60
結結 結結 4.1 半半 半半半半半半半半半半 4.2 半半半半半半半 4.3 半半半半半半 4.4 半半半半半半 半半半 4.5 半半 半半半半半半半半 4.6 半半 半半半半半半半半半 4.7 半半 半半半半半 結結

半導體雷射器

Embed Size (px)

DESCRIPTION

第 4 章. 半導體雷射器. 4.1 半導體的能帶結構和電子狀態 4.2 激發與復合輻射 4.3 雷射振盪條件 4.4 異質接面半導體雷射器 4.5 半導體雷射的波長與線寬 4.6 半導體雷射器當前發展趨勢 4.7 半導體雷射的應用. 目錄. 4.1 半導體的能帶結構和電子狀態 4.1.1 能帶概念的引入 - PowerPoint PPT Presentation

Citation preview

Page 1: 半導體雷射器

結束放映

4.1 半導體的能帶結構和電子狀態4.2 激發與復合輻射4.3 雷射振盪條件4.4 異質接面半導體雷射器4.5 半導體雷射的波長與線寬4.6 半導體雷射器當前發展趨勢4.7 半導體雷射的應用

目錄目錄

Page 2: 半導體雷射器

結束放映

4.1 半導體的能帶結構和電子狀態4.1.1 能帶概念的引入以半導體材料 Si和 Ge為例,每個原子有 4 個價電子,在原子狀態中 s 態和 p 態各 2 個。在晶體狀態中似應產生兩個能帶,一個與 s 態對應,包含N 個狀態,另一個和三重 p 態對應,含 3N個態。但由軌道雜化重新組合的兩個能帶中各含 2N各狀態,較低的一個正好容納 4N個價電子,稱為價帶,上面一個則是空帶,稱為導帶。當能帶被電子部份填充時,外電場才能使電子的運動狀態發生改變而產生導電性。材料低溫下不導電,在溫度較高時,部份電子從價帶激發到導帶,表現出導電性。

Page 3: 半導體雷射器

結束放映

4.1.2 半導體中的電子狀態對單個電子求解薛丁格方程

(4.1)

而將所有其他電子對某一電子的相互作用,視為疊加在原子實週期勢場上的等效平均場,並用V(r) 表示。考慮一維情形,式 (4.1) 變為

(4.2)

22

2( ) ( ) ( ) 0

mr E V r r

2 2

2 2

d ( ) 8( ) ( ) 0

d

x mE V x x

x

Page 4: 半導體雷射器

結束放映

則為動能部份,其中, me為電子質量。

2 2

e

2 2

e

2

2k

kE V

m

kE

m

(4.6)

Page 5: 半導體雷射器

結束放映

在 k 足夠小的範圍內,可將 Ek展開為 Maclaurin級數,

其中, meff稱為電子的有效質量,與 me 不同, meff既可以取正值,也可以取負值。式 (4.7a) 表明,在 k= 0 附近, E(k) 仍按拋物線規律隨k變化,拋物線的開口方向由 meff的符號決定。當 meff >0 時,開口向上,對應的能帶稱為導帶,式 (4.7a) 變為

2 2

eff

( ) (0)2

kE k E

m

Page 6: 半導體雷射器

結束放映

(4.7b)

當 meff < 0 時,開口向下,對應的能帶稱為價帶, E- k關係為

(4.7c)

2 2ceffc

eff

( ) (0) , 02c c

kE k E m

m

Page 7: 半導體雷射器

結束放映

導帶底和價帶頂對應著相同 k 值,即 k = 0 點,導帶底和價帶頂的能量間距稱為禁帶寬度。這種導帶和價帶的極值位於 k 空間同一點(但一般不要求是 k = 0 點)的半導體稱為直接禁帶半導體,其 E - k 關係如圖 4.1(a)所示 。

Page 8: 半導體雷射器

結束放映

Page 9: 半導體雷射器

結束放映

4.2 激發與復合輻射4.2.1 直接躍遷和半導體雷射材料純淨半導體,主要的吸收由價帶向導帶的躍遷引起,並稱為基態吸收或本徵吸收,常用表示本徵吸收係數。引起本徵吸收的光子能量必須大於某一閾值,值大約等於禁帶寬度 Eg。本徵吸收在閾值附近的吸收譜稱為吸收邊。與吸收過程對應的是發射,在發射過程中,電子從導帶躍遷到價帶,並與電洞進行復合,同時發射一個光子,因而稱之為復合輻射。電子在躍遷過程中必須滿足動量守恒,在光躍遷中

ptk k k¢- =h h h

Page 10: 半導體雷射器

結束放映

式中, k 和 k´分別為電子初態和末態波前, kpt

為光子波前。通常 kpt比 k 小 4 個量級左右,電子的躍遷發生在 k空間同一點,稱為豎直躍遷或直接躍遷 [ 圖 4.2(a)] ,在直接躍遷中,輻射光子滿足

有聲子參加過程 [ 圖 4.2(b)] 。這時由動量守恒有

gg

hcE h

Eν 或= =

Page 11: 半導體雷射器

結束放映

式中, kpn為聲子波前, kpn一般比 k 小 1 個量級左右。初態與末態對應於 k 空間不同點的電子躍遷稱為非豎直躍遷或間接躍遷。在這種躍遷中,發射或吸收一個光子的同時,必須伴隨發射或吸收一個適當波數的聲子,以滿足動量守恒,因而屬於二級過程。不適合用於雷射發射。在直接禁帶半導體中,電子有效質量較小,並隨禁帶寬度的增加而增加,禁帶寬度則約隨平均原子序數的減小而增加。

pnk k k¢- »h h h

Page 12: 半導體雷射器

結束放映

Page 13: 半導體雷射器

結束放映

4.2.2 態密度和電子的激發電子自旋角動量為 h/2 ,屬於 Fermi 子,遵循 Femi -Dirac 統計。即能量為 E的態被電子佔據的機率為

Fe

1( )

1 eE E

kT

E -=+ (4.8a)

Page 14: 半導體雷射器

結束放映

被電洞佔據的機率為(4.8b)

其中, EF 稱為 Fermi能階。本徵半導體中, Fermi能階處於 Ec> EF> Ev

導帶能階被電子佔據的機率為

Fh e

1( ) 1 ( )

1 eE E

kT

E E -= - =+

Page 15: 半導體雷射器

結束放映

被電洞佔據的機率為

價帶能階被電子佔據的機率為

被電洞佔據的機率為

c Fch

1( )

1 eE E

kT

E --

=

+

F vve

1( )

1 eE E

kT

E --

=

+

F vvh

1( )

1 eE E

kT

E -=

+

Page 16: 半導體雷射器

結束放映

當 T = 0K 時,由式 (4.8a) 得

而式 (4.8b) 則給出

ce ch( ) 0 ( ) 1E E ,= =

ve vh( ) 1 ( ) 0E E ,= =

Page 17: 半導體雷射器

結束放映

Page 18: 半導體雷射器

結束放映

當 T > 0K時,由於 k 只有 eV. K 的量級,

410-

c F F v E E kT E E kT,- -? ?

c F

ch

ce

( ) 1

( ) e 1E E

kT

E

E

-

-

=

= =

Page 19: 半導體雷射器

結束放映

導帶中只有很少量電子,且服從 Boltzman 分佈定律,集中在相對靠近 EF 的導帶底部。而由式 (4.8b)

即價帶基本被電子占滿,只有少量電洞,且按照Boltzman 分佈律,集中在相對靠近 EF 的價帶頂部。

F v

ve

vh

( ) 1

( ) e 1E E

kT

E

E

-

-

=

= =

Page 20: 半導體雷射器

結束放映

Page 21: 半導體雷射器

結束放映

摻入適當雜質(形成非本徵型半導體),可提供附加的自由電子或電洞,從而大大提高電導率,使電流更容易形成。在多一個電子的情況下,附加能階接近導帶,雜質能階上的電子室溫下很容易進入導帶,使導帶中產生大量過剩電子,這種材料稱為 n型材料,而雜質稱為施體;若摻雜原子比材料原子少一個電子,則附加能階接近價帶,其上的電洞很容易進入價帶,使價帶中出現大量過剩電洞,這種材料稱為 p 型材料,而雜質稱為受體。

Page 22: 半導體雷射器

結束放映

n 型材料導帶中有過剩電子,相當於 EF 上移。 p型材料價帶中有過剩電洞,相當於 EF 下移 。

Page 23: 半導體雷射器

結束放映

Page 24: 半導體雷射器

結束放映

半導體材料的導帶和價帶,對應於二能階原子系統的上、下雷射能階。適當波長的光與材料發生作用時,也有受激吸收和受激發射兩種過程同時發生。在受激吸收過程中,價帶的電子吸收光子躍遷到導帶,並在價帶留下 1 個電洞;在受激發射過程中,導帶電子躍遷到價帶,與那裏的電洞發生復合,受激發射過程對入射光的增益 G1為正,

1 0 ce vh( )G h P P ν=

Page 25: 半導體雷射器

結束放映

而受激吸收過程對入射光的增益 G2則為負

其中, 為導帶能階全部被電子佔據 (Pce= 1),價帶能階全部被電洞佔據 (Pvh= 1)時的增益;

0

2 0 ch ve( )G h P P ν=-

Page 26: 半導體雷射器

結束放映

受激發射和受激吸收對光作用的總效果為

而有淨增益的條件為(4.9)

0 ce ve( )( )G h P P ν= -

ce ve 0P P- >

Page 27: 半導體雷射器

結束放映

反轉分佈條件為

使 pn 接面實現粒子數反轉分佈,需滿足兩個條件:摻雜濃度足夠高,使準 Fermi 能階分別進入導帶和價帶。正向偏壓 V 足夠高,使 ,從而 。

c vF F gE E h Eν- > »

geV E>c vF FE E eV hν- = >

Page 28: 半導體雷射器

結束放映

4.3.2 損耗和閾值振盪條件損耗用 概括,主要包括衍射、自由載子等引起的非本徵吸收及各種損耗。此外,還有端面反射 R1 、 R2所引起的損耗。對長度為 L的腔,初始強度為 I0的光在腔內一次往返後變為

由此可得閾值增益為(4.10)

式 (4.10)中的 主要由自由載子的吸收引起,其大小正比於載子濃度 n 。

1(cm )i -

( )20 1 2e

iG LI I R R -=

th1 2

1 1ln

2iGL R R

= +

i

Page 29: 半導體雷射器

結束放映

在實際情況下,光場不可能完全被約束在有源區。但是只有在有源區中傳播的光才能獲得增益,引入光限制因子, 表示有源區能量與有源區加無源區的總能量之比,並設無源區的吸收係數和端面反射率分別為 和 、 ,

i¢ 1R¢ 2R¢

th1 2 1 2

1 1 1 1ln (1 ) ln

2 2i iGL R R L R R

æ ö æ ö÷ ÷ç ç ¢÷ ÷= + + - +ç ç÷ ÷ç ç÷ ÷ç ç ¢ ¢è ø è ø

(4.11)

Page 30: 半導體雷射器

結束放映

當光限制作用很強,以至 時, 。 1 » 0¢»

1 2

1 1 1ln

2th iGL R R

æ ö÷ç ÷» +ç ÷ç ÷çè ø

Page 31: 半導體雷射器

結束放映

閾值振盪條件,也可用電流密度表示為 [4.1]

式中, d 為電流方向有源區厚度, η為輻射復合速率與總復合速率之比,稱為內量子效率。而 β和 j0是隨溫度變化的兩個參數。

thth 0

G dj j

æ ö÷ç= + ÷ç ÷ç ÷è ø

Page 32: 半導體雷射器

結束放映

4.4 異質接面半導體雷射器4.4.1 異質接面異質接面是由不同材料構成的接面,圖 4.6所示即是在 n 型 GaAs基質上形成的 GaAs/ 異質接面結構。

1Al Ga Asx x

Page 33: 半導體雷射器

結束放映

Page 34: 半導體雷射器

結束放映

雙異質接面可以使載子激發與復合輻射的區域及光束傳播的區域得到進一步控制,從而使閾值電流進一步減小。

Page 35: 半導體雷射器

結束放映

Page 36: 半導體雷射器

結束放映

如果將異質接面的激發層厚度進一步減小至 5 ~10 nm,則電子能量展現量子行為,因而稱為量子井結構。由於量子效應只發生在與接面垂直的方向,故可將電子考慮為一維勢井中的粒子,由量子理論立即得到其離散能階

其中, d 是層厚而 n( = 1,2…)為量子數。在載子和光場都得到強約束的條件下,量子井雷射器實現非常高的增益和低至 0.5 mA• 的閾值電流密度。

2 2

n 2

( )

2 c

nE

m d

=

h

2cm-

Page 37: 半導體雷射器

結束放映

4.4.2 雷射器的結構在半導體雷射器內部,為避免熱損傷和光能損耗,應盡量限制電子-電洞復合區,並將電流及光束約束在有源區內。通常用兩種方法達到這一目的,即增益-波導約束和折射率波導約束。厚度可在0.005~ 1μm範圍變化的 p 型和 n 型 AlGaAs附加層,它們與 GaAs形成雙異質接面。附加層既用於限制電子-電洞發生復合作用的有源區,同時也對光波加以約束。

Page 38: 半導體雷射器

結束放映

p 型 AlGaAs的上方,只有中間一窄條與金屬電極接觸,其他區域則被氧化物絕緣層與電極分開。因此,電流被限制在這一窄條中,光束也對應被約束。

Page 39: 半導體雷射器

結束放映

Page 40: 半導體雷射器

結束放映

限制電流和光束的另一種方法是折射率-波導,圖 4.9是這種結構的一個 。

Page 41: 半導體雷射器

結束放映

Page 42: 半導體雷射器

結束放映

4.5 半導體雷射的波長與線寬4.5.1 半導體雷射的波長在半導體雷射器工作過程中,當電子和電洞到達接面區並復合時,電子回到其在價帶的位置,並釋放出它處於導帶時的激發能。這部份能量既可以通過碰撞弛豫(聲子相互作用)轉移給晶格,也可以電磁輻射的方式向外界釋放。

Page 43: 半導體雷射器

結束放映

輻射波長(4.14)

h 和 c 都是熟知的物理常數,只要給出帶隙 Eg,即可得到波長 λ。

g

hc

E =

Page 44: 半導體雷射器

結束放映

Page 45: 半導體雷射器

結束放映

4.5.2 線寬與頻率控制半導體雷射器的腔長一般小於 1 mm,因而,縱模頻率間隔達 100 GHz量級,是腔長範圍在 0.1~1 m的普通雷射器縱模間隔的 100~ 1000倍。對駐波工作方式,頻率可以耦合腔由兩個 Fabry-Perot腔組成,等價於在長腔內放置 F - P 標準具。兩個 F - P 腔既可以彼此分離也可以連在一起成凹槽型 。

Page 46: 半導體雷射器

結束放映

Page 47: 半導體雷射器

結束放映

Page 48: 半導體雷射器

結束放映

4.6 半導體雷射器當前發展趨勢半導體雷射器當前發展的兩個主要方向是提高器械功率水平和採用表面發射技術。 所謂大功率器械分單模工作和多模工作兩類。對單模運轉,功率超過 100 mW即算是大功率,而多模工作的器械輸出可達千瓦量級 。

Page 49: 半導體雷射器

結束放映

單模雷射器實現高功率運轉的主要限制因素為:(1)空間燒孔效應引起多模工作, (2)當功率很高時,腔鏡反射膜對雷射能量的吸收導致模層的嚴重損壞, (3)激發區的溫度隨電流增加而升高。

Page 50: 半導體雷射器

結束放映

多模半導體雷射陣列由一排相互連接的雷射器組成。彼此相距很近,例如不超過 10μm時,由於相鄰雷射模重疊,使所有雷射器同相位運轉,產生干涉輸出。如果組成陣列的元雷射器彼此相距較遠,則每一個獨立的雷射模相對於其他雷射輸出相位上是隨機的,因此光束總體干涉性較差。

Page 51: 半導體雷射器

結束放映

Page 52: 半導體雷射器

結束放映

4.6.2 表面發射雷射器 (SELs)在雷射增益介質接面平面垂直方向上發射的雷射器,稱為表面發射雷射器 (SELs)。表面發射雷射器通常有兩類結構,一類具有分佈光柵耦合器,將一部份輸出光束的傳播方向改變到垂直於接面平面的方向上。

Page 53: 半導體雷射器

結束放映

Page 54: 半導體雷射器

結束放映

VCSEL 的結構的例子,如圖 4.14 所示,位於接面層上方和下方的反射鏡由沉積一系列半導體材料薄層組成,高折射率和低折射率的材料交替。這種結構的功能如同分佈 Bragg 反射器,因折射率不同引起反射波,由間隔層返回雷射腔實現波長選擇。

Page 55: 半導體雷射器

結束放映

Page 56: 半導體雷射器

結束放映

VCSEL 和 EEL 一樣,均可大規模製造在同一晶片上。前者的製造過程全部在整塊晶片上完成,因而可在晶片被切開之前檢測。後者直到晶片被切成小塊才算完成,所以只能單獨加以檢測。雖然 VCSEL 結構比 EEL複雜,但檢測和封裝的優勢,使 VCSEL更經濟。

Page 57: 半導體雷射器

結束放映

4.7 半導體雷射的應用4.7.1 概 述4.7.2 半導體雷射器在各種 CD盤中的應用

Page 58: 半導體雷射器

結束放映

光盤的讀出原理,如框圖 4.16 所示。光盤由電機驅動等速旋轉,表面儲存信息的燒坑導致反光特性的規律變化,使投射其上的讀出雷射束強度受到調製,而攜帶了儲存於光盤的信息。光探測器將其轉換為數字電子訊號,經放大和解調等處理提取出電訊號,最後由喇叭或屏幕還原為原始訊號。

Page 59: 半導體雷射器

結束放映

Page 60: 半導體雷射器

結束放映

4.7.3 半導體雷射器在光纖通訊中的應用光纖通訊能得到迅速的發展,是因為它較電子通訊有以下優點:1. 寬通帶、大容量2.傳輸損耗低