5602aa7908ae0b84c4d22a85

Embed Size (px)

Citation preview

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    1/6

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260279514

    Effects of Carbon and Oxygen Impurities onLuminescence Properties of BCNO Phosphor

     Article  in  Journal of the American Ceramic Society · January 2014

    Impact Factor: 2.61 · DOI: 10.1111/jace.12645

    CITATIONS

    6

    READS

    36

    10 authors, including:

    Xinghua Zhang

    45 PUBLICATIONS  237 CITATIONS 

    SEE PROFILE

    Zunming Lu

    Hebei University of Technology

    30 PUBLICATIONS  157 CITATIONS 

    SEE PROFILE

    Xuewen Xu

    Hebei University of Technology

    66 PUBLICATIONS  475 CITATIONS 

    SEE PROFILE

    Meng Fan-Bin

    Hebei University of Technology

    108 PUBLICATIONS  820 CITATIONS 

    SEE PROFILE

    All in-text references underlined in blue are linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Zunming Lu

    Retrieved on: 11 May 2016

    https://www.researchgate.net/profile/Xuewen_Xu2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/profile/Xuewen_Xu2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/profile/Meng_Fan-Bin?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_1https://www.researchgate.net/profile/Meng_Fan-Bin?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/institution/Hebei_University_of_Technology?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_6https://www.researchgate.net/profile/Meng_Fan-Bin?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_5https://www.researchgate.net/profile/Meng_Fan-Bin?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_4https://www.researchgate.net/profile/Xuewen_Xu2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/institution/Hebei_University_of_Technology?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_6https://www.researchgate.net/profile/Xuewen_Xu2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_5https://www.researchgate.net/profile/Xuewen_Xu2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_4https://www.researchgate.net/profile/Zunming_Lu?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/institution/Hebei_University_of_Technology?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_6https://www.researchgate.net/profile/Zunming_Lu?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_5https://www.researchgate.net/profile/Zunming_Lu?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_4https://www.researchgate.net/profile/Xinghua_Zhang2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_7https://www.researchgate.net/profile/Xinghua_Zhang2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_5https://www.researchgate.net/profile/Xinghua_Zhang2?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_1https://www.researchgate.net/publication/260279514_Effects_of_Carbon_and_Oxygen_Impurities_on_Luminescence_Properties_of_BCNO_Phosphor?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_3https://www.researchgate.net/publication/260279514_Effects_of_Carbon_and_Oxygen_Impurities_on_Luminescence_Properties_of_BCNO_Phosphor?enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng%3D%3D&el=1_x_2

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    2/6

    Effects of Carbon and Oxygen Impurities on LuminescenceProperties of BCNO Phosphor

    Xinghua Zhang,† Lanlan Li, Zunming Lu, Jing Lin, Xuewen Xu, Yuanhui Ma, Xiaojing Yang,

    Fanbin Meng, Jianling Zhao, and Chengchun TangSchool of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China

    The BN and BCNO phosphors were prepared at 750°C usingdifferent methods and their structure and luminescent proper-ties were investigated. All the prepared samples were turbost-ratic boron nitride structure. The SEM and high-resolutionTEM images show that the BCNO phosphors are polycrystal-line in nature and include some nanocrystals. The carbon andoxygen impurities have great effects on the excitation, emis-sion, and absorption spectra of BN and BCNO phosphors. Thefirst-principle calculations results indicate that the carbon andoxygen impurities will produce energy levels in the band gap,which can affect the spectra properties of BCNO phosphors.The spectra properties of BN and BCNO phosphors can bewell explained by a simplified energy level diagram.

    I. Introduction

    B ORON   nitride (BN) especially hexagonal BN-based mate-rials1 – 3 have emerged as promising phosphors withoutrare-earth doping. To modulate the emission spectra of BN,much effort has been devoted to the development of boroncarbon nitride (BCN) materials.4 – 7 Both theoretical andexperimental results show the adjustable luminescence prop-erties of BCN materials.8 – 10 However, the photoluminescence(PL) intensity and quantum efficiency of the BCN com-pounds are very low.11 Recently, Okuyama12 has synthesizedboron carbon oxynitride (BCNO) phosphors with high quan-tum efficiency and tunable spectra using urea combustionmethod. The BCNO phosphors have many advantages13 suchas low sintering temperatures (below 900°C) under atmo-sphere pressure, low cost and nontoxicity, wide range of exci-tation from short ultraviolet to blue, and emission spectrafrom violet to near-red regions, respectively.

    BCNO phosphors have great potential applications in gen-eral lighting, automobiles, white light-emitting diode, phos-phorus pigments, biological imaging, and DNA labeling.14 – 16

    However, the luminescence mechanism of BCNO phosphorremains unclear at present. Up to now, there are two possi-ble emission mechanisms for BCNO phosphors, one possibleemission mechanism is that the emission of BCNO phos-phors may be induced by the closed-shell BO and BO2

    anions that act as high-efficiency luminescence centers.

    17

    Theother possible emission mechanism is attributed to the impu-rity defects especially nitrogen vacancies in the BCNO nano-crystals which is responsible for the observed PLproperties.18 In addition to the nitrogen vacancies, the car-bon and oxygen impurities also have great influence on lumi-nescence properties of BCNO phosphors. In this study, the

    effects of carbon and oxygen impurities were investigated byexperimental and theoretical points of view. In experimentalpart, BN was prepared using sodium borohydride (NaHB4)and ammonium chloride (NH4Cl) as raw materials (RM)without carbon and oxygen elements. In addition, BCNOphosphors were prepared by urea combustion method12 usingboric acid (H3BO3), urea (CON2H4), and polyethylene glycol(PEG) as RM. The spectra properties of BN and BCNOphosphors with different PEG masses were investigated. Intheoretical part, the electronic structures of BN and BCNOwere calculated with first-principle calculations and theeffects of carbon and oxygen impurity levels were discussed.Finally, an energy level diagram was given to explain theeffects of nitrogen vacancies, carbon and oxygen impuritieson the luminescence properties of BCNO phosphors.

    II. Experiments

    BN was prepared at 750°C using NaBH4  and NH4Cl as RM.NaBH4  and NH4Cl were milled sufficiently and pressed into adisk. The disk was put into a crucible with a lid and placed infurnace when the furnace increased to 750°C. The disk was sin-tered at 750°C for 12 h. BN was obtained after milling andremoving NaCl by washing the prepared compound, whichwas defined as S1. The BCNO phosphors were prepared byurea combustion method. First, the boric acid (B source), urea(N source), and PEG (H(EG)nOH with   Mw   =   10 000, Csource) were dissolved in deionized water, and then the solu-tion was stirred for 6 hours to form clear solution. Second, theclear solution was heated to over 100°C to evaporate water,and solid precursor was obtained. At last, the solid precursorwas sintered at 750°C for 45 min under atmosphere. Afterwashing and drying, the BCNO phosphors were obtained. Inthis study, the boric acid and urea were fixed at 0.02 and0.10 mol, respectively, and the mass of PEG (10 000) waschanged from 0 to 1.4 g. The BCNO phosphors were preparedwith different masses of PEG (10 000)  M PEG   =  0, 0.2, 0.6, 0.9,1.0, 1.1, and 1.4 g, which were defined as S2, S3, S4, S5, S6, S7,and S8, respectively.

    The phase structure of BN and BCNO phosphors was char-acterized by powder X-ray diffraction (XRD) (Rigaku UltimaIV, Tokyo, Japan). The morphology of the phosphors wasmeasured by a scanning electronic microscope (SEM, S – 4800,Hitachi, Tokyo, Japan). The microstructure was measured bya transmitted electronic microscope (TEM, JEM2100F,JOEL, Tokyo, Japan). The excitation and emission spectra of BN and BCNO phosphors were measured by a HitachiF – 7000 spectrophotometer (Tokyo, Japan). The ultraviolet – visible – near-infrared (UV – VIS – NIR) absorption spectra weremeasured by a spectrophotometer (Hitachi, U – 4100). All themeasurements were performed at room temperature.

    III. Results and Discussion

    Figure 1(a) shows the typical XRD patterns of S1 and S6 sam-

    ples. The XRD patterns show the formation of turbostratic

    J. McKittrick—contributing editor

    Manuscript No. 33501. Received July 14, 2013; approved September 4, 2013.†Author to whom correspondence should be addressed. e-mail: zhangxinghua@he-

    but.edu.cn

    246

    J. Am. Ceram. Soc.,  97  [1] 246–250 (2014)

    DOI: 10.1111/jace.12645

    ©  2013 The American Ceramic Society

     Journal

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    3/6

    boron nitride (t-BN) structure with two dominated peaks at26.6°   and 43.6°   corresponding to (002) and (10) ((101) and

    (100)) reflections, respectively. Moreover, there were two dis-tinct peaks for S1   at 31.7°   and 45.4°  which corresponding tothe crystal faces of cubic NaCl (JCPDS Card No. 05-0628) at(200) and (220), respectively. The two peaks at 31.7° and 45.4°were induced by the NaCl remainder without washing out inS1   sample. The XRD results indicated all the prepared sam-ples with two methods are turbostratic boron nitride struc-ture. Figure 1(b) shows the SEM image and high-resolutionTEM image [inset of Fig. 1(b)] of S6   sample. The particleshape is irregular and its size changes from a hundred nanom-eters to several hundreds of nanometers. The high-resolutionTEM image indicates that the BCNO phosphor is polycrystal-line in nature and is composed of several distinct nanocrystals,each of which is approximately less than 5 nm in size.

    Figure 2 shows the excitation spectrum monitored at

    390 nm and emission spectra excited by 215, 280, and350 nm of the S1   sample. As shown in Fig. 2, a very broadband centered at 335 nm appears and superimposes with thestructured emission under a 215-nm excitation. For 280-nmexcitation, a structured band centered at 318 and 333 nm isobserved. The structured emission spectra between 300 and350 nm excited by 280 and 215 nm are induced by the inter-nal defects of BN, mostly by nitrogen vacancy.19 There isalso a broad band centered at 385 nm in the emission spectraunder a 280-nm excitation, and the emission peak is locatedat 390 nm when the excitation wavelength is 350 nm. Theemission peak centered at 390 nm is likely induced by theoxygen related defects.20 For excitation spectra of S1   samplemonitored by 390 nm, there are three distinct excitationpeaks centered around 215-, 280-, and 350-nm emission,

    respectively. Although there are no carbon and oxygen ele-ments in RM, oxidation is evidently inevitable in preparing

    S1   sample; therefore, both excitation and emission spectraare originated from B-, N-, and O-related defects. The215-nm (~ 5.7 eV) excitation is corresponding to the bandgap transition of BN, and the 280-nm (~ 4.4 eV) excitation islikely to be correlated with intrinsic defects of BN such as Nvacancy, whereas the 350 nm (~ 3.5 eV) excitation may becorrelated with the oxygen-related defects in BN.21 – 23

    Figure 3 shows the excitation and emission spectra of S2sample using boric acid and urea as RM. As there are car-bon elements in urea and oxygen elements in boric acid, theeffects of carbon and oxygen cannot be ruled out for S2  sam-ple. In the excitation spectra monitored at 390 nm, there aretwo obvious peaks centered at 315 and 350 nm, and a shoul-

    der peak located at 280 nm, respectively. Comparing with S1sample, there is no 215-nm excitation peak for S2   sample,which is probably induced by the carbon element of urea.The little carbon may affect the electronic structure of BN,which can be reflected by UV – VIS – NIR absorption spectra(as shown in Fig. 5). In addition, a new excitation peak cen-tered at 315 nm appears which may be correlated with car-bon impurity defects.24 The 280-nm excitation is originatedfrom nitrogen-related defects and the 350-nm excitation islikely induced by oxygen-related defects. The emission spec-tra of S2   sample excited by 280 nm are also different fromthat of S1   sample. No structured emission band appearsbetween 300 and 350 nm, and a broad band centered at365 nm displays between 300 and 500 nm. The broad emis-sion spectra can be decomposed into two Gaussian curves:

    one curve centered at 350 nm, which is mostly induced bycarbon-related defects, and the other curve centered at

    (a)

    (b)

    Fig. 1.   (a) XRD patterns of specimens S1   and S6; (b) SEM imageand high-resolution TEM image (inset) of S6   sample.

    Fig. 2.   Excitation spectra monitored at 390 nm and emissionspectra excited by 215, 280, and 350 nm for specimen S 1.

    Fig. 3.   Excitation spectra monitored at 390 nm and emission

    spectra excited by 280, 315, and 350 nm for specimen S 2.

    January 2014   Effects of Carbon and Oxygen   247

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    4/6

    400 nm that may correspond to oxygen-related defects. The

    above phenomenon can be clearly seen in the emission spec-tra excited by 315 nm, and the spectra are composed of con-tributions of two luminescence centers. The emission spectraexcited by 350 nm show one broad emission centered at390 nm, which is induced by the oxygen-related defects. For315-nm excitation, the emission spectrum is induced by thetransition from nitrogen-related defects levels to carbon andoxygen-related defects levels. While for 350-nm excitation,the one broad emission spectrum is mainly originated fromthe transition from nitrogen-related defects levels to oxygen-related defects levels.

    Figure 4(a) shows the normalized excitation spectra moni-tored at the emission peak position for specimens S3 – S8,respectively. The excitation spectrum of S3  sample monitoredat 385 nm shows a broad band between 280 and 360 nm.

    With increasing mass of PEG (10 000) (specimens S4   andS5), the excitation spectra show two obvious bands centeredat 280 and 370 nm, respectively. The 280-nm excitation isrelated to the intrinsic defects of BCNO, mostly nitrogenvacancy, and the 370-nm excitation is mostly correlated withcarbon- and oxygen-related defects. For further increasingPEG (10 000) mass (specimens S7   and S8), the 280- and 370-nm excitation peaks change to shoulder peaks, and a newshoulder peak centered at 235 nm appears for S8   which maybe induced by the superfluous carbon source. Compared withspecimens S1 – S2, specimens S3 – S7   have excitation peaks in320 – 400 nm range which change from 350 to 370 nm. Thechange in excitation peak position is induced by the additionof PEG (10 000) in preparing BCNO. With addition of PEG,the electronic structure of BN is changed and carbon and

    oxygen impurity levels will appear in band gap, which can beverified by the calculation results (as shown in Fig. 6).

    Figure 4(b) shows the emission spectra of S3 – S8  samples, andthe inset of Fig. 4(b) shows the emission peak position as afunction of PEG (10 000) mass. For S3   and S8   samples, theemission spectra are in the range between 300 and 500 nm,

    whereas the emission spectra for specimens S4 – 

    S7   are in therange between 400 and 600 nm. The peak position increasesfrom 385 nm for S3   to 545 nm for S6   and then decreases to390 nm for S8, the redshift of emission peak is induced bythe composition of BCNO and especially the carbon impurityconcentration,25,26 and the blueshift of emission peak isinduced by the superfluous carbon impurity.27 For S7   and S8samples, the carbon concentration is saturated and theredundant carbon has negative effects on the luminescenceproperties of BCNO phosphors, which induces the blueshiftof emission peak and decrease in emission peak intensity.28

    With further increasing carbon source content, there will beno emission peak for the BCNO phosphors. From the excita-tion and emission spectra of BCNO phosphors, it can beconcluded that the spectra of BN is induced by the intrinsic

    defects of BN and oxygen impurity defects, whereas the spec-tra of BCNO phosphors are mainly induced by the carbonand oxygen impurity defects, which can be verified by theabsorption spectra and first-principle calculations.

    Figure 5 shows the UV – VIS – NIR absorption spectra of specimens S1 – S7   in the range 240 – 1400 nm. For S1   sample,the absorbance decreases with increasing wavelength and ashoulder peak located at 270 nm appears in absorption spec-tra (inset of Fig. 5), which is induced by the intrinsic defectsof BN (mostly nitrogen vacancy). The band gap absorptionof BN is not observed as the spectrum is tested from240 nm. There is a shoulder peak around 400 nm, which islikely induced by the oxygen impurity level. For S2   sample,the tendency of absorption spectra is similar to that of S1,and an absorption peak centered at 260 nm appears, which

    is possibly induced by the nitrogen vacancy level. For S3sample, there are a shoulder peak located at 265 nm and twopeaks centered at 295 and 410 nm, respectively. The 265-nmabsorption is related to the intrinsic defects level of BN. The295-nm (~ 4.2 eV) absorption is induced by the transitionbetween carbon impurity level and conduction band as car-bon impurity will produce an energy level of   ~ 4.1 eV belowconduction band in BN.29,30 The absorption peak centered at410 nm (~ 3.0 eV) is possibly induced by the carbon and oxy-gen impurity defects. The nitrogen vacancy has two differenttypes, one type is three-boron center which introduces trap-ping levels at 1.0 eV below conduction band, and anothertype is one-boron center which introduces trapping levels at0.7 eV below conduction band.31,32 The 410-nm absorptionmay be induced by the transition from carbon impurity level

    to nitrogen vacancy level, and oxygen impurity level mayalso have a contribution to the absorption.33 With increasing

    (a)

    (b)

    Fig. 4.   (a) Normalized excitation spectra monitored at the emissionpeak position for specimens S3 – S8, respectively; (b) Normalizedemission spectra of S3 – S8   samples, and the inset shows the emissionpeak position as a function of PEG(10 000) mass.

    Fig. 5.   UV – VIS – NIR absorption spectra of specimens S1 – S7   in therange 240 – 1400 nm.

    248   Journal of the American Ceramic Society—Zhang et al.   Vol. 97, No. 1

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    5/6

    M PEG, the 265- and 295-nm absorption peaks become notobvious, and a broad absorption band in 250 – 700 nm rangeappears. The broad absorption spectra of BCNO phosphorsmay be induced by the broadening of carbon and oxygenimpurity defects levels.

    To better understand the BCNO phosphor, we performeddensity functional theory calculations to explore the effectsof the carbon and oxygen impurities on the band structure of BN bulk. Because of the known limitations of the   ab initiocalculation when applied to systems involving large numberof atoms, a 5  9  5  9   2 supercell is chosen as a representativeof BN bulk. On the basis of the present experimental results

    of BCNO, we replaced one nitrogen atom with carbon atomand the other near nitrogen with oxygen atom to model thepartially carbon- and oxygen-doped BN [as shown in inset of Fig. 6(a)]. In our studies, the band gap for pristine BN is cal-culated to be 4.1 eV, which achieves good agreement withprevious studies, indicating that the methodology adopted inthis work can give a reliable description of electronic structureof BN bulk. As shown in Fig. 6(a), carbon- and oxygen-dopedBN is still a semiconductor and substitutional impurity inducesthe occupied impurity states in the gap region which locatedbelow conduction band for   ~ 3 eV. Therefore, it is expectedthat the carbon and oxygen substitutional doping will result inpronounced modification in the electronic structure and opti-cal properties of BN systems. From the partial density of state[PDOS, Fig. 6(b)], the impurity band is not only contributed

    by carbon and oxygen atoms but also donated by the boronand nitrogen atoms near to the dopant.

    On the basis of above results, a simplified energy level dia-gram can be tentatively constructed to explain the lumines-cence mechanism for BN and BCNO phosphors, as shown inFig. 6(c). For BN sample, there is no carbon-related levels,and the 215-nm (~ 5.8 eV) excitation for S1   is induced by theband gap transition. Nitrogen vacancy levels called three-boron center (V N3) and one-boron center (V N1) will appearbelow conduction band 1.0 and 0.7 eV, respectively, and the280-nm (~ 4.4 eV) excitation is induced by the transition fromvalence band to nitrogen vacancy levels for all the samples.

    In addition, oxygen impurity is inevitable in preparing BNand it may produce an energy level of   ~ 4.5 eV below theconduction band. The 350-nm (~ 3.5 eV) excitation for speci-men S1   may be induced by the transition from oxygen impu-rity levels to nitrogen vacancy levels. For BCNO samples,when the carbon impurity concentration is little (S2), carbon-related defects will produce an energy level of   ~ 4.1 eV belowconduction band. Except 280- and 350-nm excitation peaks,a 300-nm (~ 4.1 eV) excitation peak appears, which is inducedby the transition from carbon-related levels to conductionband. With increasing carbon source, the 300-nm excitationpeak disappears, substituted by a broad excitation bandbetween 280 and 350 nm, which is probably induced by thebroadening of carbon-related levels. The emission spectracan also be explained by the energy level diagram. For S1

    sample, the emission is mainly induced by the transition fromnitrogen vacancy levels to oxygen impurity levels. For S2sample, carbon impurity levels appear and the emission ismainly induced by the transition from nitrogen vacancy lev-els to carbon impurity levels. With further increasing carbonsource, the carbon-related levels become broader and the car-bon-related levels may shift with carbon impurity concentra-tion in the range 2   ~   3 eV, which results in the changeableemission spectra of BCNO phosphors.21,24,34 The absorptionspectra are also correlated with the nitrogen vacancy levels,carbon- and oxygen-related levels, which can be understoodby the energy level diagram.

    IV. Conclusions

    In summary, the BN and BCNO phosphors were preparedand the effects of carbon and oxygen impurities on the lumi-nescence properties were investigated. Both BN and BCNOsamples were turbostratic boron nitride structure. The excita-tion spectra were changed from separated excitation peaksfor BN to a broad excitation band in 250 – 400 nm forBCNO, and the emission peak position of BCNO shifted tolong wavelength and then to short wavelength with increas-ing PEG mass. The absorption peak was narrow and locatedaround 260 nm for BN, while it became not obvious forBCNO and a broad absorption band appeared in the range250 – 700 nm with increasing PEG mass. The theoretical cal-culation and experimental results indicated that the carbonand oxygen might introduce impurity levels in the band gapof BN, which has great effects on spectra properties of 

    BCNO. The spectral properties of BN and BCNO phosphorscould be explained well by a tentatively simplified energylevel diagram.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(nos. 51172760, 51171056, 11104073, and 51272064) and Natural Science Foun-dation of Hebei Province of China (nos. E2011202012 and E2012202044) andTianjin Key Technology R&G Program (11ZCKFGX01300).

    References

    1Y.   Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep UltravioletLight-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pres-sure,”  Science,  317 , 932 – 4 (2007).

    2K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi,“Far-Ultraviolet Plane-Emission Handheld Device Based on Hexagonal BoronNitride,”  Nat. Photonics,  3, 591 – 4 (2009).

    (a)

    (b)

    (c)

    Fig. 6.   (a) Total density of state of BCNO and inset shows theconfiguration of BCNO; (b) partial density of state of BCNO; (c)

    schematic energy level diagram of BCNO phosphors.

    January 2014   Effects of Carbon and Oxygen   249

    https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/6136729_Deep_Ultraviolet_Light-Emitting_Hexagonal_Boron_Nitride_Synthesized_at_Atmospheric_Pressure?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/239634322_Far-Ultraviolet_Plane-Emission_Handheld_Device_Based_on_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==

  • 8/17/2019 5602aa7908ae0b84c4d22a85

    6/6

    3C. Y. Zhi, Y. Bando, C. C. Tang, D. Golberg, R. J. Xie, and T. Sekigushi,“Phonon Characteristics and Cathodolumininescence of Boron NitrideNanotubes,”  Appl. Phys. Lett.,  86 , 213110, 3pp (2005).

    4M. Kawaguchi, “B/C/N Materials Based on the Graphite Network,”   Adv.Mater.,  9, 615 – 25 (1997).

    5M. O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, “Visible-Light-Emitting Layered BC2N Semiconductor,” Phys. Rev. Lett.,  77 , 187 – 9 (1996).

    6C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang, “Adjustable Boron Car-bonitride Nanotubes,”   J. Appl. Phys.,  91 , 5325 – 33 (2002).

    7C. Y. Zhi, X. D. Bai, and E. G. Wang, “Boron Carbonitride Nanotubes,”J. Nanosci. Nanotechnol.,  4 , 35 – 51 (2004).

    8A. Rubio, J. L. Corkill, and M. L. Cohen, “Theory of Graphitic BoronNitride Nanotubes,”  Phys. Rev. B,  49 , 5081 – 4 (1994).

    9M. S. C. Mazzoni, R. W. Nunes, S. Azevedo, and H. Chacham, “Elec-tronic Structure and Energetics of BxC yNz  Layered Structures,”  Phys. Rev. B,73, 073108, 4pp (2006).

    10C. Y. Zhi, X. D. Bai, and E. G. Wang, “Raman Characterization of Boron Carbonitride Nanotubes,”  Appl. Phys. Lett.,  80 , 3590 – 2 (2002).

    11Y. Chen, J. C. Barnard, R. E. Palmer, M. O. Watanabe, and T. Sasaki,“Indirect Band gap of Light-Emitting BC2N,”   Phys. Rev. Lett.,   83, 2406 – 8(1999).

    12T. Ogi, Y. Kaihatsu, F. Iskandar, W. N. Wang, and K. Okuyama, “FacileSynthesis of New Full-Color Emitting BCNO Phosphors with High QuantumEfficiency,”   Adv. Mater.,  20, 3235 – 8 (2008).

    13W. N. Wang, Y. Kaihatsu, F. Iskandar, and K. Okuyama, “Chemical andPhotoluminescence Analyses of New Carbon-Based Boron Oxynitride Phos-phors,”  Mater. Res. Bull.,  44 , 2099 – 102 (2009).

    14X. F. Liu, Y. B. Qiao, G. P. Dong, S. Ye, B. Zhu, Y. X. Zhuang, and J.R. Qiu, “BCNO-Based Long Persistent Phosphor,”  J. Electrochem. Soc.,   156,P81 – 4 (2009).

    15Y. Kaihatsu, F. Iskandar, H. Widiyandari, W. N. Wang, and K. Okuy-ama, “Fabrication and Characterization of a Yellow-Emitting BCNO Phos-phor for White Light-Emitting Diodes,”   Electrochem. Solid-State Lett.,   12,J33 – 6 (2009).

    16W. N. Wang, T. Ogi, Y. Kaihatsu, F. Iskandar, and K. Okuyama, “NovelRare-Earth-Free Tunable-Color-Emitting BCNO Phosphors,”   J. Mater.Chem.,  21, 5183 – 9 (2011).

    17C. C. Tang, Y. Bando, C. Y. Zhi, and D. Golberg, “Boron-Oxygen Lumi-nescence Centers in Boron-Nitrogen System,”   Chem. Commun.,   44, 4599 – 601(2007).

    18X. F. Liu, S. Ye, Y. B. Qiao, G. P. Dong, Q. Zhang, and J. R. Qiu, “Fac-ile Synthetic Strategy for Efficient and Multi-Color Fluorescent BCNO Nano-crystals,”  Chem. Commun.,  27 , 4073 – 5 (2009).

    19V. L. Solozhenko, A. G. Lazarenko, J. P. Petitet, and A. V. Kanaev,“Bandgap Energy of Graphite-Like Hexagonal Boron Nitride,”  J. Phys. Chem.Solids,  62, 1331 – 4 (2001).

    20L. Museur, D. Anglos, J. P. Petitet, J. P. Michel, and A. V. Kanaev,“Photoluminescence of Hexagonal Boron Nitride: Effect of Surface Oxidationunder UV-Laser Irradiation,”  J. Lumin.,  127 , 595 – 600 (2007).

    21L. Museur, E. Feldbach, and A. Kanaev, “Defect-Related Photolumines-cence of Hexagonal Boron Nitride,”  Phys. Rev. B,  75 , 155204, 8pp (2007).

    22B. Yao, Z. X. Shen, L. Liu, and W. H. Su, “Strong Deep-Blue Photolumi-nescence of Mesographite Boron Nitride,”   J. Phys.: Condens. Matter,   16,2181 – 6 (2004).

    23P. F. Wang, Z. H. Li, B. Zhang, K. Gao, and Y. M. Zhu, “AnnealingEffects on the Morphology and Luminescence of Cubic Boron Nitride BasedCeramics,”   Solid State Sci.,  11, 2162 – 6 (2009).

    24X. F. Liu, S. Ye, G. P. Dong, Y. B. Qiao, J. Ruan, Y. X. Zhuang, Q.Zhang, G. Lin, D. P. Chen, and J. R. Qiu, “Spectroscopic Investigation on

    BCNO-Based Phosphor: Photoluminescence and Long Persistent Phosphores-cence,”  J. Phys. D: Appl. Phys.,  42, 215409, 9pp (2009).

    25Y. Kaihatsu, W. N. Wang, F. Iskandar, T. Ogi, and K. Okuyama, “Effectof the Carbon Source on the Luminescence Properties of Boron Carbon Oxy-nitride Phosphor Particles,”   J. Electrochem. Soc.,  157 , J329 – 33 (2010).

    26G. P. Dong, X. F. Liu, X. D. Xiao, Q. Zhang, G. Lin, Z. J. Ma, D. P.Chen, and J. R. Qiu, “Tunable Emission of BCNO Nanoparticle-EmbeddedPolymer Electrospun Nanofibers,”  Electrochem. Solid-State Lett.,   12, K53 – 5(2009).

    27W. N. Wang, S. G. Kim, I. W. Lenggoro, and K. Okuyama, “Polymer-Assisted Annealing of Spray-Pyrolyzed Powders for Formation of Lumines-cent Particles with Submicrometer and Nanometer Sizes,”  J. Am. Ceram. Soc.,90, 425 – 32 (2007).

    28X. H. Zhang, Z. M. Lu, J. Lin, L. L. Li, Y. Fan, L. Hu, X. W. Xu, F. B.Meng, J. L. Zhao, and C. C. Tang, “Luminescence Properties of BCNO Phos-phor Prepared by a Green and Simple Method,”   Mater. Lett.,  94 , 72 – 5 (2013).

    29A. Zunger and A. Katzir, “Point Defects in Hexagonal Boron Nitride. II.Theoretical Studies,”  Phys. Rev. B,  11 , 2378 – 90 (1975).

    30M. D. Amico, F. Messina, M. Cannas, M. Leone, and R. Boscaino,“Homogeneous and Inhomogeneous Contributions to the LuminescenceLinewidth of Point Defects in Amorphous Solids: Quantitative AssessmentBased on Time-Resolved Emission Spectroscopy,”   Phys. Rev. B,   78, 014203,8pp (2008).

    31A. Katzir, J. T. Suss, A. Zunger, and A. Halperin, “Point Defects inHexagonal Boron Nitride. I. EPR, Thermoluminesscence, and Thermally-Stimulated-Current Measurements,”  Phys. Rev. B,  11 , 2370 – 7 (1975).

    32E. Y. Andrei, A. Katzir, and J. T. Suss, “Point Defects in HexagonalBoron Nitride. III. EPR in Electron-Irradiated BN,”  Phys. Rev. B,  13 , 2831 – 4(1976).

    33M. Hubacek, T. Sato, and T. Ishii, “A Coexistence of Boron Nitride andBoric Oxide,”  J. Solid State Chem.,  109 , 384 – 90 (1994).

    34V. V. Lopatin and F. V. Konusov, “Energetic States in the Boron NitrideBand gap,”  J. Phys. Chem. Solids,  53 , 847 – 54 (1992).   h

    250   Journal of the American Ceramic Society—Zhang et al.   Vol. 97, No. 1

    https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234923685_Phonon_Characteristics_and_Cathodolumininescence_of_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/247948408_BCN_Materials_Based_on_the_Graphite_Network?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13228371_Visible-Light-Emitting_Layered_B_C_2_N_Semiconductor?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234885173_Adjustable_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/13278924_Theory_of_Graphitic_Boron_Nitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/253549908_Electronic_Structure_and_Energetics_of_BxCyNz_Layered_Structures?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/234970063_Raman_Characterization_of_Boron_Carbonitride_Nanotubes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/236210432_Indirect_Band_gap_of_Light-Emitting_BC2N?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681539_Facile_Synthesis_of_New_Full-Color-Emitting_BCNO_Phosphors_with_High_Quantum_Efficiency?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/200681548_Chemical_and_Photoluminescence_Analyses_of_New_Carbon-Based_Boron_Oxynitride_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308023_Fabrication_and_characterization_of_a_yellow-emitting_BCNO_phosphor_for_white_light-emitting_diodes?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/255749370_Novel_Rare-Earth-Free_Tunable-Color-Emitting_BCNO_Phosphors?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/5856499_Boron-Oxygen_Luminescence_Centers_in_Boron-Nitrogen_System?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/26332478_Facile_Synthetic_Strategy_for_Efficient_and_Multi-Color_Fluorescent_BCNO_Nanocrystals?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/243307736_Bandgap_Energy_of_Graphite-Like_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/222432288_Photoluminescence_of_Hexagonal_Boron_Nitride_Effect_of_Surface_Oxidation_under_UV-Laser_Irradiation?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/2212731_Defect-Related_Photoluminescence_of_Hexagonal_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/231041370_Strong_Deep-Blue_Photoluminescence_of_Mesographite_Boron_Nitride?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/257514817_Annealing_Effects_on_the_Morphology_and_Luminescence_of_Cubic_Boron_Nitride_Based_Ceramics?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Luminescence_Properties_of_Boron_Carbon_Oxynitride_Phosphor_Particles?el=1_x_8&enrichId=rgreq-fd638ac4-4326-4cd9-8e30-09d25f053d9a&enrichSource=Y292ZXJQYWdlOzI2MDI3OTUxNDtBUzoyNzY4NDAzNDMxOTU2NDhAMTQ0MzAxNTI4OTI5Ng==https://www.researchgate.net/publication/210308003_Effect_of_the_Carbon_Source_on_the_Lumine