21
1 Development a Portable Device for Multi-Channel Impedance Measurement in Dielectrophoresis-chip Chairman Dr. Hung-Chi Yang Presenter Ping-Yang Liao Adviser Dr. Yi-Chun Du Date 2014/11/19 南南南南南南 南南南南南南南南 Integrated Biomedical System Laboratory

1 Development a Portable Device for Multi-Channel Impedance Measurement in Dielectrophoresis-chip Chairman : Dr. Hung-Chi Yang Presenter : Ping-Yang Liao

Embed Size (px)

Citation preview

1

Development a Portable Device for Multi-Channel Impedance Measurement

in Dielectrophoresis-chip

Chairman : Dr. Hung-Chi Yang

Presenter : Ping-Yang Liao

Adviser : Dr. Yi-Chun Du

Date : 2014/11/19

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

2

Outline

• Introduction • Purposes• Material and Methods• Results• Future Works• References

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

3

Introduction

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

Program Outline

4

Integrated Immunoassay Chip

System based on Impendence Sensing

and DEP Manipulation of

Nanoprobes

Detection chip and

Fluid

Signal analyze

Biological material

Introduction

According to the statistics from Department of Health, disease diagnosis nephritis, nephrotic syndrome and nephrosis has been ranked in the 8th or 10th among the top 10 causes of death from 2002 to 2008.

5http://cetd.tmu.edu.tw/etdservice/view_metadata?etdun=U0007-0907201012073900

Introduction

End stage renal disease (ESRD) incidence and prevalence in Taiwan are both 1st in the world. The number of dialysis patients is increasing every year in Taiwan. This issue causes enormous health care spending and has become the top expenditures in the record of National Health Insurance. 

6http://cetd.tmu.edu.tw/etdservice/view_metadata?etdun=U0007-0907201012073900

Background

• Kidney damage will effect albumin increased.

• “Microalbuminuria”is important to index.

(<300mg/L)• Clinic detecting

– Semi-quantitative method – Urine test for 24 hour

7

Detect Albumin • 0 < 30mg/L

(Microalbuminuria )• > 30mg/L & < 300mg/L • > 300mg/L

Background

8

9

Purposes

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

Aging Society

• Local hospital or home – Inexpensive– Short time measurement– Easy ues– Early invent and early treat

10

Handhold System Design

• Higher Noise Tolerance (SNR ↑)• High detection range and multi-channel

design • Automatically analysis• Lower Power Consumptions (Battery)

11

12

Material and Methods

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

Dielectrophoresis force(DEP)

• Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field .

• All particles exhibit dielectrophoretic activity in the presence of electric fields.

13

Dielectrophoresis force(DEP)

• The strength of the force depends strongly on the medium and particles' electrical properties, on the particles' shape and size, as well as on the frequency of the electric field.

• Fields of a particular frequency can manipulate particles with great selectivity.

14

Direct Digital Synthesis(DDS)

• Direct Digital Synthesizer (DDS) is a type of frequency synthesizer used for creating arbitrary waveforms from a single, fixed-frequency reference clock.

• Frequency 1KHz~1MHz

15

Voltage Control Current Source( VCCS)

• The source delivers the current as per the voltage of the dependent element.

• I = fb(Vx)

• Range 1KHz~1MHz

16

17

Results & Future Works

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

Results

18

Resistance(kΩ)Our system

measured( kΩ)|Error|(%)

100 103.102 3.105

220 228.61 3.913

330 320.779 2.794

490 476.755 2.703

680 688.812 1.295

820 831.42 1.392

1000 956.11 4.389

Capacitor(pF)Our system

measured(pF)|Error|(%)

1 0.959 4.129

4.7 4.877 3.775

10 10.366 3.658

22 22.276 1.256

33 32.481 1.574

47 48.124 2.391

68 65.506 3.667

19

References

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory

References

• S. Kun, B. Ristic, RA. Peura, RM. Dunn, “Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer,” Med. Biol. Eng. Comput., vol. 37, pp. 428-432, 1999.

• J. G. Webster, Electrical Impedance Tomography, Adam Hilger, IOP, New York, USA, 1990.• F. Seoane, J. Ferreira, J. J. Sanch´ez and R. Brag´os, “An analog front-end enables electrical

impedance spectroscopy system on-chip for biomedical applications,” Physiol. Meas., vol. 29, pp. S267–S278, 2008.

• D. C. Walker, B. H. Brown, R. H. Smallwood, D. R. Hose and D. M. Jones, “ Modelled current distribution in cervical squamous tissue,” Physiol. Meas., vol. 23, pp. 159–168, 2002.

• R. H. Smallwood, A. Keshtkar, B. A. Wilkinson, J. A. Lee, and F. C. Hamdy, “Electrical impedance spectroscopy (EIS) in the urinary bladder the effect of inflammation and edema on identification of malignancy,” IEEE Trans. Med. Imaging, vol. 21, pp. 708–710, 2002.

• C. A. Gonz´alez-Correa, B. H. Brown, R. H. Smallwood, D. C. Walker and K. D. Bardhan, ”Electrical bioimpedance readings increase with higher pressure applied to the measuring probe,” Physiol. Meas., vol. 26, pp. S39–S47, 2005.

• J. L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, “Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole model,” Meat Sci., vol. 77, pp. 512-519, 2007.

20

21

Thanks For Your Attention

南台科技大學奈米科技研究中心

Integrated Biomedical System Laboratory