2005 Deer Krommenhoek

Embed Size (px)

Citation preview

  • 8/11/2019 2005 Deer Krommenhoek

    1/28

    High Efficiency Quantum Well

    Thermoelectrics for Waste Heat PowerGeneration

    Milliwatts to Kilowatts of PowerJohn C. Bass

    Norbert Elsner

    Saeid Ghamaty

    Velimir Jovanovic

    Daniel Krommenhoek

    Hi-Z Technology, Inc.

    San Diego, CA 92126

    (858) 695-6660

  • 8/11/2019 2005 Deer Krommenhoek

    2/28

    Measured Power FactorQuantum well is Significantly Better than Bi2Te3

    Comparison of Measured Power Factor2/

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 50 100 150 200 250 300

    Temperature C

    PowerFac

    torW/cm-

    K2

    P a2/r B4C/B9C

    N a2/r Si/SiGe

    P a2/r Bi2Te3

    N a2/r Bi2Te3

  • 8/11/2019 2005 Deer Krommenhoek

    3/28

    Quantum Well & Substrate Thermal kKapton substrate reduces thermal loss to a small fraction

    Published data used togenerate chart Bulk properties

    QW film is expected at1/3 bulk thermal k fromliterature

    Substrate couldrepresent large thermalloss 5 micron poly Si is

    ~50% loss with 11micron QW film

    Kapton at 25 microns is3% loss in efficiencywith 11 micron QW film

    Published Bulk Quantum Well and Substrate along with

    Current B i2Te3Thermal Conductivity at 200C

    0.1

    1

    10

    100

    1000

    SiC

    B4C

    PolycrystalSi

    B9C

    Si0.8G

    e0.2

    CurrentBi2

    Te3

    SingleCry

    stal

    Si

    PolycrystalSi

    Si0.7

    5Ge

    0.2

    5

    Kapton

    QW Film & Substrate Material

    ThermalConductivityW/mK

    Bulk QW Materials in Blue,

    Current Bi2Te3 in Green,

    Bulk Substrate in Orange

  • 8/11/2019 2005 Deer Krommenhoek

    4/28

    Quantum Effect in B4C/B9C & Si/SiGeQuantum well ZT >3x higher than other current materials

    0.0001

    0.0010

    0.0100

    0.1000

    0 100 200 300 400 500

    Temperature C

    FigureofM

    erit1/K

    P B4C/B9C

    N Si/SiGe

    P Bi2Te3

    N Bi2Te3

    P PbTe

    N PbTe

    P SiGe

    N SiGe

    Comparison of P-type B4C/B9C & N-type Si/SiGe Quantum Well

    materials using measured &

    , & published bulk k

    versus current Bi2Te3, PbTe & SiGe materials

  • 8/11/2019 2005 Deer Krommenhoek

    5/28

    Quantum Well Couple EfficiencyHighest Measured Thermoelectric Efficiency

    Measured QuantumWell CoupleEfficiency Versustemperature at a TC =70C

    Over 100 Data PointsWere Obtained N-

    leg Si/SiGe, P-legB4C/B9C

    Both Films 11 mThick and Deposited

    on a 5 m Thick SiSubstrate

  • 8/11/2019 2005 Deer Krommenhoek

    6/28

    Thermal Stability of Quantum Well CoupleN-type Si/SiGe and P-type B4C/B9C

    There are nochanges inSeebeck ()and Electrical

    Resistivity ()after 1400 hours(July 2005)

    Power Factor(2/) shown asP/P0

  • 8/11/2019 2005 Deer Krommenhoek

    7/28

    QW Films Parallel or Perpendicular

    to Current FlowHi-Z uses parallel approach to give higher Zs

    Hi-Z approach: Substrate andfilm parallel to c urrent flow Si s ubstrate

    M ultilayer film

    Current I

    Substrate and filmperpendicular to current flow

    M ultilayer filmCurrent I

    ISi s ubstrate

  • 8/11/2019 2005 Deer Krommenhoek

    8/28

    Two Couples with Pressure ContactsApproach successfully used in PbTe TE Generator

    Surfaces must be freeof oxides

    Connect quantum wellfilm to metal Thermal expansion

    must be accommodated Thermal spray technique

    Recent data fabricationof Si/Si0.8Ge0.2 surfaces

    metallized withmolybdenum Life tested to 1400 hours

  • 8/11/2019 2005 Deer Krommenhoek

    9/28

    Efficiency Depends Strongly on SubstrateEfficiency improves and cost is greatly reduced with Kapton substrate

    Si substrate is 80% of materials cost and large heat leak

    Kapton substrate is 12% of materials cost and very small (

  • 8/11/2019 2005 Deer Krommenhoek

    10/28

    Comparison of Quantum Well and CurrentThermoelectric Performance

    Thermoelectric

    Module Material

    Temperature

    Difference

    C

    Voltage at

    Maximum

    Power

    Maximum

    Efficiency

    %

    Maximum

    Power

    W

    200 1.6 5.8 14

    Hi-Zs Commercial Alloys

    200

    250

    10.0

    12.4

    17

    20.9

    60

    72

    Under Development

    450 22.6 32.5 338

    Under Development

    N type Si/SiC

    and P-type

    B4C/B9C

    Quantum Well

    SiGe Substrate~5m thick (too

    hot for Kapton)

    N type Si/SiC &

    P-type B4C/B9CQuantum Well

    Kapton

    substrate 25 m

    thick

    N & P-type bulk

    Bi2Te3

  • 8/11/2019 2005 Deer Krommenhoek

    11/28

    Predicted Efficiency of Quantum Well

    Thermoelectric ModuleEfficiency >50% Carnot at higher temperatures

    N-Type Si/SiC & P-type B4C/B9C

    Cold side at 50C

    Based on measured

    & , and l iterature(bulk thermal

    conductivity)

    Efficiencies compete

    with gasoline & dieselengines, & fuel cells.

    0

    20

    40

    60

    80

    200 300 400 500 600 700 800

    Hot Side Tem per atur e C

    Efficiency

    Carnot

    Quantum

    WellBi2Te3

  • 8/11/2019 2005 Deer Krommenhoek

    12/28

    Hi-Z Quantum Well Thermoelectric

    Module and Heat Exchanger

    Heat Exchanger

    Coolant In

    50 Watt Quantum WellThermoelectric Module

    TH 300C TC 100C

    N & P legs

  • 8/11/2019 2005 Deer Krommenhoek

    13/28

    Kapton substrate for quantum well fi lms forms module in place of

    eggcrate design

    Quantum well efficiency 15% versus 5% Bi2Te3Module size 6.3 x 6.3 x 1.0 cm

    HeatFlow

    Pressure contact

    showing 2 of 49 couples

  • 8/11/2019 2005 Deer Krommenhoek

    14/28

    Funneled Heat Flux ModuleIncreases power & reduces amount of QW material

    Method to match module resistancewith heat flux of hot and cold sideswhile increasing power putput

    Thick walls funnelheat flux

    Kapton substrate

    funnels heat flux

  • 8/11/2019 2005 Deer Krommenhoek

    15/28

    Predicted Power of Quantum Well ThermoelectricModule

    Radiation coupling is practical design for high temperature;

    conduction or convection higher power

    N-Type Si/SiC & P-type B4C/B9C

    Cold side at 50C

    Module is 2.5 x 2.5 in.

    Thickness changed tomatch heat flux from source

    Conduction

    Convection

    Radiation Based on measured & , and

    literature (bulk thermal

    conductivity)

    Requires high temperatureeggcrate

    0

    300

    600

    900

    1200

    200 300 400 500 600 700 800

    Hot Side Temper ature C

    ModulePowerW

    Conduction

    Convection

    Radiation

  • 8/11/2019 2005 Deer Krommenhoek

    16/28

    Hi-Z Bi2Te3 Thermoelectric PowerGenerator at 200C Temperature Difference

    Bi2Te3Module Performance

    Tc=50 C, Th=250 C

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 2 4 6 8 10 12 14 16 18

    Current A

    VoltageV

    Efficien

    cy%

    0

    4

    8

    12

    16

    Powe

    rW

    V

    %

    W

    Present Technology

  • 8/11/2019 2005 Deer Krommenhoek

    17/28

    Predicted Hi-Z Quantum Well Thermoelectric Power Generator at200C Temperature Difference

    QW Module N-Type Si/SiC and P-Type B4C/B9C

    on Kapton Substrate at Tc=50C, Th=250C

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12 14

    Current A

    VoltageV

    Efficien

    cy%

    0

    15

    30

    45

    60

    75

    Powe

    rW

    V

    %

    W

    Under Development

    P di t d Hi Z Q t W ll Th l t i P G t t

  • 8/11/2019 2005 Deer Krommenhoek

    18/28

    Predicted Hi-Z Quantum Well Thermoelectric Power Generator at250C Temperature Difference

    QW Module N-Type Si/SiC and P-Type B4C/B9C

    on Kapton Substrate at Tc=50C, Th=300C

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12

    Current A

    Volt

    ageV

    Efficiency%

    0

    15

    30

    45

    60

    75

    Pow

    erW

    V

    %

    W

    Under Development

  • 8/11/2019 2005 Deer Krommenhoek

    19/28

    1 kWe Thermoelectric Generator

    Installed in Place of Muffler

    A li ti f Hi Z Th l t i

  • 8/11/2019 2005 Deer Krommenhoek

    20/28

    Applications of Hi-Z Thermoelctrics

    1 kWe TE Mounted

    under PACCAR

    vehicle Tested for~500,000 equivalent

    miles

    20 WeSelf-

    Powered

    Heater

    Rendering of 300 We Bi2Te3 TE Generator

    Under test in Sierra pick-up truck

  • 8/11/2019 2005 Deer Krommenhoek

    21/28

    Army Stryker Vehicle

  • 8/11/2019 2005 Deer Krommenhoek

    22/28

    Five kWe Quantum Well Thermoelectric

    GeneratorThermoelectric Modules and Assembly with Coolant Heat Exchangers

    Exhaust

    Exhaust

    Quantum Well Thermoelectric Modules Heat Exchangers

    Under Development

  • 8/11/2019 2005 Deer Krommenhoek

    23/28

    Stryker Vehicle and Underarmor Quantum Well

    Thermoelectric Generators

    Heat Exchangers

    Quantum WellThermoelectricModules

    Two 5 kWe QW Generators CanBe Placed Underarmor

    Exhaust

    Exhaust

    St k V hi l H S f U d Q t W ll

  • 8/11/2019 2005 Deer Krommenhoek

    24/28

    Stryker Vehicle Has Space for Underarmor Quantum Well

    Thermoelectric Generators

    15% Efficiency Predicted with two 5 kWe QWTE Generators Driven by Vehicle Exhaust

    Under Armor Space for

    APU Burner to Provide

    Quiet QW TE Operation

    Stryker CAT 3126 300 hp Diesel Performance Data

  • 8/11/2019 2005 Deer Krommenhoek

    25/28

    Stryker CAT 3126 300 hp Diesel Performance Data

    Predicted QW TE Generator Power

    0

    2

    4

    6

    8

    10

    12

    1400 1600 1800 2000 2200 2400

    Engine Speed rpm

    E

    lectricPowerkW

    0

    100

    200

    300

    400

    500

    600

    1400 1600 1800 2000 2200 2400

    Engine Speed rpm

    Paramete

    r

    Tem p CFuel r ate L/hr

    Flow m 3/minEngine k WExh m ax kW

  • 8/11/2019 2005 Deer Krommenhoek

    26/28

    Predicted Hi-Z Quantum Well Thermoelectric Performance

    Operating Conditions Th = 300 C, Tc = 100 C

    Heat Flux = 10 W/cm2 Quantum well films

    N-type Si/SiGe P-type B4C/B9C

    Kapton substrate Reduces parasit ic thermallosses & lowers costs

    Module footprint squarewith 2.35 in./side

    64 modules will produce 5kWe TE Generator

    Gas exhaust - 5 in. ID QW arranged in 8 in. OD, &

    28 in. long generator

    0

    4

    8

    12

    16

    20

    24

    0 2 4 6 8 10 12 14 16Current A

    VoltageV,E

    fficiency%

    0

    16

    32

    48

    64

    80

    96

    PowerW

    V

    %

    W

    Greater than 42% Carnot Efficiency

    New Quantum Well Sputtering Machine at Hi-Z

  • 8/11/2019 2005 Deer Krommenhoek

    27/28

    New Quantum Well Sputtering Machine at Hi Z

    Operational check-out in February 2005

    The new Zero Footprintbatch coater has a 34inch diameter chamber

    that processes up tosix(6) 8 inch wafers ornine(9) 6 inch wafers toincrease output by

    100x Currently depositingQW films on mill iwattradial heat flow sensorpower supply

    2 inch diameter Radial N QW on one

    side and P QW onother side of

    substrate

    Application of Quantum Well Thermoelectrics

  • 8/11/2019 2005 Deer Krommenhoek

    28/28

    Application of Quantum Well Thermoelectrics

    Price per Watt competitive in several years

    Quantum well raw materials cost less than currentmaterials QW $0.11/Watt

    Bi2Te3 ~$1.00/Watt Process improvements reduce costs

    New substrate Increased sputtering area and rate > 40 /minute New design with module surrounding substrate

    DOE five year effort on Cost Effective Fabrication Routesfor the Production of Quantum Well Materials for WasteHeat Recovery from Heavy Duty Trucks UTRC prime with Hi-Z, CAT, & PNNL