24
EDWARD GARCIA ROSALES CICLO 2012-II Módulo:I Unidad:05 Semana:03 FISICA II

06 Dinamica de Fluidos

Embed Size (px)

Citation preview

Page 1: 06 Dinamica de Fluidos

EDWARD GARCIA ROSALES

CICLO 2012-II Módulo:IUnidad:05 Semana:03

FISICA II

Page 2: 06 Dinamica de Fluidos

DINAMICA DE LOS DINAMICA DE LOS FLUIDOSFLUIDOS

Page 3: 06 Dinamica de Fluidos

FluidosHidrodinámica

Muchas de las características del movimiento de los fluidos se comprenden examinando el comportamiento de un fluido ideal, el cual satisface las condiciones siguientes:

• El fluido es no viscoso: no hay fuerzas de fricción internas entre capas adyacentes.• El fluido es incompresible: significa que su densidad es constante.• El movimiento del fluido es estable: la velocidad, la densidad y la presión en cada punto del fluido no cambian en el tiempo.• El fluido se mueve sin turbulencia: esto implica que cada elemento del fluido tiene una velocidad angular de cero en torno a su centro. Esto es, no puede haber corrientes de remolino presentes en el fluido en movimiento.

Page 4: 06 Dinamica de Fluidos

FluidosHidrodinámica

La figura representa un fluido que fluye en el interior de un tubo de tamaño no uniforme, en un flujo estable.

En un intervalo de tiempo pequeño t, el fluido que entra por el extremo inferior del tubo recorre una distancia X1 = v1 t donde v1 es la rapidez del fluido en ese punto.

Si A1 es el área de la sección transversal en esa región, entonces la masa contenida en la región interior más oscura es,M1 = A1 X1 = A1v1tDonde es la densidad del fluido.

Page 5: 06 Dinamica de Fluidos

FluidosHidrodinámica

PUCV, Facultad de Ciencias, Instituto de Física, Pedagogía en Física

Análogamente, el fluido que sale del extremo superior del tubo en el mismo intervalo t, tiene una masa

M2 = A2v2t

Dado que la masa se conserva y el flujo es estable, la masa que entra por el fondo del tubo a través de A1 en el tiempo t debe ser igual a la masa que sale a través de A2 en el mismo intervalo.

M1 = M2

A1v1t = A2v2tA1v1 = A2v2

Page 6: 06 Dinamica de Fluidos

FluidosHidrodinámica

PUCV, Facultad de Ciencias, Instituto de Física, Pedagogía en Física

A1v1 = A2v2

Se conoce como la ecuación de continuidad.

La condición Av = constante, equivale al hecho de que la cantidad de fluido que entra por un extremo del tubo en un intervalo de tiempo dado es igual a la cantidad de fluido que sale del tubo en el mismo intervalo, suponiendo que no hay fugas.

Page 7: 06 Dinamica de Fluidos

Marco TeóricoMarco Teórico

“El caudal de un río es la cantidad de agua que pasa por un punto determinado en un tiempo concreto. Este dato se toma en las estaciones de desplazamiento, y se expresa en litros/s o en metros cúbicos por segundo (l/seg o m³/seg) ”.

El caudal El caudal

D1, m D2, m v2v1

Ecuación de Continuidad

A1A2

A1V1=A2V2= CAUDAL

Page 8: 06 Dinamica de Fluidos

ECUACION DE CONTINUIDADECUACION DE CONTINUIDAD

La trayectoria que toma una partícula de fluido bajo flujo estable se llama línea de corriente, la velocidad de la partícula siempre es tangente a la línea corriente como muestra la figura:

Para demostrar consideramos un fluido ideal através de una tubería de tamaño como se ve en la figura:

Como se trata del mismo fluido la densidad es la misma:

Ecuación de continuidad

Page 9: 06 Dinamica de Fluidos

FluidosHidrodinámica

O sea 21 Constante

2P v gy

La ecuación de Bernoulli establece que la suma de la presión, la energía cinética por unidad de volumen y la energía potencial por unidad de volumen, tiene el mismo valor en todos los puntos a lo largo de una línea de corriente.

Page 10: 06 Dinamica de Fluidos

FluidosHidrodinámica

Un dispositivo que utiliza la ecuación de Bernoulli para medir la rapidez de flujo de los fluidos, es el llamado “tubo de Venturi” mostrado en la figura.Comparemos la presión en el punto 1 con la presión en el punto 2. Puesto que el tubo es horizontal

y1 = y2

La ecuación de Bernoulli nos dará2 2

1 1 2 2

1 1

2 2P v P v

Dado que el agua no retrocede en el tubo, su rapidez en el estrechamiento, v2, debe ser mayor que v1.

Como

v2>v1 significa que P2 debe ser menor que P1

2 21 1 2 2

1 1

2 2P v P v

Page 11: 06 Dinamica de Fluidos

ECUACION DE BERNOULLI

En la figura consideramos las fuerzas que ejerce el fluido sobre el extremo tiene una magnitud P1 A1 el trabajo invertido por esta fuerza sobre el segmento en un intervalo de tiempo es:

Mientras que en el punto 2 el trabajo es:

Entonces el trabajo neto invertido es:

Page 12: 06 Dinamica de Fluidos

ECUACIÓN DE BERNOULLIECUACIÓN DE BERNOULLI

La ecuación de Bernoulli muestra que la presión de un fluido disminuye conforme la rapidez del fluido aumenta. Además la presión disminuye conforme aumenta la elevación.

cteZgv

wp

2

2

2

222

2

221

11

Zgv

wp

Zgv

wp

Page 13: 06 Dinamica de Fluidos

maFx )/()( dtdv

g

wdAdxwdAdxsendAdpppdA

)/()( dtdxg

wdvwdxsendp

0/)( g

vdvdxsenwdp

dZ

LEY DE BERNOULLILEY DE BERNOULLI

0g

vdvdZ

w

dp

0 dZg

vdv

w

dp

cteZgv

wp

2

2

Sen =dz/dx

Page 14: 06 Dinamica de Fluidos

PROBLEMA Nº 1: Un tanque cerrado lleno de agua tiene una presión manométrica de 0,8 kg/cm2, 2m por debajo de la tapa del tanque. Si se hace un agujero en la tapa del tanque, sale un chorro verticalmente hacia arriba. ¿Qué altura alcanzará por encima de la tapa del tanque?

P1 = 0.80 kg/cm2 = 8000 kg/m2

Solución:

Aplicando la ecuación de Bernoullí en los puntos 1 y 2, tomando como plano de referencia el plano horizontal que pasa por 1.

P1 = 8000 kg/m2v1 = 0z1 = 0

P2 = 0 (presión manométrica)v2 = 0z2= h + 2

Reemplazando valores obtenemos:

h = 8 – 2 = 6 m

Page 15: 06 Dinamica de Fluidos

A1 * v1 = A2 * v213.5*v1 = 40.5*5.4

v1=16.2 m/s

Q = A1 * V1 Q = 0,00135 m2 * 16,2 m /seg.

Q = 0,0218 m3 /seg.

• 4) Un tubo horizontal de sección 40,5 cm2 se estrecha hasta 13,5 cm2. Si por la parte ancha pasa el agua con una velocidad de 5,4 m /seg. Cual es la velocidad en la parte angosta y el caudal?

A1

A2

Page 16: 06 Dinamica de Fluidos

Prob.¿ Cuál es la presión a 1 m y a 10 m de profundidad desde la superficie del mar?. densidad = 1,03 X 103 Kg/m3 como densidad del agua de mar y que la presión atmosférica en la superficie del mar es de 1,01 X 105 Pa. Además que a este nivel de precisión la densidad no varía con la profundidad.

Solución: En función de la profundidad la presión es:

P = P0 + d g h

por tanto:

P = 1,01x105 Pa + (1,03x103 Kg/m3)(9,81 m/s2)( h)

si h = 1 m : P = 1,11 x 105 Pa.

si h = 10 m : P = 2,02 x 105 Pa

Page 17: 06 Dinamica de Fluidos

Prob. La presión atmosférica es 0.95x105 N/m2 ¡ Cual será la altura de la columna de mercurio en un tubo barométrico cuyo diámetro interior es de 2 mm? Angulo de contacto 140°, Tensión superficial del mercurio es 0.465 N/m densidad del mercurio es 13600 kg/m3. .

gr

Cos

g

Ph

4020

2323

25

/8.9./13600.001.0

40.2. N/m 0.465

/8.9./13600

/1095.0

smmkgm

Cos

smmkg

mNxh

0402

040222

0

20

hgrrCosrP

WrCosrP

0 Fy

gr

Cos

g

Ph

4020

cmh 7.70

Page 18: 06 Dinamica de Fluidos

)35.0.()75.0.(2 HgOHBs wZwPp

3/13600 mKgfwHg

B

A

R S

mercurio

agua

Diámetro A 30 cm

VENTURIMETROVENTURIMETRO

35cm

Z

75 cm

Diámetro B15 cm

En el Venturimetro calcular el caudal que pasa por el punto A

wPB

gVB

ZBwPA

gVA

ZA 22

22

)(QcaudalVAVA BBAA

)35.0.(2 ZwPp OHAR

32 /1000 mKgfw OH

)35.0.()75.0.(2 HgOHBS wZwPp

3/13600 mKgfwHg

Page 19: 06 Dinamica de Fluidos

EL TUBO DE VENTURIEL TUBO DE VENTURISe utiliza para medir la velocidad de un fluido incompresible. Consiste en un tubo con un estrechamiento, de modo que las secciones antes y después del estrechamiento son A1 y A2, con A1 > A2. En cada parte del tubo hay un manómetro, de modo que se pueden medir las presiones respectivas p1 y p2.

Para ello aplicamos la ecuación de Bernoulli y consideramos que:

De la ecuación de continuidad

Page 20: 06 Dinamica de Fluidos

LEY DE TORRICELLILEY DE TORRICELLI

Consideramos:

Entonces:

Pero la presión en los puntos 1 y 2 son iguales por lo que entonces:

Po+1/2dv12 = P +dg(y2-Y1)

1/2dv12 =( P-Po) +dgh

dv12 =2( P-Po) +2dgh

v12 =2( P-Po)/d +2gh

Page 21: 06 Dinamica de Fluidos

Considerando la Ley de Torricelli A2 bastante mayor que A1 calcular la velocidad en 1. P=3x105Pa, P0=1.01x105 Pa, densidad del

agua 1 gr/cm3, Y2= 8m, Y1= 3m

2/15

)5)(8.9(21000

10).01.13(21

v

smv /27.221

Page 22: 06 Dinamica de Fluidos

VISCOSIDADVISCOSIDAD

La viscosidad vendría a ser algo así como el grado de " pegajosidad " que tiene un líquido. Hablando un poco más claro te diría que la viscosidad es el rozamiento que tienen los líquidos.

El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, , que se define como:

El coeficiente de viscosidad tiene unidades de N s/m2.

Page 23: 06 Dinamica de Fluidos

LEY DE POISEUILLE

Permite determinar el flujo laminar estacionario caudal de un líquido incompresible y uniformemente viscoso (también denominado fluido newtoniano) a través de un tubo cilíndrico de sección circular constante.

El caudal total que circula por un cilindro de radio R y longitud L sometido a una diferencia de presiones P1 − P2 es:

Page 24: 06 Dinamica de Fluidos

GRACIAS