24
9.5 乘乘乘 乘乘乘乘乘乘乘乘 乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘 乘乘乘乘乘乘乘乘 乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘乘 . .

9.5 乘幂法

  • Upload
    bryony

  • View
    47

  • Download
    8

Embed Size (px)

DESCRIPTION

9.5 乘幂法. 乘幂法是适用于求一般矩阵按模最大特征值及相应特征向量的算法. 9.5.1 求 按模最大特征值和特征向量的乘幂法. 设 A 是 n 阶矩阵,其 n 个特征值按模从大到小排序为. 又假设关于 λ 1 ,λ 2 ,…,λ n 的特征向量 v 1 ,v 2 ,…,v n 线性无关. 任意取定初始向量 x 0. 建立迭代公式 :. …………. 因为. 故当 k→∞ 时, x k →λ 1 k a 1 v 1. 因此, x k 可看成是关于特征值 λ 1 的近似特征向量. - PowerPoint PPT Presentation

Citation preview

Page 1: 9.5  乘幂法

9.5 乘幂法

乘幂法是适用于求一般矩阵按模最大特征乘幂法是适用于求一般矩阵按模最大特征值及相应特征向量的算法值及相应特征向量的算法 ..

Page 2: 9.5  乘幂法

9.5.1 求按模最大特征值和特征向量的乘幂法按模最大特征值和特征向量的乘幂法

• 设 A 是 n 阶矩阵,其 n 个特征值按模从大到小排序为

1 2 3 n

又假设关于又假设关于 λλ11 ,, λλ22 …, ,…, , λλnn 的特征向量的特征向量vv11 ,, vv22 …, ,…, , vvnn 线性无关线性无关 ..

Page 3: 9.5  乘幂法

任意取定初始向量 x0

0 1 1 2 2 1( 0)n nx a v a v a v a

1 0 1 1 2 2

1 1 1 2 2 2

n n

n n n

x Ax a Av a Av a Av

a v a v a v

2 2 2 22 1 0 1 1 1 2 2 2 n n nx Ax A x a v a v a v

…………..

建立迭代公式 : 1k kx Ax

Page 4: 9.5  乘幂法

因为 ),,3,2(11

nii

故当故当 k→∞k→∞ 时, 时, xxkk→λ→λ11kkaa11vv11..

因此, xk 可看成是关于特征值 λ1 的近似特征向量

有一严重缺点,当 |1|>1 (或 | 1 |<1 时) {Vk} 中不为零的分量将随 K 的增大而无限增大,计算机就可能出现上溢(或随 K 的增大而很快出现下溢)

1 0 1 1 1 2 2 2

21 1 1 2 2

1 1

[ ( ) ( ) ]

k k k kk k n n n

k k knn

x Ax A x a v a v a v

a v a v v

Page 5: 9.5  乘幂法

因此,在实际计算时,须按规范法计算,每步先对向量 xk进行“规范化”。迭代格式改为

1 , 0,1,

kk

k

k k

xz

x

x Az k

Page 6: 9.5  乘幂法

对任意给定的初始向量 x0

类似地

011 0 1

1 0

,|| || || ||

Azxx Az z

x Az

00 1 1 2 2

0n n

xz b v b v b v

x

0

0|| ||

k

k k

A zz

A z

Page 7: 9.5  乘幂法

当 1>0 时

21 1 2 2

1 1 1

211 1 2 2

1 1

( ) ( )

| | || ( ) ( ) ||

k knn nk

k kk kn

n n

b v b v b v

zb v b v b v

1

1

1| |

k

k

1 1

1 1|| ||k

b vz

b v

1 1

1 1|| ||k

b vz

b v

当 1<0 时 1

1

1| |

k

k

Page 8: 9.5  乘幂法
Page 9: 9.5  乘幂法

按模最大特征值 λ1及其相应的特征向量 v1

的乘幂法的计算公式:

1

1 11 ,

0,1,

kk

k

k k

T Tk k k k k

T Tk k k k

xz

x

x Az

z x z Az

z z z z

k

Page 10: 9.5  乘幂法

9.7 QR 方法

QR 方法在特征值计算问题的发展上具有里程碑意义。在 1955 年的时候人们还觉得特征值的计算是十分困扰的问题,到1965 年它的计算——基于 QR 方法的程序已经完全成熟。直到今天 QR 方法仍然是特征值计算的有效方法之一。

Page 11: 9.5  乘幂法

9.7.1 两个基本定理

定理 9.7.1 设 A 是 n 阶矩阵,其 n 个 特征值为 . 那么存在一个酉矩阵 U ,使U H AU 是以为 对角元的上三角矩阵 .

1 2, , , n

1 2, , , n

定理 9.7.2 设 A 是 n 阶实矩 阵,那么,存在一个正交矩阵 Q ,使 Q T AQ 为一个准上三角矩阵,它的对角元是 A 的一个特征值,对角元上的二阶块矩阵的两个特征值是 A 的一对共轭复特征值 .

Page 12: 9.5  乘幂法

9.7.2 相似约化为上 Hessenberg 矩阵

对一般 n 阶矩阵, QR 算法的每一个迭代步需要 O(n 3 ) 次乘法运算 . 如果矩阵阶数稍大,这个算法几乎没有实际的应用价值 .

通常采用的方法是先将矩阵相似约化为上Hessenberg 形式的矩阵,在此基础上应用QR 迭代 . 这时,一个 QR 迭代步的乘法运算次数只需 O(n 2)次 .

Page 13: 9.5  乘幂法

所谓上 Hessenberg 矩阵是指一个 n 阶矩阵 A ,如果当 i>j+1 时, aij=0 ,称A 为上 Hessenberg 矩阵 . 例如:一个5 阶的上 Hessenberg 矩阵具有如下的形式: * * * * *

* * * * *

0 * * * *

0 0 * * *

0 0 0 * *

A

下面介绍 QR 方法时,都假设矩阵 A 是一个上 Hessenberg 矩阵 .

Page 14: 9.5  乘幂法

9.7.3 QR 算法

• 设 A 是 n 阶矩阵且有 QR 分解 A = QR ,(2) 这里, Q 是酉矩阵, R 是上三角矩阵 . 如果 A 是满秩并规定 R 有正对角元,这个分解是惟一的 .

Page 15: 9.5  乘幂法

设 A 是 n 阶矩阵且有 QR 分解 A = QR , 这里, Q 是酉矩阵, R 是上三角矩阵 . 如

果 A 是满秩并规定 R 有正对角元,这个分解是惟一的 .

QR方法是 1961年由作者 J.G.F.Francis和V.N.Kublanovskaya设计的QR分解是 QR 算法的基础

Page 16: 9.5  乘幂法

一、 QR 算法的基本思想

• 记 A = A 1且有 A 1= Q 1R1. 将等号右边两个矩阵因子的次序交换,得 A 2= R 1 Q 1,且

, (3) 即 A 2~ A

1 .

不难证明 :

即 Ak+1 ~ Ak ~…~ A 1,矩阵序列{ Ak}有相同的特征值 .

12 1 1 1A Q AQ

1 1 11 1 1k k k k k k kA Q A Q Q Q A Q Q

1 2k kQ QQ Q 1 2k kR R R R

Page 17: 9.5  乘幂法

容易得到 是 Ak 的一个 QR 分解k k kA Q R

如果 A 是一个满秩的上 Hessenberg矩阵,可以证明,经过一个 QR 迭代步得到的 A2 = Q -1

1 A1Q 1仍然是上Hessenberg 矩阵 . 因为上 Hessenberg 矩阵次对角线以下的元素全为 0 ,因此,只要证明,当 k→∞ 时,由迭 代格式 (4) 产生的矩阵 Ak 的次对角元趋向于零就可以了 .

Page 18: 9.5  乘幂法

二、 QR 算法的收敛性

• 定理 9.7.3 设 n 阶矩阵 A 的 n 个特征值满足 |λ 1 |>|λ 2 |>…>|λn|>0 ,其相应的 n 个线性无关特征向量为 x1 , x2 ,…, xn.

记 X = (x1,x2,…,xn), Y= X -1 . 如果 Y 存在LU 分解,那么,由 (4) 式产生的矩阵 Ak基本收敛于上三角矩阵 R. 这里,基本收敛的含义指{ Ak}的元素中除对角线以下的元素趋于零外,可以不收敛于 R 的元素 .

Page 19: 9.5  乘幂法

三、 QR 算法的迭代过程 • 1. 一个 QR 迭代步的计算 ① 对 l=1 , 2 ,…, n-1 ,构造 n-1 个平面旋转矩阵 Pl,l+1, 使 A1的次对角元全部零化,实现 A1 的 QR 分解的计算,

这里 ,

, 1 , 1

, 1 , 1 1, 1,

, 1, 2,l l l l ll lj

l l l l l l l l

c s a aj l l n

s c a a

1,, 1 , 12 2 2 2

1, 1,

, l llll l l l

ll l l ll l l

aac s

a a a a

2 21,ll l lr a a

Page 20: 9.5  乘幂法

② 用 Pl,l+1右乘 (24) ,所得结果也放回矩阵 A相应的元素中 .

, 1 , 1, , 1 , 1

, 1 , 1

( , ) ( , ),

1, 2, , 1

l l l li l i l il i l

l l l l

c sa a a a

s c

i l

Page 21: 9.5  乘幂法

2. QR 算法的迭代控制 • 当迭代步数 k 充分大时,由迭代格式 (4) 产生

的 Ak的次对角元趋于 0. 在 实 际计算中,控制迭代次数常用的一种办法是,预先给定一个小的正数 ε ,在一个迭代步的计 算结束后,对 l=n-1, n-2,… , 1 ,依次判别次对角元的绝对值是否满足 或更严格的准则是 或不太严格的准则是

如果上面三个不等式中有一个成立, 把 看做实际上为零 .

1,l la A 1, 1, 1min{ , }l l ll l la a a

1, 1, 1{ }l l ll l la a a

1,l la

Page 22: 9.5  乘幂法

9.7.4 带原点位移的QR算法

• 由QR算法收敛性证明可以看出,QR算法的收敛速度 依赖于矩阵相邻特征值的比 值 . 为了加快算法的收敛速度,在迭代过程中,对矩阵 Ak确定一个原点位移量 sk,称Ak-skI 为带原点位移量的矩阵,再对 Ak-skI应用QR算法 . 这时,迭代格式改为

称为带原点位移的 QR 算法 1,k k k k k k k kA s I Q R A R Q s I

Page 23: 9.5  乘幂法

计算特征值问题的 QR 方法,实际上总是分成 2 个阶段:

一般矩阵 上 Hessenberg矩阵 上三角矩阵

对称矩阵 三对角矩阵 对角矩阵

Page 24: 9.5  乘幂法