31
5-1 Reference State T() 0 100 500 H(J/mol) 0 2919 15060 ˆ CO(g, 0. 1atm) CO(g, 100. 1atm) 5. 열역학 데이터 CO enthalpy change mol J H H H C C / 919 , 2 0 ^ 100 ^ ^ = = ° ° , reference state : o, 1 atm - : 절대값 측정 불가 - : 측정 가능 U Δ H Δ ˆ , ˆ U H ˆ , ˆ

5. 열역학 데이터 표 - KOCWcontents.kocw.net/KOCW/document/2015/chungnam/... · 2016. 9. 9. · Steam at 10 bar absolute with 190℃ of superheat is fed to a turbine at a rate

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 5-1 Reference State

    T(℃) 0 100 500

    H(J/mol) 0 2919 15060

    ˆ

    CO(g, 0℃. 1atm) CO(g, 100℃. 1atm)

    5. 열역학 데이터 표

    CO enthalpy change

    molJHHH CC /919,20^

    100^^

    =−=∆ °° , reference state : o℃ , 1 atm

    - : 절대값 측정 불가

    - : 측정 가능 UΔHΔ ˆ,ˆUH ˆ,ˆ

  • State property (상태특성)

    • A property of a system component whose value depends only on the state of the system such as T, P, mole fractions.

    • A state property does not depend on how the system reached that state.

    • 예 :

    UH ˆ,ˆ

    •예제 7.5-1 : 다음 쪽

  • Example 7.5-1 Use of Tabulated Enthalpy Data

    • The following entries taken from a data table for saturated methyl chloride:

    1. What reference state was used to generate the given enthalpies? 2. Calculate and for the transition of saturated methyl chloride vapor from

    50~0 ˚F . 3. What assumption did you make in solving question 2 regarding the effect of

    pressure on specific enthalpy?

    Ĥ∆ Û∆

  • SOLUTION 1. Liquid at –40˚F and 6.878 psia.

    2.

    3. was assumed independent of P.

    0ˆ =H

    m

    3m

    3m

    initialinitialfinalfinal

    m

    Btu/lb4.96psiaft10.73

    Btu1.987psia/lbft920)](51.99)(1..969)(4[(18.90)

    Btu/lb6.05)ˆˆ(ˆˆˆˆ

    Btu/lb05.6)28.20223.196( ) F50(ˆ- ) F0(ˆˆ

    −=⋅

    ⋅−−

    −=−−∆=∆−∆=∆

    −=−==∆

    VPVPHVPHU

    H HH

  • 5-2 Steam Tables

    •Subcooled liquid : VLE(vapor-liquid equilibrium curve) 위 부분 •Saturated liquid/ saturated steam/both mixture : VLE 선상 •Superheated steam : VLE 아래 부분

  • • Reference state of water :

    - 0.01℃ and 0.00611 bar (triple point)

    - Û ≡ 0

    •Tables B.5 : 온도에 따른 액상 물과 포화수증기의

    •Tables B.6 : 압력에 따른 액상 물과 포화수증기의

    •Tables B.7 : 온도와 압력에 따른 과열수증기의

    •예제 7.5-2 : 스팀 도표 이용 연습, 다음 쪽

    UHV ˆ,ˆ,ˆ

    UHV ˆ,ˆ,ˆ

    UHV ˆ,ˆ,ˆ

  • 1. Determine the vapor pressure , specific internal energy, and specific enthalpy of saturated steam 133.5℃ .

    2. Show that water at 400℃ and 10 bar is superheated steam and determine its specific volume, specific internal energy, and specific enthalpy relative to liquid water at the triple point, and its dew point.

    3. Show that for superheated steam depend strongly on temperature and relatively slightly on pressure.

    Example 7.5-2 The Steam Tables

    HU ˆˆ and

  • 1. From table B.6

    2. From table B.7, [T=400℃, P = 10 bar]

    3. At constant P, T : 400℃→450℃ , change by about 3%. ( )

    at constant T(400℃), P : 10 →20 bar, change by much less than 1%.

    SOLUTION

    kJ/kg7.2724ˆ,kJ/kg0.2543ˆ,/kgm606.0ˆ,bar0.3 3* ==== HUVp

    ℃TUVH 9.179,kJ/kg2958ˆ,/kgm307.0ˆ kJ/kg,3264ˆ dp3 ====

    HU ˆˆ andkJ/kg30412958:ˆkJ/kg,33713264:ˆ →→ UH

    HU ˆˆ and

  • 예제7.5-3) Energy Balance on s Steam Turbine Steam at 10 bar absolute with 190℃ of superheat is

    fed to a turbine at a rate m = 2000 kg/h. The turbine operation is adiabatic, and the effluent

    is saturated steam at 1 bar. Calculate the work output of the turbine in kilowatts.

    Neglecting kinetic and potential energy changes.

  • Solution) Energy Balance on s Steam Turbine 주입 과열 스팀의 온도=10 bar에서의 포화온도+과열온도 =180+190 =370℃ 주입 과열 스팀의 비엔탈피(10 bar, 370℃) = 3201 kJ/kg 배출 스팀(1bar, saturated) = 2675 kJ/kg 에너지 수지식에 대입: = - (2000 kg/h)(2675-3201)(kJ/kg)(1 h/3600 s) = 292 kJ/s = 292 kW

    )(^^

    inoutS HHmHW −−=∆−=

    )(^^

    inoutS HHmHW −−=∆−=

  • 물의 상태를 흐름도에 표기 : 액상(l), 기상(v) Determine the flow rates of all stream components

    Determine the specific enthalpies of each stream component

    Write the appropriate form of the energy balance equation

    6. 에너지수지 진행순서

    예제 7.6-1 : Energy Balance on a One-Component Process: 주입열량 구하기

    120 kg H2O(l)/min

    30℃, H=125.7 kJ/kg ^

    175 kg H2O(l)/min

    30℃, H=271.9 kJ/kg ^

    295 kg H2O( )/min

    17 bar saturated

    H = 2793 kJ/kg

    6 cm ID pipe

    ^

    Heat Q (kJ/min)

    υ

    Q = ∆H + ∆Ek

  • ∑ ∑−=∆out in

    i

    ^

    ii

    ^

    i HmHm H

    = (295 kg/min)(2793 kJ/kg)-(120 kg/min)(125.7 kJ/kg)- (175 kg/min)(271.9 kJ/kg)

    =7.61 ·105 kJ/min

    1.

    2. kE∆

    •Table B.6 : 포화증기 비용(17 bar) = 0.1166 m3/kg

    •6 cm ID 단면적= =(3.14)(32 cm2)(1 m2/104 cm2)

    = 2.83 · 10-3 m2

    •스팀유속, u(m/s) =

    2Rπ

    )(/)/( 23 mAsmV

  • =(295 kg/min)(1 min/60 s)(0.1166 m3/kg)/(2.83x10-3 m2 ) = 202 m/s • 운동에너지 : 주입 부분=무시 = {(296 kg/min)/2}(2022 m2/s2)(1 N/1 kg•m/s2)(1 kJ/103 Nm) = 6.02 •103 kJ/min • 주입 열량 계산 : = 7.61 •105 kJ/min + 6.02 •103 kJ/min = 7.67 •105 kJ/min • 운동 에너지 : 전체 열량 중 0.8% 비중 차지 — 많은 온도 차, 상변화, 화학반응 시 무시 가능

    2um 2 /EE outlet k,k ==∆

    Q = ∆H + ∆Ek

    • 공정 흐름 상 여러 성분 포함 경우 : 성분 별 비엔탈피 구함. • 분자 구조가 유사한 기체, 액체 혼합물 : 주어진 온도와 압력 하의 순수한 성분의 비엔탈피 사용 가능.

    • 에너지 수지와 물질 수지를 동시에 해결해야 될 문제 많음.

  • • A gas stream (60.0wt% ethane and 40.0wt% n-butane) is to be heated from 150K to 250K at a pressure of 5 bar.

    Calculate the required heat input per kilogram of the

    mixture, neglecting potential and kinetic energy changes, using tabulated enthalpy data for ethane and n-butane and assuming ideal gas behavior.

    Example 7.6-2 Energy Balance on a Two-Component Process

  • • Basis : 1kg/s Mixture

    • Energy balance

    SOLUTION

    0,0,0 pkS

    pkS

    =∆=∆=∆=⇒

    ∆+∆+∆=−

    EEWHQ

    EEHWQ

    kgkJ478

    kJ/s00.1kJ/s478kJ/s478kJ/s)]0.30)(400.0()3.314)(600.0[(

    kgskJ0.237400.0

    kgsJk3.973600.0

    ˆˆ

    10462

    componentsinlet

    componentsoutlet

    =⇒=+−

    +=

    −=∆= ∑∑

    HCkgHCkg

    HmHmHQ iiii

  • • 예제 7.6-3 : 과열 수증기 m2량은? 필요한 m1의 부피유속은?

    ^

    m1 kg H2O(v)/hr, 1atm

    400℃, H=3278 kJ/kg

    superheated

    ^

    m2 kg H2O( v )/hr

    300℃, 1 atm superheated

    H = 3074 kJ/kg ^

    1150 kg H2O(v)/hr, 1 atm

    100℃, H=2676 kJ/kg

    saturated

    • 에너지 수지와 물질 수지를 동시에 해결해야 될 문제 많음.

  • • 수증기 량 물질 수지 : 1150 + m1 =m2 (1) • 에너지 수지 :

    – 왜냐하면 1) 단열, 2) 샤프트 일=0, 3) 운동, 위치에너지 =0

    – 물질량 계산 :

    • (1150 kg/h)(2676 kJ/kg) + m1(3278 kJ/kg) = m2(3074 kJ/kg) (2) • 식 (1), (2)를 연립 방정식으로 풀이: • m1 = 2240 kg/h , m2 = 3390 kg/h

    – m1의 부피 유속 계산:

    • 400 도, 1 기압(1 bar 값과 유사) 상태의 비용 = 3.11 m3/kg • (2240 kg/h)(3.11 m3/kg) = 6980 m3/h

    ∑ ∑−=out in

    i^

    ii^

    i HmHm HΔ

  • 7. 기계적 에너지수지

    Incompressible fluid : 식 7.4-12 식의 변형

    Mechanical energy balance

    F : friction loss

    Negligible potential and kinetic energy : 상변화, 조성변화, 온도차가 큰 경우

    Q = ∆ U (closed system) Q = ∆ H (open system)

    mWmQUzgg

    g2uP

    scc

    2

    /)/(^

    −=−∆+∆+∆

    +∆ρ

    mW

    Fzgg

    g2uP s

    cc

    2

    −=+∆+

    ∆+

    ∆ ˆρ

    Bernoulli equation

    0zgg

    g2uP

    cc

    2

    =∆+∆

    +∆ρ

  • 예제 7.7-1) Bernoulli equation

    Position 1

    Position 2 1 cm ID P2 = 1 atm z2 = 50 m

    0.5 cm ID 20 L H2O/min P1 = ? z1 = 0

    mzzzsmgmkg

    smuuu

    smu

    smsm

    cmcmL

    mLu

    50/81.9,/1000

    /271

    /24.4

    ,/1760min110

    )25.0(1

    101

    min20

    12

    23

    2221

    22

    22

    2

    24

    223

    3

    1

    =−=∆==

    −=−=∆

    =

    ==

    ρ

    π

  • Bernoulli Equation 적용:

    0Nsmkg1

    mzsmgNsmkg12

    smumkgmNP

    2

    2

    2

    222

    3

    2

    =⋅

    ∆+

    ⋅⋅∆

    +∆

    ]/)/[()()/(

    ]/)/[()/(

    )/()/(

    ρ

    주어진 값 대입:

    barPa

    mNatmPmNP

    kgmNkgmNmkg

    PP

    56.41056.4

    )/1001325.11(/1056.4

    0/490/5.135/1000

    5

    252

    251

    312

    =×=

    ×==×=

    =⋅+⋅−−

  • 예제 7.7-2) Siphoning

    - friction loss = 0.80 ft-lbf / lbm

    - 5 gal gasoline 이송에 필요한 시간?

  • mW

    Fzgg

    g2uP s

    cc

    2

    −=+∆+

    ∆+

    ∆ ˆρ

    •압력차=0, g = 32.174 ft/s2, 높이차= -2.5 ft, 샤프트일=0

    •마찰손실 = 0.80 ft-lbf / lbm , 22

    2 uu ≈∆

    •u2 구하기:

    0/80.02

    2

    2

    22

    /174.32

    )1)(5.2)(/174.32(

    /174.322

    )1( =+−+•

    mfsftlb

    lbftsft

    sftlb

    lbu lblbftm

    f

    m

    f

    u2 = 10.5 ft/s

    •부피 유속 및 이송 시간 구하기 :

    •부피유속=(10.5 ft/s)(3.124)(0.1252 in2)(1 ft2/144 in2)

    = 3.58•10-3 ft3/s

    •이송시간=(5 gal)(0.1337 ft3/gal)/(3.58•10-3 ft3/s)=187 s=3.1 min

  • • Water flows from an elevated reservoir through a conduit a turbine at a lower level and out of the turbine through a similar conduit. At a point 100m above the turbine the pressure is 207 kPa, and at a point 3m below the turbine the pressure is 124 kPa. What must the water flow rate be if the turbine output is 1.00 MW?

    Example 7.7-3 Hydraulic Power Generation

  • • From Equation 7.7-2, ① = ②

    SOLUTION

    kg/s915m/kgN)101083(m/sN1000.1

    m/kgN1010m/skg1s

    N1m103m9.81m103

    m/s9.81

    /83m/skg1kg/m101.00

    N1/mN1083

    N/1083kPa83kPa207)(124

    m/sN101.00MW1.00

    g

    g

    6

    22

    2

    233

    23

    23

    6

    =⋅−−⋅×−

    =

    ⋅−=⋅

    −=∆

    −=∆=

    ⋅−=⋅×

    ×−=

    ×−=−=−=∆

    ⋅×==

    ∆+∆

    −=⇒

    −=∆+

    m

    zg

    zg

    kgmNP

    mP

    W

    zPWm

    mWzP

    s

    s

    s

    ρ

    ρ

    ρ

  • •http://cis.kepco.co.kr/cis/customer/electric_info/statistical_sum.jsp •한국전력공사, 전력통계

  • •단위: MW

  • Key notation

    Q : heat

    Ws : shaft work

    Wf : flow work

    Ek : kinetic energy

    Ep : potential energy

    U : internal energy

    H : enthalpy

  • 4절 학습효과 증진을 위한 학습방안 및 활용

    문제파악을 위해 흐름도를 작성함.

    흐름도에 모든 산술자료를 표시함.

    에너지입량, 에너지출량, 일, 열 등의 에너지를 분류함.

    각 변수 단위의 일관성을 유지함.