piscataway, NJ, USA: IEEE, 2011: PDP6.

    [31] QIAN D, YU J, HU J, et al. 10 Gbit/sWDM-SSB-OFDM Transmission over1000 km SSMF Using Conventional DFBLasers and Direct-detection[J].ElectronicsLetters, 2008,44(3): 223-224.

    [32] SHIEH W, Q YANG,MA Y. 107 Gb/sCoherent Optical OFDM Transmission over1000-km SSMF Fiber Using OrthogonalBand Multiplexing [J].Optics Express, 2008,

    16(9): 6378-6386.[33] JANSEN S L, MORITA I, SCHENK T C W, et

    al. Long-Haul Transmission of 1652.5 Gb/s Polarization-Division-Multiplexed OFDMEnabled by MIMO Processing (Invited) [J].Journal of Optical Networking, 2008, 7(2):173-182.

    [34] DISCHLER R, BUCHALI F. Transmission of1.2 Tb/s Continuous WavebandPDM-OFDM-FDM Signal with SpectralEfficiency of 3.3 bit/s/Hz over 400 km ofSSMF[C]// Proceedings of the Optical FiberCommunication/National Fiber OpticEngineers Conference (OFC/NFOEC09),Mar 24-26, 2009,San Diego, CA, USA.Piscataway, NJ, USA: IEEE, 2009: PDPC2.

    [35] MASUDA1 H, YAMAZAKI E, SANO A, et al.13.5-Tb/s (135 111-Gb/s/ch)No-Guard-Iinterval Coherent OFDMTransmission over 6248 km Using SNRMaximized Second-Order DRA in theExtended L-band[C]//Proceedings of theOptical Fiber Communication/National FiberOptic Engineers Conference (OFC/NFOEC09),Mar 24-26, 2009,San Diego, CA, USA.Piscataway, NJ, USA: IEEE, 2009: PDPB5.

    2011-06-07

    A1-A3

    68