71
6.6 常常常常常常常常常常常 常常常常常常常常常常常常常常常 常常常常常常常常常常常常常常常常常 常常 ,, “常常 常常常常”常常常常常常常常 常常常常 Butterworth 常常常 常常常常 Chebyshev 常常常 常常 Ellipse 常常常 常常常 Bessel 常常常 常常常常常常常常常常常 常常常常常常常常常常 常常 常常常常常常常

6.6 常用模拟低通滤波器特性

Embed Size (px)

DESCRIPTION

6.6 常用模拟低通滤波器特性. 首先将要设计的数字滤波器的指标,转变成模拟低通原型滤波器的指标后,设计 “ 模拟低通原型 ” 滤波器。. 模拟滤波器. 它们都有严格的设计公式,现成的曲线和图表供设计, 这些 滤波器各有特点。. 巴特沃斯 Butterworth 滤波器. 切比雪夫 Chebyshev 滤波器. 椭圆 Ellipse 滤波器. 贝塞尔 Bessel 滤波器. 一、模拟滤波器设计思想. - PowerPoint PPT Presentation

Citation preview

Page 1: 6.6  常用模拟低通滤波器特性

6.6 常用模拟低通滤波器特性首先将要设计的数字滤波器的指标,转变成模拟低通

原型滤波器的指标后,设计“模拟低通原型”滤波器。

模拟滤波器 巴特沃斯 Butterworth 滤波器 切比雪夫 Chebyshev 滤波器 椭圆 Ellipse 滤波器 贝塞尔 Bessel 滤波器

它们都有严格的设计公式,现成的曲线和图表供设计,这些滤波器各有特点。

Page 2: 6.6  常用模拟低通滤波器特性

一、模拟滤波器设计思想

根据模拟滤波器设计要求,求出相应的模拟系统函数,使其逼近某个理想滤波器的特性。 ( 滤波器的特性包括有:幅度特性、相位特性、群时延特性 ) ,在此我们采用幅度平方函数特性来设计。

Page 3: 6.6  常用模拟低通滤波器特性

二、由幅度平方函数确定滤波器的系统函数

h(t) 是实函数

)1()()()()()(

)()()()(

2

22

jsaaaa

aaa

sHsHjHjHA

jHjHjHA

式中 Ha(s)— 模拟滤波器系统函数, Ha(jΩ)—

滤波器的频率响应, |Ha(jΩ)|— 滤波器的幅频响应又 S=jΩ,Ω2=-S2

∴ A(Ω2)=A(-S2)|S=jΩ

Page 4: 6.6  常用模拟低通滤波器特性

Ha(s) Ha(-s) 的零极点分布

问题:由 A(-S2)→Ha(S)

A(-S2) 的极点和零点总是“成对出现”,且对称

于 S 平面的实轴和虚轴,选用 A(-S2) 的对称极、零点的任一半作为 Ha(s) 的极、零点,则可得到 Ha(s) 。

为了保证 Ha(s) 的稳定性,应选用 A(-S2) 在 S

左半平面的极点作为 Ha(s) 的极点,零点可选用任一半。

Page 5: 6.6  常用模拟低通滤波器特性

1 、幅度平方函数Butterworth 低通滤波器具有通带最平幅度逼近特性,是一全极点型滤波器,且极点均匀分布上 Ωc 的圆上,并且与虚轴对称。其最主要特点:在通带内,幅频最平坦,随着频率的升高而单调下降。其幅度平方函数为

其中 N 为整数,表示滤波器的阶次, Ωc 定义为截止频率,为振幅响应衰减到 -3dB 处的频率。

三、巴特沃思滤波器( Butterworth )

Page 6: 6.6  常用模拟低通滤波器特性

2

2

1( )

1

a N

c

H j

20 ( ) 1aH j

2

1( ) 1/ 2 3c aH j dB 3dB 不变性

c 通带内有最大平坦的幅度特性,单调减小 c 过渡带及阻带内快速单调减小 当= s (阻带截止频率)时,衰减的 1为阻带最小衰

0 1 2 30

0.2

0.4

0.6

0.8

1

Mag

nitu

de

Butterworth Filter

N = 2N = 4N = 10

Page 7: 6.6  常用模拟低通滤波器特性

2 、 Butterworth 滤波器的极点分布

为了得到稳定的滤波器, s 左半平面的极点必须分配给 Ha(s) , s 右半平面的极点分配给 Ha(-s) 。

取其分布在左平面的极点, 设计出巴特沃思低通滤波器。

Page 8: 6.6  常用模拟低通滤波器特性

• 极点在 s 平面呈象限对称,分布在 Buttterworth 圆上,共2N 点• 极点间的角度间隔为 / N rad• 极点不落在虚轴上• N 为奇数,实轴上有极点, N 为偶数,实轴上无极点

Ha(s) Ha(-s) 的零极点分布(a) N=4 ( 三阶) (b)N=4 (四阶)

Page 9: 6.6  常用模拟低通滤波器特性

3 、滤波器的系统函数

1

( )( )

Nc

a N

kk

H ss s

1 2 1

2 2 1,2,...,k

jN

k cs e k N

查表可得归一化的系统函数 ( )anH s

去归一化后,可得:( cr 归归归归归归归归归)

( ) ( )cr

c

a ans s

H s H s

cran

c

sH

Page 10: 6.6  常用模拟低通滤波器特性

例 :设计一巴特沃兹带通滤波器,其 3dB 边界频率分别为 f2=90kHz , f1=110kHz ,在阻带 f3=120kHz

处最小衰减大于 10dB ,采样 fs=400kHz 。w1=2*400*tan(2*pi*90/(2*400));w2=2*400*tan(2*pi*110/(2*400));wr=2*400*tan(2*pi*120/(2*400));[N,wn]=buttord([w1 w2],[0 wr],3,10,'s');[B,A]=butter(N,wn,'s');[num,den]=bilinear(B,A,400);[h,w]=freqz(num,den);f=w/pi*200;plot(f,20*log10(abs(h))),axis([40,160,-30,10]); grid;xlabel(' 频率 /kHz');ylabel(' 幅度 /dB');

Page 11: 6.6  常用模拟低通滤波器特性

巴特沃兹带通滤波器

40 60 80 100 120 140 160-30

-25

-20

-15

-10

-5

0

5

10

ƵÂÊ/kHz

·ù¶È/dB

频率 /kHz

幅度/dB

Page 12: 6.6  常用模拟低通滤波器特性

四、切贝雪夫滤波器( Chebyshev )Butterworth 滤波器频率特性,无论在通带与阻带都随频率而单调变化,因此如果在通带边缘满足指标,则在通带内肯定会有富裕量,也就是会超过指标的要求,因而并不经济。

更有效的方法是将指标的精度要求均匀地分布在通带内,或均匀分布在阻带内,或同时均匀在通带与阻带内,这时就可设计出阶数较低的滤波器。这种精度均匀分布的办法可通过选择具有等波纹特性的逼近函数来完成。

Page 13: 6.6  常用模拟低通滤波器特性

2

2 2

1( )

1 ( )a

Nc

H jC

N :滤波器的阶数c :截止频率,不一定为 3dB 带宽0<<1 ,表示通带波纹大小,越大,波纹越大

CN(x) : N 阶 Chebyshev 多项式 1

1

cos( cos ) 1( )

( ) 1N

N x xC x

ch Nch x x

等波纹幅度特性单调增加

Type I Chebyshev

1 、幅度平方函数

Page 14: 6.6  常用模拟低通滤波器特性

N 为偶数2( 0) 1/ 1aH j

N 为奇数

( 0) 1aH j

0

2( ) 1/ 1c aH j

通带内:在 1 和 间等波纹起伏

c 21/ 1 通带外:迅速单调下降趋向 0

c

2 、幅频特性

Page 15: 6.6  常用模拟低通滤波器特性

Chebyshev 滤波器的三个参量:

c :通带截止频率,给定 :表征通带内波纹大小

20.11

1

110 1

s

c

chN

ch

10.12 10 1

2max1

min

( )20lg 20lg 1

( )a

a

H j

H j

N :滤波器阶数,等于通带内最大最小值的总数由通带衰减决定

阻带衰减越大所需阶数越高

s 为阻带截止频率

Page 16: 6.6  常用模拟低通滤波器特性

2

2

2

)/(

)(1

1)(

stN

stN

a

C

CjH

Type II Chebyshev filter

通带内:单调特性阻带内:等波纹起伏

Page 17: 6.6  常用模拟低通滤波器特性

例:设计一数字高通滤波器,它的通带为 400 ~500Hz ,通带内容许有 0.5dB 的波动,阻带内衰减在小于 317Hz 的频带内至少为 19dB ,采样频率为1,000Hz 。 wc=2*1000*tan(2*pi*400/(2*1000));

wt=2*1000*tan(2*pi*317/(2*1000));[N,wn]=cheb1ord(wc,wt,0.5,19,'s');[B,A]=cheby1(N,0.5,wn,'high','s');[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/pi*500;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel(' 频率 /Hz ');ylabel(' 幅度 /dB');

Page 18: 6.6  常用模拟低通滤波器特性

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10

0

10

ƵÂÊ/Hz

·ù¶È/dB

频率 /Hz 切比雪夫高通滤波器

幅度/dB

Page 19: 6.6  常用模拟低通滤波器特性

五、椭圆 (Ellipse) 低通滤波器

椭圆低通滤波器是一种零、极点型滤波器,它在有限频率范围内存在传输零点和极点。椭圆低通滤波器的通带和阻带都具有等波纹特性,因此通带,阻带逼近特性良好。对于同样的性能要求,它比前两种滤波器所需用的阶数都低,而且它的过渡带比较窄。

Page 20: 6.6  常用模拟低通滤波器特性

1 、 幅度平方函数

其中, 是雅可比 (Jacobi) 椭圆函数, ε 为与通带衰减有关的参数。

Page 21: 6.6  常用模拟低通滤波器特性

2 、 幅度特性

带内均匀波动

最快的滚降

Page 22: 6.6  常用模拟低通滤波器特性

3 、特点从上看出:椭园滤波器即有极点也有零点,由于误差均匀分布在通带和 阻带内。

与 Butterworth 和 Chebyshev两种滤波器相比,在同样误差指标下,阶数最小。即同样阶数 N 下,通带到阻带变化最陡峭,看出它是最优滤波器。

在给出同样的指标下,三种滤波器所需的阶数 : Butterworth 6 阶 Chebyshev 4 阶 椭园 3 阶

Page 23: 6.6  常用模拟低通滤波器特性

6.7 设计 IIR 滤波器的频率变换法

归一化模拟低通

模拟低通、高通、带通、带阻

数字低通、高通、带通、带阻

模拟域频带变换

双线性变换

归一化模拟低通

数字低通

数字低通、高通、带通、带阻

数字域频带变换

双线性变换

冲激响应不变法

Page 24: 6.6  常用模拟低通滤波器特性

先将要设计的滤波器的技术指标 ( 主要是 c , s) ,通过频率转变关系转换成模拟低通滤波器技术指标。

依据这些技术指标设计出低通滤波器的转移函数。再依据频率转换关系变成所要设计的滤波器转移函数。

一、模拟高通、带通和带阻滤波器的设计方法

给定模拟高通带通或带阻的

技术指标

模拟低通技术指标

频率转换 设计模拟低通

频率转换 得到模拟高通带通或带阻滤波器 H(s)

6.8 先模拟域频带变换,再数字化

Page 25: 6.6  常用模拟低通滤波器特性

二、模拟低通到高通滤波器的变换

ccsp

看出:高通系统函数的阶次与低通系统函数阶次相同。

Page 26: 6.6  常用模拟低通滤波器特性

p平面的虚轴与 s平面的虚轴相对应,则可得 :

|Hal(s)|

|Hah(p)|

Page 27: 6.6  常用模拟低通滤波器特性

由低通滤波器系统函数可得到高通系统函数:

Page 28: 6.6  常用模拟低通滤波器特性

三、模拟低通到带通滤波器的变换

0

2

s pp

Page 29: 6.6  常用模拟低通滤波器特性

0

|Hap(p)|

0

|Hal(s)|

p 平面的虚轴与 s 平面的虚轴相对应,则可得:

Page 30: 6.6  常用模拟低通滤波器特性
Page 31: 6.6  常用模拟低通滤波器特性

由低通滤波器系统函数可得到带通系统函数:

Page 32: 6.6  常用模拟低通滤波器特性

四、模拟低通到带阻滤波器的变换

0

0

2

22 +

ps

p

Page 33: 6.6  常用模拟低通滤波器特性

00

|Has(s)|平移压缩

0

|HaL(p)| p 平面的虚轴与 s 平面的虚轴相对应,则可得:

Page 34: 6.6  常用模拟低通滤波器特性
Page 35: 6.6  常用模拟低通滤波器特性

由低通滤波器系统函数可得到带阻系统函数:

Page 36: 6.6  常用模拟低通滤波器特性

五、模拟高通到数字高通,模拟带通到数字带通,模拟带阻到数字带阻的变换

利用冲激响应不变法、双线性变换可实现这些变换。这里只谈双线性变换法,因为冲激响应不变法有频率混叠失真效应,只对能严格限带的数字低通、带通滤波器的设计才能应用。对于数字高通、带阻滤波器,不能直接应用。

将模拟域的频带变换公式与双线性变换公式相结合,可得到直接从模拟低通原型滤波器到各类数字滤波器的频率变换式。

Page 37: 6.6  常用模拟低通滤波器特性

由模拟低通原型设计各类数字滤波器的频率变换式及有关设计参量表达式

Page 38: 6.6  常用模拟低通滤波器特性

例:利用冲激不变法设计数字Butterworth 低通滤波器

题目: 给定抽样频率 fs=10kHz ,要求在频率小于 1kHz 的通带内,幅度特性下降小于 1dB;在频率大于 fst=1.5kHz 的阻带内,衰减大于 15dB 。

Page 39: 6.6  常用模拟低通滤波器特性

解:( 1 )讨论 f 与 w 的关系及数字域性能的公式表示。已知模拟与数字频率之间的线性关系:

T 为抽样周期

对应于

Page 40: 6.6  常用模拟低通滤波器特性

则有:

设 w=0 处频率响应幅度归一化为 1 ,即

对应于

Page 41: 6.6  常用模拟低通滤波器特性

则取 N=6 ,查表得归一化原型模拟低通滤波器的频率响应为

( 2 )把数字滤波器的性能指标转变为“原型”模拟低通滤波器的性能指标。

Page 42: 6.6  常用模拟低通滤波器特性

( 3 )把模拟低通滤波器的系统函数,进行部分分式展开,然后利用冲激不变法可得数字低通滤波器的系统函数。

Page 43: 6.6  常用模拟低通滤波器特性

例:双线性变换法设计数字Chebyshev 低通滤波器

利用上一实例的指标,但是直接由数字域给定指标,即在 w0.2 的通带范围内幅度特性下降小于 1dB ,在 0.3w的阻带范围内衰减大于 15dB 。

Page 44: 6.6  常用模拟低通滤波器特性

解:( 1 )数字域指标:

( 2 )利用双线性变换,将数字域指标变为模拟域指标。

Page 45: 6.6  常用模拟低通滤波器特性

( 3 )求。设 p=1dB 的 Chebyshev等波纹模拟滤波器。可知

( 4 )根据下式计算滤波器阶次 N 。

选定 N=4 。

Page 46: 6.6  常用模拟低通滤波器特性

( 5 )求归一化系统函数。已知 =1dB , N=4,可直接查表得到 Chebyshev 归一化的原型模拟滤波器。

( 6 )利用双线性变换法公式求出数字滤波器系统函数 H(z) 。

Page 47: 6.6  常用模拟低通滤波器特性

一、变换函数

如果已经有一个低通数字滤波器的系数函数Hp(z) ,可以通过一个变换来设计其它各种不同类型的数字滤波器的系统函数 H(z) ,这种变换是一种映射变换。

6.9 数字频带变换法(将原型低通 DF 变换成其它 DF )

Page 48: 6.6  常用模拟低通滤波器特性

1 、变换关系函数表示式

将变换前 z 平面定义为 u 平面,变换后 z 平面仍为 z 平面。其变换关系用函数表示:

注:此中变量选用 u-1 及 z-1 ,而不是用 u 和 z ,是因为系统函数中 z 和 u 都是以负幂形式出现的。

Page 49: 6.6  常用模拟低通滤波器特性

2 、变换关系函数特性1z)( 1zg

jj ee 和

)( jjjj eegege

2 )希望变换以后的传递函数保持稳定性不变,因此要求u 的单位圆内部必须对应于 z 的单位圆内部。3 )为使两个函数的频响满足一定的变换要求, Z 的单位圆应映射到 u 的单位圆上,若以 分别表示 u 平面和 Z 平面的单位圆,则

)( 1zg

)( jeg 1 jeg且必有 ,其中 是 的相位函数,

即函数在单位圆上的幅度必须恒为 1 ,称为全通函数。

因此, 必须是全通函数。

1) 是 的有理函数。

Page 50: 6.6  常用模拟低通滤波器特性

N

i i

i

z

zzg

11

*11

1)(

任何全通函数都可以表达为:

其中: i 是它的极点,可以是实数,也可以是共轭复数,但都必须在单位圆内,即 |i|<1; g(z-1) 的所有零点,都是其极点的共轭倒数,全在单位圆外, N 称为全通函数的阶数。

0

i

N 变化时,相位函数 的变化量为 。

不同的 N 和 对应各类不同的变换。

Page 51: 6.6  常用模拟低通滤波器特性

二、低通 ---> 低通

1

111

1)(

z

zzgu

低通的映射函数为:低通为实数即”号,“应取

根据全通函数公式:

即点的点时,点的点时,

则全通函数的阶数必须的性质变化量为根据全通函数

从从它们仅截止频率不同也是低通数字滤波器(低通数字滤波器(

映射

映射

N

i i

i

jw

L

j

L

z

zzg

gg

uzw

uzw

N

Nw

w

eHeH

11

*11

1)(

1)1(,1)1(

11

1010)2(

1

)()1(

0 ,0:

))

Page 52: 6.6  常用模拟低通滤波器特性

)jL eH()jL eH(

c0 2 2c

原型低通另一指标

的低通

Page 53: 6.6  常用模拟低通滤波器特性

低通 -- 低通变换特性

Page 54: 6.6  常用模拟低通滤波器特性

三、低通 --> 高通

通过将低通频率响应在单位圆上旋转 180o,能使低通数字滤波器变到高通数字滤波器。也即是将 z 变化成 -z,实现旋转变换。

1

1

1

11

11

z

z

z

zu

Page 55: 6.6  常用模拟低通滤波器特性

低通—高通的变换

Page 56: 6.6  常用模拟低通滤波器特性

c

cc

j

jj

cc

e

ee

1

j

jj

jj

e

ee

ezeu

1

, 带入变换式可得:将

2cos

2cos

cc

cc

Page 57: 6.6  常用模拟低通滤波器特性

低通滤波器

带通滤波器

可以看出:根据全通函数的相位变化量为 N 的性质,应取 N=2

四、低通带通

Page 58: 6.6  常用模拟低通滤波器特性

LP-BP 变换把带通的中心频率

由以上分析得变换关系:

00

c 2

c 1

1)(

11

22

21

12

11

zrzr

rzrzzgu

~0~

0~~0

0

0

2,~~0 N故时, ,1)1(,0 g,时 全通函数取负号。

Page 59: 6.6  常用模拟低通滤波器特性

1

1

22

22

11

11

12

2

212

12

2

212

jj

jjj

jj

jjj

erer

reree

erer

reree

c

c

把变换关系 代入可得 :cc 21 ,

)2

()2

( 12 ctgtgk

1

12

k

kr

1

21 k

kr

)2

cos(

)2

cos(

12

12

可得 :

其中:

Page 60: 6.6  常用模拟低通滤波器特性

例:由 Butterworth 低通滤波器,通过映射变换,设计一个带通的数字滤波器。

)533.0241.11

59.12

534.01

1(2.0)(

)1(

2.0

,5

3,

5

2

21

1

11

uu

u

uuH

hButterwort

ww

p

c

hL

滤波器的系统函数为:低通解:数字低通滤波器:

其中带通数字滤波器:

Page 61: 6.6  常用模拟低通滤波器特性

)533.0241.11

59.12

534.01

1(2.0

)()(

11

2

1

11

1

1

2

110102

)2

(

,0)

10cos(

)2

cos(

)2

cos(

)2

cos(

)2(

42

2

2

21,0

12

12

1

21

zz

z

z

uHzH

zz

k

kz

k

kk

kz

k

kz

u

tgctgtgww

ctgk

ww

ww

zup

ka

cLh

Lh

Lh

映射关系:

Page 62: 6.6  常用模拟低通滤波器特性

五、低通带阻

低通滤波器

带阻滤波器

可以看出:根据全通函数的相位变化量为 N 的性质,应取 N=2

Page 63: 6.6  常用模拟低通滤波器特性

LP—BS变换把带阻的中心频率

的变化范围为 ,故 N=2

又 ω=0 时, θ=0 ,则 g(1)=1, 所以全通函数取正号。

由以上分析得变换关系:

0

~0~0

0~~

0

0

2~0~0 ,

2

1)(

11

22

21

12

11

zrzr

rzrzzgu

Page 64: 6.6  常用模拟低通滤波器特性

把变换关系 代入可得 :

2212 ctgtgk

1

21

k

r

k

kr

1

12

2cos

2cos

12

12

cc 21 ,

其中

Page 65: 6.6  常用模拟低通滤波器特性
Page 66: 6.6  常用模拟低通滤波器特性

计算机辅助设计法是一种最优化的设计法。所谓最优化设计是在某种准则下使逼近误差最小所进行的设计。

这种方法的特点是不直接给出滤波器系统函数的显式解,而是在所要求的频率响应与实际设计出来滤波器频率响应之间规定一个误差范围,用某种最优化算法确定滤波器系统函数。

6.10 计算机辅助设计法

Page 67: 6.6  常用模拟低通滤波器特性

一、最小均方误差设计法(施泰格利茨 steiglitz)

最小均方误差设计法的最佳准则是一种在有限频率点上,频率响应幅度均方误差最小的准则。设在一组离散频率点wi(i=1,2,3…M) 上所要求的频率响应为Hd(ejw) ,实际频率响应为H(ejwi) ,则这种设计法要求:

最小。

1 、方法准则

Page 68: 6.6  常用模拟低通滤波器特性

2 、几点注意

1 ) 这种最优化算法,对零、极点位置没有任何限制,因此有可能得到不稳定的滤波器 ( 极点在单位圆外 ) 。在这种情况下,可级联一全通网络将单位圆外极点反射到单位圆内。

2 ) 通过级联全通网络得到稳定滤波器后,可再次用此最优化算法,使均方误差更小。

3 ) 所选频率组wi(i=1,2…M) 可以是均匀分布,也可以是不均匀分布的。

Page 69: 6.6  常用模拟低通滤波器特性

例:校正不稳定滤波器

不稳定滤波器 全通网络级联后的稳定滤波器

Page 70: 6.6  常用模拟低通滤波器特性

二、最小 P 误差设计法

最小 P 误差设计法是最小均方误差设计法的推广,是误差的 P 次幂的加权平均的最小化作为逼近准则。即使

最小。

1、逼近准则

Page 71: 6.6  常用模拟低通滤波器特性

2 、应用

这种方法除了用来设计最佳的幅度响应,还可用于群时延均衡器的最佳设计。其误差表示为

注意:最小 P 误差设计法所得最佳参数对应于稳定的滤波器。