256

A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

A adémie de NantesECOLE DOCTORALE DE L'UNIVERSITÉ DU MAINELe Mans, Fran eTHÈSE DE DOCTORATSpé ialité : ACOUSTIQUEprésentée parPhilippe TESTUDpour obtenir le titre de Do teur d'Université

Aéro-a oustique des diaphragmes en onduit:sifflement et avitationSoutenue le 20 o tobre 2006devant le jury omposé de :Y. AURÉGAN Chargé de re her he au CNRS, LAUM, Le Mans dire teur de thèseJ. BORÉE Professeur des Universités, LEA, Poitiers examinateurE. DE LANGRE Professeur des Universités, LadHyX, Palaiseau président du juryA. HIRSCHBERG Professeur des Universités, TU/e, Eindhoven (Pays-Bas) examinateurD. JUVÉ Professeur des Universités, ECL, Lyon rapporteurJ. KERGOMARD Dire teur de Re her he au CNRS, LMA, Marseille rapporteurP. MOUSSOU Ingénieur- her heur, EDF R&D, Clamart examinateur

Page 2: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),
Page 3: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Remer iementsLa réalisation d'une thèse me semble pro he d'un a ou hement (expérien e que j'aurai par ailleursrarement l'o asion de onnaître). Il s'agit d'avoir une idée originelle, puis de lui donner vies ienti�quement. Sans vouloir risquer la omparaison trop loin, il est indéniable que la réalisationte hnique est un travail personnel, mais qui doit beau oup aux indispensables personnes qui l'en adrentet l'a ompagnent. . . J'ai plaisir i i à témoigner ma gratitude à es personnes, omme il est de outume dans ette sorte d'éloge funèbre pour la thèse ( ependant en ore vivante) qu'est ette partieremer iements.Pour la soutenan e de thèse, je remer ie M. Ja ques Borée d'avoir a epté d'être membre du jury, etM. Emmanuel De Langre d'avoir a epté d'être président du jury. De même, je remer ie M. Daniel Juvéet M. Jean Kergomard d'avoir a epté la di� ile tâ he d'être rapporteur de la thèse. Leur rele ture etleurs remarques m'ont permis d'améliorer la version �nale du manus rit.Ce travail a été e�e tué au Laboratoire de Mé anique des Stru tures Industrielles Durables, UMR-CNRS EDF 2832. Je remer ie Stéphane Andrieux de m'avoir permis de travailler dans es bonnes onditions de travail. Je remer ie Géraldine, dont la ompéten e, la disponibilité et la gentillesse sonttrès appré iables au quotidien. Je la remer ie notamment de m'avoir aidé au moment déli at de lapréparation de la soutenan e de thèse. Pendant les deux dernières années, j'ai passé de bien bonsmoments parmi les thésards du LaMSID: Do teur Sam, Thomas le gentil barbare, Josselin oeil-de-lynx, Khaled futur ministre (mektub), Amine artiste-philosophe, Pierre-Emmanuel l'homme aux 36projets, Benjamin le Normand et Mohammed. Je pense qu'un livre d'entretien entre PE et Amine,sorte d'aperçu des plus grands débats qu'on a eus à table, serait un best-seller assuré (et si Khaled faitla préfa e, alors là!). Bon ourage à vous tous pour votre dernière année de thèse!Au sein du groupe T63 règne une ambian e très onviviale. Il y est parti ulièrement agréabled'y travailler. Je remer ie les agents du groupe, et en parti ulier Mi hel qui y est pour beau oup jepense. Ce fut un plaisir de travailler ave Sébastien, Philippe, Fabien, et de ot�yer les autres membresdu groupe (je leur fais on�an e, ils se re onnaitront: j'évite i i une liste trop longue, pénible à lirepour le le teur impatient et tendu qui n'aurait pas en ore trouvé son nom. . . ). A AMA, je remer ieparti ulièrement Pierre Sans pour ses pré ieux onseils en informatique (notamment pour arriver àmanipuler la mystérieuse et déli ate LADY).Je remer ie Yves, mon dire teur de thèse, pour la haute qualité te hnique et la �abilité de sonen adrement. C'est un privilège pour un expérimentateur d'utiliser la bou le de mesure du LAUM,3

Page 4: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

fa ile d'utilisation et permettant d'obtenir des données de très bonne qualité.Je remer ie Mi o pour sa profonde gentillesse et le soutien pré ieux qu'il apporte, tant s ienti�que-ment qu'humainement. Entre autres hoses, sa apa ité d'être présent dans les moments di� iles aété ex eptionnelle, et je lui en suis parti ulièrement re onnaissant. Ce fut agréable et instru tif detravailler ave quelqu'un d'aussi passionné par la s ien e, ave une appro he originale, à la fois ludiqueet rigoureuse. Je remer ie Monique, Lionel et Mi hel pour leur a ueil, et les nombreux repas sym-pathiques que nous avons partagés hez eux à Veldhoven. Je souhaite une très bonne ontinuation àLionel et à Mi hel.En�n, je remer ie Pierre qui a été mon responsable quasi-quotidien durant es trois années àEDF. Ce fut un enri hissement et un plaisir. Si la thèse s'est bien passée, et représente pour moiune expérien e onstru tive, 'est avant tout grâ e à lui. Au quotidien, j'ai appré ié les dis ussionsagréables, intéressantes et motivantes. D'un point de vue te hnique, sa vigilan e, sa rigueur, sonenthousiasme et sa uriosité s ienti�ques (amoindris pour les orre tions de bout) m'ont été trèspro�tables.J'arrive maintenant, et en même temps que le le teur se rend ompte ave perspi a ité de lagradation progressive, à et ultime paragraphe. Il me reste don à remer ier les amis indéfe tibles,Éri , Thierry, Vin ent, Mél, Laurent, Perrine, Lorena, Zag, et les autres que je n'ai pas oubliés enfait (le le teur déçu de ne pas voir son nom pourra don se mettre dans ette liste, ou la pré édented'ailleurs, ela me va bien aussi). Et en�n pour terminer, je remer ie, et beau oup plus en ore, mesparents et mes deux s÷urs, pour tout leur soutien et leur amour.PS: omme e i est dit dans le genre 'Repose en paix, thèse. . . ', je pré ise, si besoin est, que ettethèse ne doit pas être enterrée sur-le- hamp (ou pire, utilisée omme ale. . . elle- i est trop épaisse detoute façon).

Page 5: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

ContentsIntrodu tion générale 11 Experimental study of a whistling riterion for singularities in air pipe �ow 51.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.2 Abstra t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Bibliography introdu tion to self-sustained os illations in on�ned �ow . . . . . . . . . 61.2.1 Aeroa ousti s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.2.2 Plane-wave propagation in du t with uniform mean �ow . . . . . . . . . . . . . 61.2.3 Self-sustained os illations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.3 Presentation of the whistling riterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.3.1 Con�guration of study: a singularity in straight pipe under onstant �ow . . . 111.3.2 Elaboration of the whistling riterion . . . . . . . . . . . . . . . . . . . . . . . . 111.3.3 Formulation of the whistling equations . . . . . . . . . . . . . . . . . . . . . . . 131.4 Measurements on�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.4.1 Experimental set-up of the LAUM . . . . . . . . . . . . . . . . . . . . . . . . . 181.4.2 Measurement pro edures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.5 The whistling riterion on ir ular entred ori� es . . . . . . . . . . . . . . . . . . . . . 231.5.1 Ori� es tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.5.2 S attering matrix oe� ients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261.5.3 Potentially whistling frequen ies . . . . . . . . . . . . . . . . . . . . . . . . . . 291.5.4 Strouhal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301.5.5 Conditions of whistling for the in ident waves . . . . . . . . . . . . . . . . . . . 391.5.6 Non-dimensional potentially whistling eigenvalues . . . . . . . . . . . . . . . . . 421.6 The whistling riterion on other singularities . . . . . . . . . . . . . . . . . . . . . . . . 441.6.1 Importan e of the bevel for the whistling of ori� es . . . . . . . . . . . . . . . . 441.6.2 Smile shaped slits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491.7 Whistling on�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511.7.1 Whistling on�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511.7.2 Comparison between whistling frequen ies and potentially whistling frequen ies 511.7.3 Comparison between whistling frequen ies in air and in water . . . . . . . . . . 531.7.4 A model to predi t the instability frequen y . . . . . . . . . . . . . . . . . . . . 561.7.5 A failed model to predi t the instability with Bode-Nyquist idea . . . . . . . . 61i

Page 6: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

ii Table des matières1.8 Broadband noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651.8.1 Broadband spe tra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651.8.2 Lighthill s aling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651.9 Con lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 Aeroa ousti al behaviour of a single expansion with the multimodal method 752.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.2 Analyti al problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.2.1 Problem to solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.2.2 Geometry and �ow hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.2.3 Assumption of non-expansion of the main �ow . . . . . . . . . . . . . . . . . . 762.2.4 Equations of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772.2.5 Method of resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.2.6 Solutions: a ousti , evanes ent and hydrodynami modes . . . . . . . . . . . . 792.2.7 Determination of the s attering matrix . . . . . . . . . . . . . . . . . . . . . . . 812.3 The multimodal method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.3.1 Imposed �ow pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822.3.2 S hli hting turbulent pipe �ow pro�le . . . . . . . . . . . . . . . . . . . . . . . 822.3.3 Comparison of the two �ow pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 832.3.4 Dis retization of the variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832.3.5 Derivatives expressions in the �nite di�eren e s heme . . . . . . . . . . . . . . . 842.3.6 Dis retized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852.3.7 Modes determination in du t I . . . . . . . . . . . . . . . . . . . . . . . . . . . 862.3.8 Modes determination in du t II . . . . . . . . . . . . . . . . . . . . . . . . . . . 872.3.9 Numeri al lassi� ation of the modes . . . . . . . . . . . . . . . . . . . . . . . . 882.3.10 S attering matrix determination . . . . . . . . . . . . . . . . . . . . . . . . . . 902.4 Single expansion al ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922.4.1 Modes obtained in du t I and du t II . . . . . . . . . . . . . . . . . . . . . . . . 922.4.2 Convergen e results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992.4.3 Visualization of the ex ited �elds . . . . . . . . . . . . . . . . . . . . . . . . . . 1012.4.4 Di� ulties in the al ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082.5 Single expansion results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102.5.1 Results without �ow: omparison with a model . . . . . . . . . . . . . . . . . . 1102.5.2 Results with �ow: omparison with experimental data . . . . . . . . . . . . . . 1122.5.3 Transition to unstable hydrodynami mode . . . . . . . . . . . . . . . . . . . . 1202.5.4 Comparison between ir ular and re tangular du t . . . . . . . . . . . . . . . . 1212.6 Con lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243 Aeroa ousti al behaviour of a whistling expansion 1293.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293.2 Con�guration studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293.3 Experimental results: the on�guration is potentially whistling . . . . . . . . . . . . . 1303.4 Des ription of the numeri al al ulation method . . . . . . . . . . . . . . . . . . . . . . 130

Page 7: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Table des matières iii3.4.1 S attering matrix of the onstri tion . . . . . . . . . . . . . . . . . . . . . . . . 1323.4.2 S attering matrix of the double expansion with the multimodal method . . . . 1353.4.3 S attering matrix of the double expansion: method by assemblage of su essivematri es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353.4.4 S attering matrix of the double expansion: method by dire t al ulation . . . . 1373.5 Validation of the al ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383.5.1 Comparison with experimental data - without �ow . . . . . . . . . . . . . . . . 1383.5.2 Comparison with experimental data - with �ow . . . . . . . . . . . . . . . . . . 1403.5.3 E�e t of the saturation of the unstable hydrodynami mode . . . . . . . . . . . 1443.6 Whistling ability of the on�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1473.6.1 Whistling ability of the on�guration . . . . . . . . . . . . . . . . . . . . . . . . 1473.6.2 Comparison with the whistling ability of a single expansion on�guration . . . 1493.6.3 Parametri study on the Strouhal number . . . . . . . . . . . . . . . . . . . . . 1513.7 Con lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe 1614.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1614.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1614.1.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1614.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644.2.1 Tested ori� es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644.2.2 Test rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654.2.3 Experimental onditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1664.2.4 Distin tion of two avitation regimes . . . . . . . . . . . . . . . . . . . . . . . . 1674.2.5 A ousti analysis method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1684.2.6 A ousti boundary onditions on both sides of the ori� e . . . . . . . . . . . . . 1694.3 Cavitation regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1704.3.1 Hydrauli model for the pressure drop ∆P a ross the single-hole ori� e . . . . . 1704.3.2 Hydrauli model for the pressure drop ∆P a ross the multi-hole ori� e . . . . . 1744.3.3 Developed avitation visualization and time signal . . . . . . . . . . . . . . . . 1764.3.4 Whistling phenomenon in developed avitation . . . . . . . . . . . . . . . . . . 1784.3.5 Super avitation visualization and typi al time signal . . . . . . . . . . . . . . . 1804.4 Results in the developed avitation regime . . . . . . . . . . . . . . . . . . . . . . . . . 1814.4.1 A ousti features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1824.4.2 Noise spe tra generated downstream . . . . . . . . . . . . . . . . . . . . . . . . 1834.4.3 Nondimensional analysis and representation . . . . . . . . . . . . . . . . . . . . 1864.5 Results in the super avitation regime . . . . . . . . . . . . . . . . . . . . . . . . . . . 1884.5.1 A ousti features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1884.5.2 Noise spe tra generated downstream . . . . . . . . . . . . . . . . . . . . . . . . 1904.6 Con lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Page 8: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

iv Table des matières5 End orre tion of single expansions and ori� es 1975.1 Introdu tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975.2 End orre tion: single expansion without �ow . . . . . . . . . . . . . . . . . . . . . . . 1975.2.1 Model of end orre tion: single expansion without �ow . . . . . . . . . . . . . . 1975.2.2 Determination of the end orre tion from multimodal al ulation: single expan-sion without �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1985.2.3 Literature data: single expansion without �ow . . . . . . . . . . . . . . . . . . . 1995.2.4 Numeri al results: single expansion without �ow . . . . . . . . . . . . . . . . . 2005.3 End orre tion: ori� e without �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2025.3.1 Determination of the end orre tion from measurements: ori� e without �ow . 2025.3.2 Literature data and models: ori� e without �ow . . . . . . . . . . . . . . . . . 2025.3.3 Experimental results: ori� e without �ow . . . . . . . . . . . . . . . . . . . . . 2035.4 End orre tion: single expansion with �ow . . . . . . . . . . . . . . . . . . . . . . . . . 2075.4.1 Model of end orre tion: single expansion with �ow . . . . . . . . . . . . . . . . 2075.4.2 Determination of the end orre tion from measurements: single expansion with�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2075.4.3 Literature data: single expansion with �ow . . . . . . . . . . . . . . . . . . . . 2075.4.4 Numeri al results: single expansion with �ow . . . . . . . . . . . . . . . . . . . 2085.5 End orre tion: ori� e with �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2085.5.1 Determination of the end orre tion from measurements: ori� e with �ow . . . 2085.5.2 Models using literature data: ori� e with �ow . . . . . . . . . . . . . . . . . . . 2085.5.3 Experimental results: ori� e with �ow . . . . . . . . . . . . . . . . . . . . . . . 2095.6 Con lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Con lusion générale 214A Measurements on ori� es: potentially whistling frequen ies 221B Measurements on double ori� es: potentially whistling frequen ies 235C A ousti al propagation equations under sheared mean �ow 241D Demonstration of the ontinuity of the a ousti variables at the expansion 245D.1 Continuity of the a ousti variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245D.2 Continuity of the derivatives of the a ousti variables . . . . . . . . . . . . . . . . . . . 246E A ousti analysis method 247

Page 9: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Introdu tion généraleContexte de l'étudeDes obsta les d'é oulement de type diaphragmes (vanne, robinet, ...) sont présents dans les tuyauxde entrales nu léaires d'EDF, a�n de ontr�ler ou mesurer le débit sur une ligne. Sous de fortsdébits d'é oulement, ette perturbation de l'é oulement peut engendrer un bruit important, d'origineaéroa oustique, 'est à dire non pas engendré par les vibrations des stru tures, mais par les �u tuationsinhomogènes instationnaires qui se développent dans les régions de fortes turbulen es en aval pro hede l'obsta le.Ces bruits peuvent être de plusieurs types:• dans tous les as, un bruit de turbulen e apparaît, prenant naissan e dans la région de fortesturbulen es résultant de la déstabilisation de l'é oulement par l'organe en aval pro he dudiaphragme;• en é oulement d'eau, un bruit de avitation peut être observé. Il orrespond à l'implosion de bullesde vapeur et d'air, issues de la vaporisation du liquide dans les zones de fortes �u tuations lo alesde pression, en aval pro he du diaphragme. Ce phénomène de avitation intervient lorsque les onditions hydrauliques sont parti ulièrement fortes, 'est à dire lorsque la di�éren e de pressionstatique de part et d'autre du diaphragme est parti ulièrement importante (dizaines de bar);• dans ertains onditions, des sons de si�ement peuvent être observés, en eau ou en air, et en onditions de fon tionnement industrielle à EDF. Le si�ement orrespond à l'auto-entretien ( 'està dire, entretien par l'é oulement lui-même) d'une ampli� ation d'une �u tuation a oustiqueau niveau de la ou he isaillée qui se forme par ontra tion de l'é oulement au passage dudiaphragme, auto-entretenue.Au sein d'EDF R&D, es bruits aéro-a oustiques sont étudiés a�n de limiter, d'une part, la fatiguevibratoire des tuyaux, et d'autre part, le bruit engendré dans les installations et à l'extérieur desinstallations. Les bruits les plus no ifs de e point de vue sont les bruits de avitation et de si�ement.Ainsi, des études sont menées à EDF R&D sur le bruit ausé par des singularités d'é oulement en onduit. Les travaux de la présente thèse s'ins rivent dans e adre.Cadre de l'étudeL'obje tif de e travail est de mieux omprendre les mé anismes de génération de bruit par lessingularités en onduit sous é oulement. Nous avons étudié prin ipalement le bruit de si�ement1

Page 10: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2 Introdu tion générale( hapitres 1 à 5). Des analyses approfondies de bruits de avitation ont été également e�e tuées( hapitre 4).La on�guration d'étude est un tuyau droit sous é oulement uniforme et stationnaire, passant autravers d'une singularité d'é oulement. Les onditions d'é oulement étudiées sont les suivantes:• l'é oulement est turbulent, ave un nombre de Reynolds dans le tuyau de l'ordre de 104 à 105;• l'é oulement est subsonique, ave un nombre de Ma h dans le tuyau de l'ordre de 10−3 en eau,et 10−2 en air.Les singularités d'é oulement étudiées sont majoritairement les diaphragmes ir ulaires entrés et�ns ( hapitre 1). Nous avons également étudié des diaphragmes multitrou ( hapitre 4) et des fentes( hapitre 1).Les vibrations de stru tures sont négligées dans ette étude.Plan de l'étudeRappelsLe phénomène de si�ement est une auto-os illation entretenue par un phénomène de rétroa tion. Cetteauto-os illation résulte de l'ampli� ation d'une instabilité de type Kelvin-Helmholtz, 'est à dire uneinstabilité d'une ou he de isaillement formée par dé ollement de l'é oulement, apparaissant en avalimmédiat du diaphragme. Cette instabilité est ara téristique du jet qui se forme par ontra tion del'é oulement au niveau du diaphragme. On parle de fréquen e d'instabilité de ou he de isaillement.Chapitre 1L'idée du hapitre 1 est de tester expérimentalement un ritère de prédi tion des fréquen es d'instabilitéd'une singularité sous é oulement. Ce ritère est proposé par Aurégan & Starobinsky (1999), et nousappliquons en propagation d'ondes planes dans les tuyaux.Ce ritère est un bilan de puissan e a oustique global e�e tué de part et d'autre du diaphragme.Il repose sur la représentation en matri e de di�usion du omportement a oustique du diaphragmesoumis à des ondes planes in identes. C'est l'hypothèse d'un omportement a oustique linéaire dudiaphragme. Les fréquen es d'instabilité de e ritère sont omparées, également par nos mesures,à des fréquen es de si�ement e�e tivement observées. Ainsi, le ritère peut être validé et permetd'obtenir des fréquen es potentielles de si�ement d'une singularité sous é oulement.Pour ela, nous utilisons la bou le de mesure du LAUM (Laboratoire d'A oustique de l'Universitédu Maine, Le Mans) en air. La validation de ette bou le de mesure a été e�e tuée pré édemment ( f.thèse de Grégoire Ajello, 1997)) et a montré que les données a oustiques obtenues sous é oulement onstant sont parmi les plus pré ises a tuellement (au moins dans la gamme de fréquen e 30-800 Hz).Les géométries les plus simples sont testées pour ommen er ette étude: des diaphragmes monotrou, ir ulaires entrés, et �ns. D'autres singularités sont testées par la suite, dans une plus faible mesure:diaphragmes biseautés, fentes.

Page 11: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Introdu tion générale 3Chapitres 2 et 3Le travail expérimental mené au hapitre 1 apporte des données quantitatives sur le si�ement, mais abesoin d'être enri hi, et 'est l'objet des hapitres 2 et 3. En e�et, le ritère étudié dans le hapitre 1 sepla e assez loin du diaphragme, et ne permet pas de omprendre e qui se passe lo alement, au niveaude la zone de développement de l'instabilité. C'est l'objet d'une étude d'une on�guration pré ise,une expansion si�ante, onstituée par un diaphragme biseauté en aval suivi d'un double élargissementbrusque. Un al ul numérique est ainsi développé pour simuler le omportement aéroa oustique de ette on�guration, pour mieux omprendre le phénomène d'instabilité et l'importan e de la zoned'ampli� ation. L'obje tif est d'obtenir la matri e de di�usion de ette singularité, a�n de pouvoirappliquer le ritère de si�ement et le omparer aux résultats expérimentaux. L'obje tif est aussi en omplément d'obtenir une visualisation des hamps a oustiques dans la on�guration, pour mieux omprendre e qu'il s'y passe.La première étape dans le al ul numérique est de valider la méthode multimodale. Cela est e�e tuéen appliquant le al ul à un élargissement brusque. C'est l'objet du hapitre 2. Les résultats obtenussont omparés aux données expérimentales (Ronneberger) et numériques (Boij) de la littérature. Cetteétape permet d'étudier et de valider ette méthode sur une on�guration simple.Le hapitre 3 présente l'appli ation de la méthode multimodale à une on�guration de diaphragmesi�ante. Les résultats obtenus sont omparés aux données expérimentales que nous avons mesuréespour ette on�guration. L'analyse des résultats permet de mieux omprendre l'importan e de lazone d'ampli� ation, et notamment l'évolution de la fréquen e d'instabilité en fon tion des paramètresgéométriques de ette zone.Le développement d'un ritère d'instabilité, suivi d'une ompréhension plus �ne du mé anismed'instabilité, forme une base ohérente permettant de mieux appréhender le phénomène de si�ementde diaphragme en onduit. En pratique, d'autres problèmes se posent et nous avons omplété etteétude par deux études supplémentaires, onstituées par les hapitres 4 et 5.Chapitre 4En eau, le phénomène de si�ement peut apparaître en présen e de avitation, omme ela est observépar des mesures industrielles. Il est intéressant de onfronter les résultats obtenus en air au hapitre 1ave es si�ements obtenus en ondition industrielle en eau. C'est l'objet du hapitre 4.Pour ela, nous analysons des expérien es pré édemment menées à EDF, sur des diaphragmesmonotrou et multitrou. Les onditions de débit et de pression sont typiques du régime de fon tion-nement de entrale nu léaire (nombre de Reynolds de l'ordre de 105). Les spe tres de bruit obtenusdans es onditions de avitation sont aussi analysés.Chapitre 5Les phénomènes de si�ement sont liés à des résonan es de onduit, et la prise en ompte de la orre tion de longueur pour un diaphragme sous é oulement permet d'a�ner le al ul de es fréquen esde résonan e. C'est l'objet du hapitre 5 d'étudier e modèle de orre tion de longueur.Nous étudions le modèle de orre tion de longueur sur des diaphragmes et des élargissementsbrusques. Nous utilisons les données expérimentales présentées au premier hapitre sur les diaphragmes,

Page 12: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4 Introdu tion généraleet nous utilisons la méthode numérique présentée aux hapitres 2 et 3, sur un élargissement brusque.Les données obtenues sont omparées aux données disponibles dans la littérature, on ernant le omportement a oustique des diaphragmes sans é oulement et le omportement aéro-a oustique desterminaisons de tuyau.L'obje tif de ette étude est de véri�er, dans le as sans é oulement, la validation des résultats dela littérature ave nos données expérimentales et théoriques, et d'autre part, de présenter nos donnéesexpérimentales ave é oulement, données qui sont rares dans la littérature.Nota BeneLes hapitres ont été rédigés en anglais par ommodité pour la ollaboration ave les étudiants del'Université Te hnique d'Eindhoven ( hapitre 2 et 3), et dans l'optique de la réda tion de publi ationdans une revue internationale ( hapitre 1).CollaborationsCette thèse est une ollaboration entre, d'une part, le Laboratoire d'A oustique de l'Université duMaine (LAUM, UMR CNRS 6613) au Mans, et l'entreprise EDF. La dire tion de la thèse a été assuréepar Yves Aurégan du LAUM.Le thésard a e�e tué sa thèse au sein d'EDF R&D (Clamart), dans le Département AMA, groupeT63: `A oustique, vibrations sous é oulement et dynamique des ma hines', et dans le Laboratoire deMé anique des Stru tures Industrielles Durables (LaMSID, UMR CNRS 2832).De plus, une ollaboration a été entretenue tout au long de la thèse ave Mi o Hirs hberg del'Université Te hnique d'Eindhoven (Pays-Bas). Nous avons également pu y dis uter de la méthodemultimodale ave Gerben Koojmann (thésard).

Page 13: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Chapter 1Experimental study of a whistling riterion for singularities in air pipe �ow1.1 Introdu tion1.1.1 MotivationsWhistling is sometimes observed in piping systems of nu lear plants, in du t with water (see the studyof whistling ori� es in water at hapter �ve). It may drive pipe vibrations, and thus an damage thestru ture. The study of whistling provides information to understand the phenomenon, to predi t itso urren e, and to design safe ori� es and other singularities.The present experimental work is arried out in air, as it is expe ted that the whistling phenomenonis similar in air and in water (hypothesis that we evaluate in this work). The main di�eren esshould be the o urren e of avitation and a stronger oupling with the pipe walls (due to the higher ompressibility) in water.1.1.2 Abstra tAn experimental study on the a ousti response of single-hole ori� es under onstant �ow is presented,assuming plane wave propagation in the du ts. An energeti riterion derived by Aurégan andStarobinsky (1999) is used to predi t, from the measured s attering matrix, the onditions underwhi h whistling ould o ur. The idea is to apply an energeti a ousti balan e from both sides ofthe singularity to dete t the so- alled potentially whistling frequen ies for whi h there is produ tionof a ousti power by the singularity. Results obtained are ompared with experimental data fromliterature (Anderson), and from other experiments at EDF in water (presented in hapter 4).5

Page 14: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

6 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.2 Bibliography introdu tion to self-sustained os illations in on-�ned �ow1.2.1 Aeroa ousti sA ousti s is the study of sound: its generation, transmission and re eption. Aeroa ousti s is a bran hof a ousti s: it is the study of the sound generated in a �uid �ow, when intera ting with a solid surfa eor with another �ow. It is a relatively young dis ipline, onsidered as born in the 1950's after Lighthill'swork.The fundamental issue of aeroa ousti s is that the noise is onstituted of a ousti �u tuations whi hhave amplitudes ompared to the main �ow pressure and velo ities, whi h is itself quite di� ult to knowas �uid me hani s equations are not solvable in a general ase. No omplete theory of the generation ofnoise by aerodynami �ows has yet prevailed until now. However, the so- alled aeroa ousti analogiesare an e� ient way to study most pra ti al aeroa ousti issues. An analogy onsists in writing thea ousti equations under some assumptions, in a form similar to the wave equation of lassi al a ousti s,so that propagation terms and sour e terms an be unambiguously identi�ed.In theory, an in�nite number of analogies an exist, but by far the most ommon and widely usedis Lighthill's aeroa ousti analogy, �rst proposed by James Lighthill (1952) when noise generationasso iated with the jet engine was beginning to be pla ed under s ienti� s rutiny. This theory is onsequently parti ularly adapted to study the noise generated by a turbulent �ow. It assumes thatthe sound is produ ed by the instationary inhomogeneities of the �u tuations in the �ow, that is, thelo al �u tuations in spa e and time of the �ow. In other terms, the quies ent �ow is taken as thereferen e �ow, where no sound is reated.In this work, we are on erned with a parti ular noise, di�erent from a purely turbulent one:the whistling, asso iated with self-sustained os illations. This is an exoti phenomenon, en ounteredsometimes in everyday life (human whistling, whistler), but also in du t �ow of nu lear plants.1.2.2 Plane-wave propagation in du t with uniform mean �owWe present brie�y the equations des ribing the a ousti propagation in the plane wave approximationfor an isentropi and onstant mean �ow. More details an be found in Rienstra and Hirs hberg (2003),Ajello (1997), Davies (1988), Pier e (1981).First, we suppose the mean �ow to be uniform, of Ma h number M0 = U0

c0ex, where U0 is the�ow velo ity, ex is the unitary ve tor in the dire tion of the du t and orientated in the �ow way (seeFig. 1.2), and c0 is the speed of sound in the �uid.Se ond, we negle t any vis o-thermal dissipation e�e ts.To determine the a ousti propagation, the a ousti variables are de�ned as �rst order of the total�uid me hani s variables, and denoted ρ′ (a ousti volume density), p′ (a ousti pressure), u′ (a ousti velo ity). Hen e equations of propagation for the a ousti �eld are given by the �rst order of �uidme hani s equations applied to the total �ow:

• the a ousti mass onservation equation:D0ρ

Dt= −ρ0div(u

′); (1.1)

Page 15: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.2 Bibliography introdu tion to self-sustained os illations in on�ned �ow 7• the a ousti momentum onservation equation:

ρ0D0u

Dt= −gradp′; (1.2)

• the �uid onstitutive law:c20 =

p′

ρ′, (1.3)where D0/Dt = ∂/∂t+ U0.grad is a spe i� onve tive derivative. It is used onveniently due to theassumptions of the mean �ow: uniform, in ompressible and stationary (so that the terms grad(U0),

div(U0) and ∂U0/∂t vanish in the �rst order equations).The ombination of those previous equations gives the general equation of a ousti propagation.Written for the a ousti pressure, it takes the form:△p′ − 1

c20

D20p

Dt2= 0, (1.4) ompleted by a boundary equation, su h as the rigidity of the du t walls.The solutions of this equation are found by looking for harmoni solutions at the pulsation frequen y

ω. A denumerable set of solutions is obtained, and alled modes. This set of modes represents a basisin the spa e of solutions. The modes are either propagative either evanes ent. In parti ular, below theso- alled ut-o� frequen y of the du t, only the �rst mode propagates, while the other are evanes ent.This �rst mode is the plane wave mode. For this mode, the a ousti variables are only fun tion of xand ω and satisfy the propagation equation (this writing is parti ular to a uniform, in ompressible,stationary mean �ow):[

(1 −M0)∂

∂x− jk0

] [

(1 +M0)∂

∂x+ jk0

]

p′ = 0, (1.5)with k0 = ω/c0 the wave number in a quies ent �uid.The solution of this equation is onstituted by two plane waves, so that the a ousti pressure p′ inthe du t is the sum of the two plane waves: p′ = P+ + P−, with:• a downstream propagating wave P+:

P+ = P+(0)ej(ωt−k+x), (1.6)where k+ = k0/(1 +M0) is the downward wave number under onstant �ow M0;• an upstream propagating wave P−:

P− = P−(0)ej(ωt+k−x), (1.7)where k− = k0/(1 −M0) is the upward wave number under onstant �ow M0.

Page 16: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

8 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.2.3 Self-sustained os illations1.2.3.1 The physi al me hanism of self-sustained os illations: feedba k loopThis se tion is a brief presentation of self-sustained os illations. It follows literature, and parti ularlyAurégan et al. (2002), Rienstra and Hirs hberg (2003), Billon (2003).Self-sustained os illations di�er from turbulen e os illations as they generate very spe i� sounds,like whistling sound, hara terized by a high intensity and a spe trum with dis rete frequen ies (thatis the whistling frequen y and harmoni s).The term used 'self' signi�es that these os illations o ur without imposing any external for e.They o ur spontaneously in the �ow, but under quite parti ular onditions. These onditions are thefollowing, and are illustrated in Fig. 1.1:

Figure 1.1: Me hanism of self-sustained os illations with a ousti feedba k (from Rienstra andHirs hberg (2003)).• the presen e of a lo alized region of the �ow very sensitive to small �u tuations so as to be ableto amplify those �u tuations. The main �ow and the �u tuations are strongly oupled, an energytransfer from the main �ow to the �u tuations o urs. In many ases (and in parti ular in thisstudy), this region is an unstable shear layer, oming from a separation point of the �ow, su has the one of a jet or a wake. The instability is a Kelvin-Helmholtz type one (Drazin and Reid,1981);• far away from this lo alized region of ampli� ation, the �u tuations, whi h have been propagated,have to be su� iently re�e ted at some point. The re�e tion an ome either from an obsta le ofthe �ow (hen e produ ing an hydrodynami feedba k), either from an a ousti re�e tion (a ousti feedba k). Thus, an important part of the �u tuations is redire ted towards the ampli� ationregion;• in the region of ampli� ation, the phase of the re�e ted �u tuations has to be identi al to theone of the newly rising �u tuations. Thus, the amplitude of the �u tuations rises in ea h loop.This linear des ription gives theoreti ally in�nite amplitude of the �u tuations. A tually, asaturation amplitude is rea hed, stabilizing the amplitude of the �u tuations (an in�nite amplitudewould orrespond to an in�nite a ousti energy, whi h ontradi ts the prin iple of onservation ofenergy).

Page 17: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.2 Bibliography introdu tion to self-sustained os illations in on�ned �ow 9The feedba k hara terizes the self-sustained os illations. Two main types of feedba k are di�eren-tiated: (Rienstra and Hirs hberg, 2003):• hydrodynami feedba k: the feedba k is reated by an in ompressible �ow due to the presen eof an obsta le (for instan e, the phenomenon of edge tone, hole tone, ...) ;• a ousti feedba k: the feedba k is reated by an a ousti re�e tion (for instan e, a side bran hin a pipe, a sudden enlargement, or an open pipe termination). This is the ase studied in thiswork.The whistling asso iated with hydrodynami feedba k is the most extensively dis ussed in literature(Blake and Powell, 1986; Ro kwell, 1983). In parti ular, edge tone whistling onstituted by a jetimpa ting an edge.On the ontrary, there are few referen es quantitatively des ribing whistling of an ori� e witha ousti feedba k. The phenomenon is well des ribed in overviews (Blake, 1986; Rienstra andHirs hberg, 2003) but quantitative studies are s ar e. The only referen e found is Anderson papers(Anderson, 1952, 1953, 1953b, 1954, 1955, 1955b, 1956), whi h deals with the whistling of ori� e in apipe with a jet termination (that is, an open air exit after the ori� e). In our on�guration, that is thewhistling of a thin ori� e in a on�ned du t with a ousti feedba k, no studies have been found.1.2.3.2 The linear assumption when studying self-sustained os illationsWe want to insist here on the ne essary distin tion to be made between the instability frequen y, andthe whistling frequen y. This distin tion is made throughout this hapter.The pro ess of ampli� ation is a linear one. The most unstable 'Kelvin-Helmholtz type' frequen yof the shear layer is ampli�ed exponentially due to this linear ampli� ation. We an all this frequen ythe frequen y of os illation.The pro ess of saturation is a non-linear phenomenon. It is not modelled, and very little is knownabout this phenomenon. All we an say is that the frequen y of os illation an be theoreti ally subje tedto a shift in the saturation pro ess: the resulting frequen y obtained, that we an all the whistlingfrequen y, has to be di�erentiated from the os illation frequen y.Hen e the frequen y for whi h the instability begins to growth, that is, the frequen y of os illation,and the frequen y for whi h the ampli� ation pro ess saturates, that is, the whistling frequen y, aretheoreti ally di�erent frequen ies. They should be distinguished (Sarpkaya, 2004), as the whistlingfrequen y omes from a non-linear saturation pro ess: a shift in the frequen y may arise during thisnon-linear saturation. The fundamental assumption adopted usually is that those two frequen ies oin ide, or at least are lose. This is a very pra ti al assumption, as it allows studying the whistlingfrequen y with a linear theory of ampli� ation.In our work, the two frequen ies are naturally di�erentiated: our potentially whistling frequen y orresponds to the frequen y of os illation, and we show that when using re�e ting onditions in thedu t, the observed whistling frequen ies are lose to this potentially whistling frequen y.1.2.3.3 Theory for self-sustained os illations: vortex soundThe analogy of Lighthill is not suited to the study of sound generated by self-sustained os illations,as it assumes no retroa tive e�e t of the a ousti perturbations on the main �ow. Another analogy is

Page 18: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

10 1 Experimental study of a whistling riterion for singularities in air pipe �owused e� iently: the `vortex sound theory'. It omes from the pioneer work of Powell (1964), and itslatter generalization by Howe (1975).In this approa h, we all vorti es all points where the vortex ve tor ω = rot(v) (where v is the �owvelo ity) is non-vanishing. The �nding is that a vortex is asso iated to a sour e of sound, of a dipoletype (produ ed by an external for e), whi h is e� ient (energy transfer from the �ow to the a ousti �ow) when the a ousti velo ity is non-vanishing at this point. This has been a major advan e in thedomain, as using this theory, the problem is no more a dynami one but be omes a kinemati one:how do vorti es evolve (in non-vis ous �ow, the ir ulation of vorti es is onserved).The work of Howe gives an understanding of the reation/dissipation of a ousti energy by the �ow.It assumes low Ma h number, high Reynolds number and isentropi �ow. The analogy de omposesthe mean �ow velo ity v into irrotational and in ompressible parts:v = grad(φ) + rot(ψ). (1.8)The a ousti velo ity is de�ned as the non-stationary part of the irrotational part of the mean �ow:

vac = grad(φ′). (1.9)The power P generated by the vorti ity �eld ω(x, t) (x is the position ve tor) in the �ow �eld v(x, t)and the a ousti �eld vac(x, t) is then given by:P = −ρ0

T

[∫∫∫

V[ω(x, t) ∧ v(x, t)] .vac(x, t) dx

]

dt, (1.10)where ρ0 is the average �uid density, V is a volume of non-vanishing ω(x, t), and T is an a ousti period.As an appli ation, the ase of the shedding of vorti es by an ori� e is onsidered. At the point oflo ation of the developed vortex, just downstream of the ori� e, the �ow ve tor is assumed to be inthe longitudinal �ow dire tion, hen e the ve torial produ t ω ∧ v is in the transverse dire tion. Itappears that the quantity (ω ∧ v) .vac depends on the transverse omponent of the a ousti velo ity.Consequently, this model enhan es the importan e of the transverse a ousti velo ity in the powergenerated by the vorti ity �eld in the a ousti �eld.

Page 19: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.3 Presentation of the whistling riterion 111.3 Presentation of the whistling riterionThis se tion presents the idea of Aurégan and Starobinsky (1999) to dete t potentially whistlingfrequen ies for singularities in on�ned �ow. This theory is applied to our on�guration of study:an ori� e in pipe �ow with plane wave propagation.1.3.1 Con�guration of study: a singularity in straight pipe under onstant �owThe on�guration of study is presented in Fig. 1.2: a singularity pla ed in a straight rigid pipe andsubje ted to a onstant �ow of Ma h number M0 is onsidered. Plane wave propagation is assumed.The singularity is an obsta le of the �ow, dissipating hydrauli energy and hen e reating a stati pressure drop a ross the ori� e. It an be of any forms, but single-hole ori� es, multi-hole ori� es andvalves are the most ommon ones in piping systems of nu lear power plants.Two regions are di�erentiated (see Fig. 1.4): the �rst one orresponds to the upstream of the ori� e(subs ript 1), and the se ond to the downstream of the ori� e (subs ript 2), so that we use the followingnotation for the a ousti pressure:upstream: p′1(x, ω) = P+1 e

j(ωt−k+x) + P−1 e

j(ωt+k−x), (1.11)downstream: p′2(x, ω) = P+2 e

j(ωt−k+x) + P−2 e

j(ωt+k−x). (1.12)

Figure 1.2: Con�guration studied: singularity in a onstant uniform pipe �ow M0.1.3.2 Elaboration of the whistling riterionThe fundamental idea to hara terize the whistling of the singularity is to apply an a ousti energybalan e in a region of study en losing the sour e region. The a ousti power going out of the regionis denoted Pout, and the a ousti power going in the region is denoted Pin. When whistling o urs,a ousti energy is produ ed in the sour e region:Pout > Pin. (1.13)This is a ne essary ondition for whistling, whi h we use as a riterion to dete t whistling.At that point, the energy balan e an be elaborated. The important point is that, in uniform �ow,the de�nition of the a ousti energy is non-equivo al, as demonstrated by Morfey (1971): it satis�es

Page 20: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

12 1 Experimental study of a whistling riterion for singularities in air pipe �owthe linearized equations of mass, momentum and energy onservation as well as the standard energy onservation form. In instantaneous form, it is written:∂E

∂t+ ∇.I = −D, (1.14)where E is the density of a ousti energy, I the intensity �ux of a ousti energy and D the rate ofa ousti energy dissipation per unit volume.To express those quantities, the variables of the a ousti mass velo ity m' and the a ousti totalenthalpy Π′ are introdu ed. They are onvenient variables when in presen e of �ow. They are de�nedas (Morfey, 1971):

m′ = ρ0 v′ +p′

c0M0, (1.15)

Π′ =p′

ρ0+ c0 v′ M0, (1.16)where v′ is the a ousti velo ity, ρ′ the a ousti density. One should note that the variables (ρ0Π

′,m′/ρ0) are similar to (p′,v′) without �ow. In our on�guration of a uniform �ow, these quantitiesfrom both sides of the singularity get simple expressions (i = 1 for upstream, i = 2 for downstream):

m′i =

1

c0

(Π+

i − Π−i

), (1.17)

Π′i =

1

ρ0

(Π+

i + Π−i

), (1.18)with:

Π+i = (1 +M0)P

+i , (1.19)

Π−i = (1 −M0)P

−i . (1.20)One should note that the terminology `a ousti total enthalpy' refers to a ousti exergy multiplied bythe density of the �uid: Π′ = ρ0B

′ where B′ is the a ousti total enthalpy de�ned as B′ = p′/ρ0 +U0u′(Rienstra and Hirs hberg, 2003), negle ting the variation of entropy (hen e total enthalpy and exergyare the same).With these notations, the density of a ousti energy is re alled to be:

E =1

2

(v′m′ + ρ′Π′

), (1.21)and the intensity �ux of a ousti energy, I, whi h will be used in the following, is given by:

I = Π′ m′. (1.22)In integral form, using the ontrol volume de�ned previously, of volume V , en losed by a surfa eS and with outer normal ve tor n, and applying the theorem of Gauss to transform the intensity �uxexpression, we get:

∂t

∫∫∫

VE +

∫∫

SI.n = −

∫∫∫

VD. (1.23)

Page 21: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.3 Presentation of the whistling riterion 13In time average, as we onsider a ousti �elds, the average of the density of a ousti energy < E >is onstant on an a ousti period, hen e we get:P =

∫∫

S< I.n >= −

∫∫∫

V< D >, (1.24)de�ning P as the total a ousti power going through the surfa e S and the time average:

< X >= limT→+∞

1

T

∫ T

t=0X. (1.25)In plane-wave propagation, the a ousti intensity �ux on a given surfa e an be de omposed in 2terms: one orresponding to a propagation of the �ux downstream I+, the other one orresponding toa propagation of the �ux upstream I−.Also, the total surfa e S is made of 2 terms: the surfa e upstream, and the surfa e downstream S2(see Fig.1.3). We an hen e de�ne the time-averaged a ousti power going out of the ontrol volume,denoted Pout, and the time-averaged a ousti power going in the ontrol volume, denoted Pin:

Pin =

∫∫

S1

< I+.n > +

∫∫

S2

< I−.n >, (1.26)Pout =

∫∫

S1

< I−.n > +

∫∫

S2

< I+.n > . (1.27)The appli ation of the idea of the whistling riterion gives:• if Pout < Pin: the a ousti power going out of the singularity is a fra tion of the a ousti powerin ident on the singularity. The singularity dissipates a part of the in ident a ousti energy;• if Pout = Pin: the a ousti power going out of the singularity is equal to the a ousti powerin ident on the singularity. This ase is obtained when there is no energy ex hange between the�ow and the a ousti �u tuations;• if Pout > Pin: the a ousti power going out of the singularity is higher than the a ousti power in ident on the singularity. The singularity produ es a ousti energy. This produ tion orresponds to a onversion of the aerodynami energy into an a ousti energy in the shear layersformed just downstream of the singularity.1.3.3 Formulation of the whistling equations1.3.3.1 In�uen e of the singularity: the s attering matrixAssumptions for the model of the s attering matrixA so- alled s attering matrix des ribes the a ousti in�uen e of the singularity. The following as-sumptions are made to use this model.Firstly, the singularity is assumed to be a ousti ally ompa t: the hara teristi length of thesingularity is far smaller than the wavelength. In this assumption, the �ow through the singularity anbe onsidered as lo ally in ompressible.

Page 22: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

14 1 Experimental study of a whistling riterion for singularities in air pipe �owSe ondly, a ontrol volume is de�ned, en losing the singularity. The boundaries of this ontrolvolume are hosen su h that upstream and downstream of its boundaries the �ow is uniform, asillustrated in Fig. 1.3.The a ousti behaviour, inside and outside this volume, is des ribed as the following:Figure 1.3: De�nition of the ontrol volume to apply the energy balan e.

• outside the volume: plane-wave propagation is assumed;• inside the volume: an in ompressible �ow behaviour is assumed. The ontrol volume a ts as adis ontinuity for the far �eld (see Fig. 1.4). A linear a ousti behaviour is assumed in the ontrolvolume, so that the outgoing plane waves P−

1 and P+2 are linked to the in oming plane waves

P+1 and P−

2 by the s attering matrix at x = 0.

Figure 1.4: The a ousti s attering matrix of the singularity under onstant pipe �ow M0.The s attering matrix in terms of pressure (measured)In the linear approximation, ane hoi a ousti re�e tion oe� ients R+, R− and transmission o-e� ients T+, T− des ribe ompletely this s attering pro ess representing the a ousti in�uen e of thesingularity. It an be onveniently written in a 2x2 matrix system:(

P+2

P−1

)

=

(

T+ R−

R+ T−

)(

P+1

P−2

)

, (1.28)

Page 23: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.3 Presentation of the whistling riterion 15taking the phase origin at x = 0.The matrix is alled the s attering matrix, and noted S:S =

(

T+ R−

R+ T−

)

. (1.29)This is a 2x2 omplex matrix hara terizing the a ousti in�uen e of the singularity in terms ofpressure. It depends only on the singularity, on the �ow M0 and on the pulsation frequen y ω. It doesnot depend on the a ousti boundary onditions upstream and downstream of the singularity, as longas a linear behaviour prevails.Similarly to this de�nition, a s attering matrix in terms of enthalpy is introdu ed, in order to presentthe whistling riterion.The s attering matrix in terms of total enthalpyIn order to determine the a ousti energy of the plane waves, formulation into total enthalpy wavesrather than pressure waves has to be used. Indeed, the time-averaged a ousti intensity �ux is fun tionof the amplitude of the a ousti total enthalpy waves, in a du t se tion (i=1 for upstream, i=2 fordownstream), following Morfey (1971); Doak (1995); Aurégan and Starobinsky (1999):< Ii >=

1

ρ0c0

(Π+ 2

i − Π− 2i

)ex, (1.30)where ρ0 is the density of air and ex the unitary ve tor in the dire tion of the �ow (see Fig.1.4).The s attering pro ess, formulated previously in pressure waves (Eq. 1.28), is then formulatedsimilarly in terms of total enthalpy waves:

(

Π+2

Π−1

)

=

(

T+e R−

e

R+e T−

e

)(

Π+1

Π−2

)

. (1.31)The matrix Se is the s attering matrix for enthalpy waves:Se =

(

T+e R−

e

R+e T−

e

)

. (1.32)The oe� ients of the s attering enthalpy matrix Se are simply determined from the oe� ients of themeasured s attering pressure matrix S by:T+e = T+, T−e = T−, (1.33)

R+e =1 −M0

1 +M0R+, R−e =

1 +M0

1 −M0R−. (1.34)1.3.3.2 The a ousti energy balan e a ross the singularityIn this se tion, the a ousti energy balan e a ross the singularity is made using the s attering matrixin terms of enthalpy.

Page 24: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

16 1 Experimental study of a whistling riterion for singularities in air pipe �owFollowing Morfey (1971), the expression of the time-averaged a ousti power in presen e of uniform�ow is, in a du t se tion (i=1 for upstream, i=2 for downstream):Pi = Sp < Ii > . ex. (1.35)If the in oming enthalpy waves and outgoing enthalpy waves are written in a olumn ve tor:

Πin =

(

Π+1

Π−2

)

, Πout =

(

Π+2

Π−1

)

, (1.36)then the a ousti powers going in and out of the singularity are fun tion of their respe tive wave ve torand take the form (Aurégan and Starobinsky, 1999):Pin = Sp ||Πin||2 , Pout = Sp ||Πout||2 , (1.37)where Sp is the pipe ross-se tion, and ||Πin||2 = (Πin,Πin) is the square of the norm, de�ningthe s alar produ t (X,Y) =T XY , the notation T standing for the Hermitian transpose ( omplex onjugate transpose). One should note that, by de�nition, those a ousti power are always positive.The s attering matrix in terms of total enthalpy (see Eq. 1.31) is used to link the in oming andoutgoing energies. As:

Πout = Se Πin, (1.38)the a ousti power going out of the ori� e is only fun tion of the in oming waves ve tor Πin:Pout = Sp

TΠinTSeSeΠin. (1.39)To apply the whistling riterion idea, the sign of the a ousti energy dissipated by the singularity

Pin − Pout has to be determined:Pin − Pout = Sp

TΠin(Id −T SeSe)Πin, (1.40)where Id is the identity matrix.The hermitian 2x2 matrix Id−T SeSe is self-adjoint. Hen e it is diagonalizable with real eigenvaluesξmin and ξmax, sorted so that ξmin ≤ ξmax, asso iated with orthonormalized eigenve tors Πmin andΠmax. It is worth noting that the appli ation of an algebra theorem (see for instan e Lang (2004)),be ause the eigenvalues of TSeSe are positive or null, the eigenvalues of Id −T SeSe are inferior tounity: ξi ≤ 1. This is the mathemati al onsequen e of the physi al fa t that the a ousti powers arede�ned positive.In the basis (Πmin,Πmax) of the eigenve tors, the a ousti dissipated power, seen as a quadrati form fun tion of Πin, takes the expression:

Pin − Pout = ξmin |(Πin,Πmin)|2 + ξmax |(Πin,Πmax)|2 . (1.41)The minimum and maximum of this quadrati form are obtained for Πin = Πmin and Πin = Πmax,so that:ξmin =

Πin

min

(Pin − Pout

Pin

)

, ξmax =Πin

max

(Pin − Pout

Pin

)

. (1.42)

Page 25: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.3 Presentation of the whistling riterion 17Consequently the eigenvalues give a bra ket of the non-dimensional a ousti power (Pin − Pout)/Pindissipated by the singularity:ξmin ≤ Pin −Pout

Pin≤ ξmax. (1.43)The sign of the minimum eigenvalue determines the whistling riterion:

• if ξmin ≥ 0 ⇒ Pout ≤ Pin, for any Piin:the singularity dissipates the in oming a ousti energy, whatever the in oming waves. Thesingularity an not whistle at that frequen y, whatever the re�e tions outside of this system;• if ξmin < 0 ⇒ Pout > Pin, for some Πin:there exists some ouples of in ident total enthalpy waves for whi h the a ousti power goingout of the singularity is larger than the in oming a ousti power. For those in ident waves, thesingularity is potentially produ ing a ousti energy. It is onsequently prone to whistle at thatfrequen y, depending on the a ousti boundary onditions.1.3.3.3 Models for the s attering matrix oe� ientsA simple models is used to determine the s attering matrix oe� ients, assuming an in ompressibleand quasi-stationary behaviour. It is experimentally evaluated in se tion 1.5.2.1.An in ompressible and quasi-stationary model is introdu ed (see s heme in Fig. 1.5). It is a lassi almodel, des ribed in details in Ajello (1997); Hofmans (1998); Hofmans et al. (2000); Durrieu et al.(2001). Two regions are distinguished: the �rst one in ludes the region upstream of the turbulentmixing region (also alled vena ontra ta) where the linearized Bernoulli equation and the linearizedmass onservation are applied; the se ond one in ludes the region downstream of the jet, where thelinearized onservation of momentum quantity and the linearized mass onservation are applied. There�e tion and transmission oe� ients orresponding to this model are the following:Figure 1.5: S heme of the �ow and notations for the quasi-stationary in ompressible model.

R+quasi−stat = R−

quasi−stat =M0β

2 +M0β, (1.44)

T+quasi−stat = T−

quasi−stat =2

2 +M0β, (1.45)with β =

(Sp

Sj

)2

− 1, (1.46)where Sj is the se tion of the jet. The ontra tion oe� ient α is introdu ed, as usual, as α = Sj/Sd.

Page 26: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

18 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.4 Measurements on�gurations1.4.1 Experimental set-up of the LAUM1.4.1.1 Set-upThe set-up is illustrated in Fig. 1.6 and des ribed in the following (see also (Auregan and Leroux,2003)). It onsists out of an open loop with a steel ir ular du t of inner diameter D = 30 mm and athi k and smooth wall (thi kness e = 4 mm, roughness of the order of the mi rometer).In absen e of �ow, the ut-o� frequen y of the du t is equal to fcut−off = 6.7 kHz, as al ulated from(Angot, 1972; Pier e, 1981):fcut−off ≈ 1.84 c0

πD, (1.47)where D is the pipe diameter, and c0 the speed of sound in quies ent �uid. We use the speed of soundin air, under P0 = 1 atm, and negle ting the e�e t of dampness (Wong, 1985):

c0 = 343.2042

T0 + 273.15

293.15, (1.48)where T0 is the ambient temperature expressed in Celsius degrees.A onstant air �ow is generated by a ompressor Aerzen Delta blower GM10S (n°1 in Fig. 1.6).The volume �ow rate is measured with a �ow meter ITT Barton 7402 (n°2) with an a ura y of 10−2ms−1.Two a ousti sour es are present, one upstream (n°4) and one downstream (n◦8) of the ori� e. Theyare made of a loudspeaker and a ompression hamber. They allow an a ousti level up to 160 dB inthe measurement frequen y range 400-5000 Hz.Ane hoi terminations are pla ed upstream (n◦3) and downstream (n◦9) of the measurement zone.They are presented in se tion 1.4.1.3.The du t is 2 m long upstream of the 4 upstream mi rophones to allow a fully developed turbulent�ow.The temperature is measured with two transdu ers, ea h on one side of the ori� e, with an a ura yof 10−2 K.

Figure 1.6: The experimental set-up.

Page 27: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.4 Measurements on�gurations 191.4.1.2 Test se tionFig. 1.7 illustrates the test se tion. The singularity (n◦6 on the �gure) is lo ated at the middle of thetest se tion. Measurements are made with 2 series of 4 pressure transdu ers (mi rophone B&K 49381/4�, preampli�er B&K 2670 with Nexus) from both sides of the singularity :• one series of 4 mi rophones upstream (n◦5 in Fig. 1.6), denoted u1 to u4 while in reasing indexgoing away from the singularity;• one series of 4 mi rophones downstream (n◦7 in Fig. 1.6), denoted d1 to d4 while in reasing indexgoing away from the singularity;The use of 2x4 mi rophones allows an over-determination, hen e a better determination, of thetransmitted and re�e ted waves.The distan e between onse utive mi rophones of a series is not onstant: going away of theori� e, it equals 10.0 mm, 37.48 mm and 59.67 mm (that is: xu1 − xu2 = xd1 − xd2 = 10.0 mm,

xu2 − xu3 = xd2 − xd3 = 37.48 mm, xu3 − xu4 = xd3 − xd4 = 59.67 mm). The hoi e of these distan esallows to avoid the problem of measurement pre ision when half of the a ousti wavelength is lose tothe distan e between 2 mi rophones (Boden and Abom, 1986).The distan e between mi rophone u1 and the singularity is of the order of 12D. The distan e betweenthe singularity and mi rophone d1 is of the order of 20D.flow

u1u2u3u4 d1 d2 d3 d4downstreamsource

upstreamsource

p1+

p1-

4 upstreammicrophones

4 downstreammicrophones

p2+

p2-

measureddevice

Figure 1.7: The measurement zone.1.4.1.3 A ousti boundary onditions of the test se tionThis experimental set-up is designed to measure the s attering matrix of a singularity. This matrixis independent of the a ousti boundary onditions of the set-up, as long as the singularity does notwhistle. To avoid any whistling, it is preferable to have low re�e ting a ousti boundary onditions ofthe test rig. The use of su h ane hoi boundary onditions also appears to enhan e the a ura y inthe measurement.• upstream of the measurement zone, (about 2 m from the singularity), an expansion is pla ed,imposing a low upstream re�e tion oe� ient: |Ru| < 0.2. Data for Ru are shown in Fig. 1.8;• downstream of the measurement zone, (about 3 m from the singularity), a quasi-ane hoi termination is arranged: holes are non-uniformly arranged in the wall of the du t of a lengthof tens of entimetres and overed with a pie e of textile. The textile gives a resistan e to the

Page 28: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

20 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

|Ru|

Figure 1.8: Upstream re�e tion oe� ient of the measurement zone, without �ow.holes and se ondarily prevents whistling due to the grazing �ow. This on�guration imposes alow re�e tion oe� ient: |Rd| < 0.4.

0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

|Rd|

Figure 1.9: Downstream re�e tion oe� ient of the measurement zone, without �ow.Those a ousti boundary onditions suppress whistling in most of our ases.1.4.2 Measurement pro eduresPreliminarily of any series of measurement, a alibration of the mi rophones is needed. Then, twotypes of measurements are made with this experimental set-up: the measurement of the s attering

Page 29: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.4 Measurements on�gurations 21matrix of the singularity (using the loudspeakers), and the measurement of the sound generated in thepipe (without using the loudspeakers).1.4.2.1 Calibration of the mi rophonesThe alibration of the 8 mi rophones is needed to link the responses of the mi rophones to ea h other.The alibration pro edure uses a referen e mi rophone. The transfer fun tion between this referen emi rophone and the mi rophone being alibrated is measured, using the sour e and a onstant distan ebetween both mi rophones. The alibration provides 8 transfer fun tions that are used as a orre tionof the signals obtained from the mi rophones.The quality of the measurements depends riti ally on the quality of the alibration. Hen e anestimation of the quality of the alibration is helpful. A possible way to verify the alibration is todo a measurement without ori� e and without �ow. The s attering matrix of a pipe without �ow isobtained. From it, two estimations an be made:• the phase of the transmission oe� ient gives the distan e between the �rst upstream mi rophone(u1) and the �rst downstream mi rophone (d1), as there is no singularity in this measurement.The value obtained is ompared to the a tual length. A typi al result for su h a measurement isgiven in Fig. 1.10. The distan e between the �rst upstream mi rophone and the �rst downstreammi rophone is typi ally obtained with an un ertainty less than 2 mm (that is 2% of error), inour frequen y range of study: 400-5000 Hz.

500 1000 1500 2000 2500 3000 3500 4000 4500 50000.506

0.508

0.51

0.512

0.514

0.516

0.518

Frequency (Hz)

Leng

th (

m)

|phase(T+)/kup+ |

|phase(T+)/kdo− |

|phase(T−)/kup+ |

|phase(T−)/kdo− |

Lu1−d1

Figure 1.10: Experimental determination of the distan e between mi rophones u1 and d1, measuringwhen the singularity is repla ed by a straight tube, and without �ow.• the magnitude of the transmission oe� ient is determined by the attenuation of the wavesbetween the �rst upstream mi rophone (u1) and the �rst downstream mi rophone (d1). This

Page 30: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

22 1 Experimental study of a whistling riterion for singularities in air pipe �owattenuation is ompared to the omputed one, using the model of Kir hho� (Ajello, 1997; Peterset al., 1993) (no �tting variables):k± =

ω

c0K0, (1.49)taking into a ount damping due to vis osity (with the shear number Sh = D

2

√ων ) andtemperature (with the Prandtl number Pr = ν/κ, with ν the inemati vis osity and κ thethermal ondu tivity; Pr = 0.71 for air):

K0 = 1 +1

Sh

1 − j√2

(

1 +γ − 1√Pr

)

, (1.50)where γ is the ratio of spe i� heats at onstant volume and pressure (γ = 1.4 for air). Thisexpression is valid for low Helmholtz numbers ka << 1.A typi al result is given in Fig. 1.11. The model is found very satisfa tory up to 4 kHz. Beyond4 kHz, the Helmholtz number is not negligible, as kD/2 ≥ 1.1, hen e the theory is no more valid.

500 1000 1500 2000 2500 3000 3500 4000 4500 50000.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Mag

nitu

de o

f the

tran

smis

sion

coe

ffici

ent

|T+||exp(−j k

up+ L

u1−d1)|

|T−||exp(−j k

do− L

u1−d1)|

Frequency (Hz) Figure 1.11: Experimental determination of the quality of the attenuation model for the wave numberapplied from Kir hho� theory, measuring when the singularity is repla ed by a straight tube, andwithout �ow.1.4.2.2 Measurement of the s attering matrixThe method to measure the s attering matrix of the singularity is a 2 sour es method, whi h is des ribedin details in Ajello (1997). Two measurements are made: one using the upstream loudspeaker (sendinga plane wave P+1 ); the other one using the downstream loudspeaker (sending a plane wave P−

2 ). The

Page 31: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 23 oe� ients (R+, R−, T+, T−) of the s attering matrix are determined from those two measurements:

(p−1

p+

1

)UP (p−1

p−2

)DOWN

(p+

2

p+

1

)UP (p+

2

p−2

)DOWN

=

(

T+ R−

R+ T−

)

1(

p+

1

p−2

)DOWN

(p−2

p+

1

)UP

1

. (1.51)The upstream plane waves are determined using transfer fun tions Hunum (n 6= m, n ∈ [1, 4],

m ∈ [1, 4])) between the di�erent upstream mi rophones un, um:p−1p+1

=Hunume

−jk+xum − e−jk+xun

ejk−xun −Hunumejk−xun

. (1.52)Similarly, the downstream plane waves are determined using transfer fun tions Hdndm(n 6= m) betweenthe di�erent downstream mi rophones dn, dm(n ∈ [1, 4],m ∈ [1, 4])). Those transfer fun tions areobtained by the measurement. The wave numbers k+ and k− are determined with the model ofKir hho� (Ajello, 1997) taking into a ount vis o-thermal dissipation in the propagation.The parameters used for the measurement of the s attering matrix are the following. The typi alfrequen y range of our measurements is 400-4000 Hz (sometimes 400-5000 Hz), with a frequen yresolution of 10 Hz (sometimes 5 Hz). A HP-software drives the measurement as a `Swept Sine' typemeasurement. The sour e level is approximately 130 dB (SPL) and hosen in relation to the �ow ratein order to avoid non-linear e�e ts due to an ex essive sour e level. For ea h frequen y, the settletime before ea h measurement is 1000 y les and the integration time is 1000 y les. This range ofparameters is hosen in order to redu e the error to an a eptable level.1.4.2.3 Measurement of the broadband noiseThe measurement of the �ow sound generated in the pipe (without drive of exterior sour es) is madewith a `Frequen y Response' type measurement.The parameters used for the measure of the noise are the following. The frequen y range is 0-6400Hz, with 4 Hz of frequen y resolution. The spe tra obtained represent an average of 50 data a quisition.1.5 The whistling riterion on ir ular entred ori� es1.5.1 Ori� es testedSingle-hole ori� es are the main singularities tested. Indeed, they represent the simplest geometry tobegin with the study of the whistling riterion.The ori� es tested (see Fig. 1.12) are of aluminium, with a ir ular and entred single hole. Theedges of the hole are neat sharp angle edges (no bevel is visible on both sides).In total, 19 ori� es have been tested with di�erent thi kness t and diameter d, see Tab. 1.5.1 andFig. 1.13. The range of thi kness-to-diameter ratio is 0.15 ≤ t/d ≤ 1.5. This range orresponds to thinori� es, a ording to Idel' ik (1969): t/d . 2.

Page 32: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

24 1 Experimental study of a whistling riterion for singularities in air pipe �ow

(a) Front view (b) Side viewFigure 1.12: Tested single-hole ir ular- entred ori� es with no bevel.t/d 0.15 0.20 0.22 0.24 0.26 0.29 0.30 0.29 0.33 0.40ori� e CC1 CC16 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

t (mm) 3 5 5 5 5 7 3 5 5 8d (mm) 20 25 23 21 19 24 10 17 15 20t/d 0.42 0.50 0.50 0.62 0.67 0.67 0.71 1.00 1.50ori� e CC17 CC10 CC18 CC11 CC12 CC19 CC13 CC14 CC15

t (mm) 10 5 10 5 6 10 5 10 15d (mm) 24 10 20 8 9 15 7 10 10Table 1.1: Features of the single-hole ori� es (no bevel).

Page 33: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 25

0 0.5 1 1.50.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t/d

d/D

Figure 1.13: Chara teristi s of the ori� es tested: ir ular entred ori� es with no bevel.

Page 34: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

26 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.5.2 S attering matrix oe� ients1.5.2.1 Typi al oe� ients of the s attering matrixTypi al oe� ients obtained for the s attering matrix are presented in Fig. 1.14 and 1.15 and analysedin the following:• First, the low-frequen y behaviour of the s attering matrix oe� ients is well des ribed by anin ompressible quasi-stationary model (introdu ed in se tion 1.3.3.3).This model depends on the vena- ontra ta oe� ient α. Di�erent values of α are used to ompareto measurements in the limit of vanishing frequen y. Results are indi ated in Tab. 1.5.2.1.A fair agreement is obtained with α=0.70 (see �gures), whi h is known (Blevins, 1984) asbeing a reasonable value for an ori� e with no visible bevel in a fully-developed turbulent �ow(Re & 5 103).Also, the assumption of in ompressibility and no dissipation, giving the relation |R+| + |T+| =

|R−|+|T−| = 1 (see se tion 1.3.3.3) is well satis�ed for low Strouhal numbers fd/Ud, as illustratedin Fig. 1.16.α 0.65 0.70 0.75

R+, R− 0.32 0.29 0.26T+, T− 0.68 0.71 0.73Table 1.2: Evaluation of a quasi-steady a ousti model to predi t the s attering matrix at low frequen y.

• Se ond, the transmission oe� ient exhibit values with an amplitude above 1. This is an usualexperimental observation. This behaviour orresponds to a produ tion of a ousti energy by theori� e, whi h is onsequently potentially whistling at those frequen ies. This behaviour is hen edire tly linked with the whistling riterion, and further ommented in se tion 1.5.2.1.

Page 35: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 27

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

Frequency (Hz)

Ref

lexi

on c

oeffi

cien

ts

|R+||R−|

α=0.70

Figure 1.14: Typi al re�e tion oe� ients obtained from measurements of ir ular entred single-holeori� es - ori� e t = 5 mm, d = 15 mm with M0 = 2.60 10−2. The arrow indi ates the in ompressibleand quasi-stationary model limit, using a ontra tion oe� ient α = 0.70.

0 1000 2000 3000 4000 50000.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

Tra

nsm

issi

on c

oeffi

cien

t

|T+||T−|

α=0.70

Figure 1.15: Typi al transmission oe� ients obtained from measurements of ir ular entred single-hole ori� es - ori� e t = 5 mm, d = 15 mm with M0 = 2.60 10−2. The arrow indi ates thein ompressible and quasi-stationary model limit, using a ontra tion oe� ient α = 0.70.

Page 36: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

28 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 0.5 1 1.5 2 2.50.8

1

1.2

1.4

1.6

1.8

2

f d / Ud

|R|+

|T|

upstream (+)downstream (−)

model: |T|+|R|=1

Figure 1.16: Evaluation of the in ompressible and lossless model ompared with measurements: forlow Strouhal numbers, the behaviour of the s attering matrix oe� ients follows the model - ori� et = 5 mm, d = 15 mm with M0 = 2.60 10−2.

Page 37: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 291.5.2.2 Non linear behaviour due to high level of the ex itation sour eThe `2 sour es method' assumes a linear a ousti behaviour of the system. In this assumption, thedetermination of the s attering matrix oe� ients is independent of the level of the ex itation sour e.In our experiments, we limited our sour e amplitude in order to avoid non-linear e�e ts. So as todetermine the amplitudes at whi h su h e�e ts o ur, we present data for in reasing levels.As illustrated in Fig. 1.17 and 1.18, these non-linear e�e ts are observed for frequen ies identi�edas potentially whistling frequen ies. Instead of a typi ally linear hump form, a threshold is observed,exhibiting a saturation phenomenon.

500 1000 1500 2000 2500 30000.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Frequency (Hz)

|T+|

excitation source: u’rms

/U0=0.30

excitation source: u’rms

/U0=0.25

excitation source: u’rms

/U0=0.12

excitation source: u’rms

/U0=0.05

Figure 1.17: The level of the ex itation amplitude of the sour e loudspeaker has an in�uen e on thes attering matrix oe� ients, here for |T+| - ori� e t = 5 mm, d = 17 mm with M0 = 2.59 10−2.Investigations indi ate that for a level value of u′rms/U0 ≈ 10−1, su h non-linear e�e ts be omesigni� ant under onditions at whi h whistling an o ur Pout > Pin. When absorption prevailsPout < Pin, the response is almost independent of the amplitude up to u′rms/U=0.3.1.5.3 Potentially whistling frequen iesIn this se tion, the appli ation of the whistling riterion is studied. The evolutions of the eigenvaluesξmin and ξmax of the matrix I −T Se Se are investigated.Typi al evolutions obtained for these eigenvalues are shown in Fig. 1.19:

• the two eigenvalues an learly be distinguished: the �rst one (denoted ξnonevo) lose to zero,and another one (denoted ξevo), taking both positive and negative values;• the evolving eigenvalue ξevo shows a hump form as visible in the �gure. This form is systemati for ir ular- entred ori� es without bevel;

Page 38: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

30 1 Experimental study of a whistling riterion for singularities in air pipe �ow

500 1000 1500 2000 2500 3000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Frequency (Hz)

(Pin

−P ou

t)/P in

(_)

excitation source: u’rms

/U0=0.30

excitation source: u’rms

/U0=0.25

excitation source: u’rms

/U0=0.12

excitation source: u’rms

/U0=0.05

Figure 1.18: The level of the ex itation amplitude of the sour e loudspeaker has an in�uen e on theeigenvalues obtained from measurements of s attering matrix oe� ients - ori� e t = 5 mm, d = 17mm with M0 = 2.59 10−2.• a major experimental result is obtained: ranges of frequen ies exist for whi h the minimumeigenvalue is negative. Following the whistling riterion, these ranges of frequen y orrespondto potentially whistling frequen ies. In the �gure, two ranges of frequen ies are observed, orresponding to two di�erent hydrodynami modes of whistling.In order to test the onsisten y of this whistling indi ator, an ori� e with a bevel on one side isstudied. The idea is to test the in�uen e of the side of the bevel on the whistling riterion: bevelupstream, bevel downstream. Results are given in Fig. 1.20:• bevel upstream: the eigenvalues are always positive: for all frequen ies, the ori� e dissipatesa ousti energy, and will never whistle. This observation agrees with literature, as this on�guration is well-known to be a typi al non-whistling one (Rienstra and Hirs hberg, 2003).• bevel downstream: a frequen y range, 2200-3700 Hz, is found for whi h the ori� e an produ ea ousti energy. This also on�rms literature as the on�guration of a bevel downstream is knownto be a typi al whistling on�guration (Wilson et al., 1971; Hirs hberg et al., 1989).1.5.4 Strouhal numbersConsidering a range of potentially whistling frequen y, the amplitude of the eigenvalue takes a humpform, so that a peak frequen y, denoted fpeak, orresponding to the minimum amplitude rea hed bythe evolving eigenvalue, is identi�able (as shown in Fig. 1.21). This frequen y represents the highest

Page 39: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 31

500 1000 1500 2000 2500 3000 3500 4000 4500 5000−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Frequency (Hz)

(Pin

−P ou

t)/P in

ξevo

fit of ξevo

ξnon evo

fit of ξnon evo

1st mode

2nd mode

Figure 1.19: Potentially whistling eigenvalues ξevo and ξnonevo of the matrix I−tSe Se: a typi al humpevolution is found, exhibiting typi al su essive a ousti whistling modes - ori� e t = 8 mm, d = 20mm with M0 = 3.28 10−2.

Page 40: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

32 1 Experimental study of a whistling riterion for singularities in air pipe �ow

500 1000 1500 2000 2500 3000 3500 4000−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

CCb2 beavel upstreamCCb2 beavel downstream

Figure 1.20: In�uen e of the bevel on the whistling riterion using the potentiality of whistling with theevolving eigenvalue ξevo: no whistling potentiality is found when the bevel is pla ed at the upstreamedge of the ori� e, whereas a range of potentially whistling frequen ies is found (here 2200-3700 Hz)when the bevel is pla ed at the downstream edge of the ori� e - ori� e with a bevel rbevel=1 mm, t = 5mm, d = 10 mm (CCb2) with M0 = 7.6 10−3..potential whistling frequen y for this whistling mode. Results obtained for this frequen y are studiedin this se tion.The peak frequen y fpeak is made non-dimensional, using the ori� e thi kness t and the ori� evelo ity Ud = U0 (D/d)2 , hen e de�ning the Strouhal number:Stpeak =

fpeakt

Ud. (1.53)An example of a ollapse in x- oordinate with this Strouhal number is given in Fig. 1.22 (to be omparedwith Fig. 1.21).The best ollapse of peak Strouhal numbers obtained with this hoi e of these s aling variables t and Ud.Other s aling variables have been tested and lead to less satisfa tory ollapse: lengths d,D, (D− d)/Dand velo ity U0. For instan e, the hoi e of a Strouhal based on the ori� e diameter d leads to a farless satisfa tory ollapse, as illustrated in Fig. 1.24 ( ompared with Fig. 1.23, where the Strouhal isbased on the ori� e thi kness t).Distin tion of �ow regimes for the Strouhal numberStrouhal numbers fpeakt/Ud obtained for all ori� es are given in Fig. 1.23 for the �rst whistling mode,as fun tion of the pipe Reynolds number ReD = U0D/ν. In the range of Reynolds number studied(2 103 ≤ ReD ≤ 8 104), Strouhal numbers appear to vary signi� antly. Two main regions an bedis erned:

Page 41: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 33

500 1000 1500 2000 2500 3000 3500 4000−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=3.48 10−2

M0=4.19 10−2

M0=5.15 10−2

M0=6.15 10−2

fpeak

fpeak

fpeak f

peak

Figure 1.21: Identi� ation of the frequen y peak fpeak orresponding to the potentially maximumfrequen y for one mode of whistling identi�ed with the evolving eigenvalue ξevo - ori� e t = 5 mm,d = 19 mm with various Ma h numbers.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5−1.5

−1

−0.5

0

0.5

1

f t / Ud

(Pin

−P ou

t)/P in

M0=3.48 10−2

M0=4.19 10−2

M0=5.15 10−2

M0=6.15 10−2

Figure 1.22: Representation in Strouhal number St = f t/Ud of the eigenvalues determining thepotentially whistling frequen ies: a very good ollapse is obtained - ori� e t = 5 mm, d = 19 mmwith various Ma h numbers.

Page 42: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

34 1 Experimental study of a whistling riterion for singularities in air pipe �ow• a �ow below or lose to the laminar-turbulent transition: ReD . 5 103);• a fully turbulent �ow: ReD & 5 103, most of the ases.The Strouhal numbers for low-Reynolds number are signi� antly higher, up to 50%, ompared withthose obtained for a fully turbulent main �ow. Explanations of this observation may be the following:Firstly, for a �ow in laminar state, the main �ow impa ting the upstream edge of the ori� e is verydi�erent from a �ow in turbulent state.Se ondly, for low Reynolds numbers, the jet vena- ontra ta se tion in the ori� e is known (see Tab.1.5.4from Blevins (1984)) to vary very mu h ompared to its high Reynolds number value, as indi ated inTab.1.5.4.

Table 1.3: Strong variations of the jet vena- ontra ta se tion for pipe Reynolds numbers between 103and 104 from Blevins (1984).For this latter reason, the Strouhal number ft/Uj based on the jet velo ity should be more pre isethan the one used in this study ft/Ud. However, the value of Uj is experimentally di� ult to obtain;Uj an be estimated from the measure of the pressure drop a ross the ori� e. This requires stati pressure transdu ers from both sides of the ori� e, whi h were not available in our experiments.Strouhal numbers are onstant for turbulent �ow regimeThe main result of this Strouhal number study is that for most of the ases, that is for fully tur-bulent Reynolds numbers (5 103 ≤ ReD ≤ 8104), Strouhal numbers obtained are almost onstant:Strouhal numbers (mode 1) are in the range 0.2-0.3 ( f. Fig. 1.23). This is in lose agreement withliterature. Anderson (1953b) indi ates a value around 0.26-0.29 for thin ori� es (0.1 ≤ t/d ≤ 0.5) in a on�guration of a free jet (exit towards free spa e). The omparison is shown in Fig. 1.26) using therepresentation given by Blake (1986).For turbulent Reynolds numbers (5 103 ≤ ReD ≤ 105), various linear �ts on data with multipleparameters have been used to estimate the importan e of di�erent parameters on the Strouhal number:1/ReαD, ln(ReD), (d/D)α, (t/d)α , [D/(D − d)]α, with α > 0.It is found that the Strouhal number varies mainly with two parameters: the Reynolds number ReD

Page 43: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 35and the distan e to the wall D/(D− d). For the �rst hydrodynami mode, the linear regression givingthe least standard deviation on data is the following:Stpeak = 0.2048

(

1 +57.6936√ReD

+ 0.0596D

D − d

)

, (1.54)giving a standard deviation of 1.6 10−3 on 65 data points;Hydrodynami modes of higher orders (≥ 2) are given in Fig. 1.25. The Strouhal numbers aresigni� antly higher than for the �rst whistling mode. The values obtained are onsistent with datafrom Anderson (1954).

103

104

105

0.1

0.2

0.3

0.4

0.5

0.6

ReD

= U0 D / ν

air

St t =

f peak

t / U

d

CC1CC2CC3CC4CC5CC6CC7CC8CC9CC10CC11CC12CC13CC14CC16CC17CC18

transition fully turbulentlaminarFigure 1.23: Strouhal numbers asso iated with the potentially whistling `peak' frequen y identi�ed forthe �rst whistling mode - all measurements with ir ular- entred single-hole and no bevel ori� es.

Page 44: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

36 1 Experimental study of a whistling riterion for singularities in air pipe �ow

103

104

105

0

0.5

1

1.5

2

2.5

ReD

= U0 D / ν

air

St t =

f peak

d /

Ud

CC1CC2CC3CC4CC5CC6CC7CC8CC9CC10CC11CC12CC13CC14CC16CC17CC18

Figure 1.24: Strouhal numbers based on the s aling length d asso iated with the potentially whistling`peak' frequen y identi�ed for the �rst whistling mode: the s aling length d is unsatisfa tory - allmeasurements with ir ular- entred single-hole and no bevel ori� es.

Page 45: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 37

103

104

105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ReD

= U0 D / ν

air

St t =

f peak

t/ U

d

CC1CC2CC3CC4CC5CC6CC7CC8CC9CC10CC11CC12CC13CC14CC15CC16CC17CC18CC19

Figure 1.25: Strouhal numbers asso iated with the potentially whistling `peak' frequen y identi�ed forthe �rst and se ond whistling mode - all measurements with ir ular- entred single-hole and no bevelori� es.

Page 46: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

38 1 Experimental study of a whistling riterion for singularities in air pipe �ow

10−1

100

0

0.5

1

1.5

2

2.5

t / d

St t,B

lake

= f pe

ak t

/ Uj (

with

α=

0.70

)

CC1CC2CC3CC4CC5CC6CC7CC8CC9CC10CC11CC12CC13CC14CC15CC16CC17CC18CC19

Anderson 2 (thick) Anderson 1 (thin)

Figure 1.26: Comparison of our measured Strouhal numbers with Anderson data, for thin (0.1 ≤t/d ≤ 0.5) and thi k (0.5 ≤ t/d ≤ 1.2) ori� es, reported by Blake: the representation of Blake isunsatisfa tory.

Page 47: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 391.5.5 Conditions of whistling for the in ident wavesSo far the eigenvalues of the s attering matrix have been analysed. The analysis of the orrespondingeigenve tors is done in this se tion, in order to investigate the onditions linked to whistling andnon-whistling behaviour.The eigenve tors Π1 and Π2, asso iated with the eigenvalues ξ1 (minimum) and ξ2 (maximum), are onsidered (see an example illustrated in Fig. 1.29). Their omponents are denoted ai and bi:Π1 =

[

a1

b1

]

, Π2 =

[

a2

b2

]

. (1.55)The omponents of the eigenve tors orrespond to the in ident total enthalpy waves, so that:Πi =

[

ai

bi

]

≡[

(1 +M0)p+1

(1 −M0)p−2

]

. (1.56)The evolution of the omponents of the eigenve tors Π1 and Π2 is given in Fig. 1.27 and 1.28. First,it is observed that the imaginary part of the omponents an be negle ted ompared to the real part.Se ond, the real part appear learly to get two values: +1 or -1 broadly (in �rst order analysis). Thosetwo values orrespond to di�erent ex itation onditions for the in ident enthalpy waves:• ai/bi ≈ 1 orresponds to an ex itation (1 −M0)p

−1 − (1 +M0)p

+2 ≈ 0. This is a ondition of thetype of an a ousti velo ity node v′ ≈ 0.

• ai/bi ≈ −1 orresponds to an ex itation (1 −M0)p−1 + (1 + M0)p

+2 ≈ 0. This is a ondition ofthe type of an a ousti pressure node p′ ≈ 0.The onditions obtained are plotted in Fig. 1.29:

• strong energy ex hange between the a ousti �eld and the main �ow (that is passive dissipationand whistling behaviours) o urs when a pressure node ondition p′ = 0 is formed at the ori� eby the ex itation waves;• inversely, no energy ex hange between the a ousti �eld and the main �ow is obtained for avelo ity node type.These results on�rm very well what is known on whistling and non-whistling ondition.

Page 48: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

40 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 1000 2000 3000 4000 5000−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frequency (Hz)

b 1 / a 1

real partimaginary part

Figure 1.27: Representation of the wave (eigenve tor) orresponding to the eigenvalue ξ1 (see Fig. 1.29)in a non-dimensional representation b1/a1 = [(1−M0)p−2 ]/[(1+M0)p

+1 ] - ori� e t = 5 mm, d = 19 mmwith M0 = 4.19 10−2.

0 1000 2000 3000 4000 5000−5

0

5

Frequency (Hz)

b 2 / a 2

real partimaginary part

Figure 1.28: Representation of the wave (eigenve tor) orresponding to the eigenvalue ξ2 (see Fig. 1.29)in a non-dimensional representation b1/a1 = [(1−M0)p−2 ]/[(1+M0)p

+1 ] - ori� e t = 5 mm, d = 19 mmwith M0 = 4.19 10−2.

Page 49: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 41

0 500 1000 1500 2000 2500 3000 3500 4000−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Frequency (Hz)

(Pin

−P ou

t)/P in

ξ1

ξ2

v’ ≈0

p’ ≈0

v’ ≈0

p’ ≈0 p’ ≈0

v’ ≈0

Figure 1.29: Potentially whistling eigenvalues and the orresponding wave onditions in terms ofa ousti pressure p′ and a ousti velo ity v′ at the ori� e (x = 0) - ori� e t = 5 mm, d = 19 mm withM0 = 4.19 10−2.

Page 50: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

42 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.5.6 Non-dimensional potentially whistling eigenvaluesThe magnitude of the eigenvalue is a ratio of potentially dissipated a ousti energy. In this se tion, ase ondary dimensionless representation is proposed.The amplitudes orresponding to the peak potentially whistling frequen ies are onsidered. Asatisfa tory dimensionless representation is obtained: they are proportional to the Ma h number asillustrated in Fig. 1.30 and 1.31.The dipole asso iated to whistling explains the proportionality with the Ma h number, as in a quasi-

0 0.1 0.2 0.3 0.4 0.5−2

−1.5

−1

−0.5

0

0.5

1

f t / Ud

(Pin

−P ou

t)/P in

M0=3.48 10−2

M0=5.13 10−2

M0=6.60 10−2

M0=8.75 10−2

Figure 1.30: Representation of the potentially whistling eigenvalues for a given ori� e at di�erent Ma hnumber: the magnitudes evolve strongly - ori� e t = 5 mm, d = 19 mm.steady approximation for a free jet emerging in free spa e, one gets:∆p =

1

2ρ0U

20 ⇒ ∆p′ = ρ0c0M0u

′, (1.57)where ∆p is the stati pressure drop a ross the ori� e, ∆p the a ousti pressure drop a ross the ori� e,u′ the a ousti velo ity in the pipe.The Ma h number is not the only s aling variable: the ratio of the peak eigenvalue to theMa h number is found to depend on the geometry of the ori� e, as shown in Fig. 1.32. Globally(ξevo)(fpeak)/M0 depends linearly on the ontra tion ratio D/d. However, data are not su� ient to�nd another s aling variable of this quantity.

Page 51: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.5 The whistling riterion on ir ular entred ori� es 43

0 0.1 0.2 0.3 0.4 0.5−25

−20

−15

−10

−5

0

5

10

15

f t / Ud

[(P

in−

P out)/

P in] /

M0

M0=3.48 10−2

M0=5.13 10−2

M0=6.60 10−2 M

0=8.75 10−2

Figure 1.31: Non-dimensional representation of the magnitude of the potentially whistling eigenvaluesfor a given ori� e at di�erent Ma h number: the non-dimensional representation is satisfa tory for agiven ori� e: the non-dimensional representation needs improvement - ori� e t = 5 mm, d = 19 mm.

1 1.2 1.4 1.6 1.8 2 2.20

10

20

30

40

50

60

70

80

D / d

ξ evo(f

peak

) / M

0

t=5mmd=19mm

t=5mmd=23mm

t=8mmd=20mm

t=5mmd=15mm

Figure 1.32: From the non-dimensional representation of the potentially whistling frequen ies, thevalues of the ratio ξevo(fpeak)/M0 appear to vary a lot when varying the ori� es.

Page 52: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

44 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.6 The whistling riterion on other singularitiesAdditionally to the ir ular entred ori� es, other singularities have been tested: ori� es with beveland smile shaped slits.1.6.1 Importan e of the bevel for the whistling of ori� esOri� es with bevels are s hematised in Fig. 1.33 and their features are given in Tab. 1.6.1. Two typesof bevels are studied: a rounded bevel and a straight bevel.

(a) Straight bevel (b) Rounded bevelFigure 1.33: S heme of tested ir ular- entred single-hole ori� e with bevel.ori� e CCb1 CCb2 CCb3t (mm) 5 5 5d (mm) 10 10 10bevel 1 side 1 side both sidesbevel type rounded straight straightr (mm) ≈ 3 1 1Table 1.4: Features of the single-hole ori� es with bevel (r is the bevel radius of urvature).The idea is to ompare the referen e ori� e, without bevel, illustrated in Fig. 1.34 to a large roundedbevel ori� e, pla ed upstream for Fig. 1.35 or downstream for Fig. 1.36, to a small straight ori� e, pla edupstream for Fig. 1.37 or downstream for Fig. 1.38, and to a both sides bevel ori� e is presented inFig. 1.39.Results obtained demonstrate the importan e and the position, whether upstream or downstream,of the bevel, on the potentiality of whistling of an ori� e:

• a bevel pla ed on the upstream edge of the ori� e attenuates strongly the potentiality of whistlingof the ori� e. In general, an ori� e with a bevel upstream has no whistling potentiality. It is

Page 53: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.6 The whistling riterion on other singularities 45illustrated in Fig. 1.35 and Fig. 1.37, ompared to the referen e Fig. 1.35. One potentiallywhistling ase is found in Fig. 1.37 be ause the bevel is straight, hen e a vena- ontra ta isforming for su� iently high velo ities, whi h favours potential whistling;• on the ontrary, a bevel pla ed on the downstream edge of the ori� e enhan es the potentialityof whistling of the ori� e. In general, an ori� e with a bevel downstream is potentially whistling.It is illustrated in Fig. 1.38 and Fig. 1.39, ompared to the referen e Fig. 1.34. An ex eptionis illustrated in Fig. 1.39, where the presen e of the rounded bevel downstream de reases thewhistling potential ratio of the ori� e. This latter result needs further study.• the form, rather than the size of the bevel, is riti al. A very small bevel an prevent fromwhistling, if pla ed on the upstream edge of the ori� e, as illustrated in Fig. 1.35.The theory of Howe gives a model to understand qualitatively those results on the importan e ofthe bevel (see (Hirs hberg et al., 2002; Hourigan et al., 1990))It appears that the ollapse in Strouhal number ft/Ud for ori� es with bevel is not so good asfor ori� es without bevel. However, the same Strouhal numbers values are approximately found. Anin rease in the Strouhal number is found for ori� es with a bevel downstream: the Strouhal numbersshift from 0.3 without bevel towards 0.5 with bevel (Fig. 1.36, 1.38 and 1.39).

0 0.2 0.4 0.6 0.8 1−2.5

−2

−1.5

−1

−0.5

0

0.5

1

f t / Ud

(Pin

−P ou

t)/P in

M0=0.52 10−2

M0=1.06 10−2

M0=1.64 10−2

Figure 1.34: Ori� e without bevel: potentially whistling eigenvalues obtained for ori� e t = 5 mm,d = 10 mm (CC10).

Page 54: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

46 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0.2 0.4 0.6 0.8 1 1.2 1.4−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7(P

in−

P out)/

P in

M0=0.25 10−2

M0=0.54 10−2

f t / UdFigure 1.35: Ori� e with a large (r = 3) rounded bevel on the upstream edge: potentially whistlingeigenvalues obtained for ori� e t = 5 mm, d = 10 mm (CCb1).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f t / Ud

(Pin

−P ou

t)/P in

M0=0.25 10−2

M0=0.54 10−2

M0=0.77 10−2

M0=1.18 10−2

Figure 1.36: Ori� e with a large (r = 3) rounded bevel on the downstream edge: potentially whistlingeigenvalues obtained for ori� e t = 5 mm, d = 10 mm (CCb1).

Page 55: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.6 The whistling riterion on other singularities 47

0 0.2 0.4 0.6 0.8 1 1.2 1.4−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

f t / Ud

(Pin

−P ou

t)/P in

M0=0.50 10−2

M0=0.77 10−2

Figure 1.37: Ori� e with a small (r = 1) straight bevel on the upstream edge: potentially whistlingeigenvalues obtained for ori� e t = 5 mm, d = 10 mm (CCb2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

f t / Ud

(Pin

−P ou

t)/P in

M0=0.41 10−2

M0=0.76 10−2

M0=1.36 10−2

Figure 1.38: Ori� e with a small (r = 1) straight bevel on the downstream edge: potentially whistlingeigenvalues obtained for ori� e t = 5 mm, d = 10 mm (CCb2).

Page 56: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

48 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 0.5 1 1.5 2−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

f t / Ud

(Pin

−P ou

t)/P in

M0=0.25 10−2

M0=0.40 10−2

M0=0.68 10−2

M0=0.77 10−2

Figure 1.39: Ori� e with a small (r = 1) straight bevel on both edges: potentially whistling eigenvaluesobtained for ori� e t = 5 mm, d = 10 mm (CCb3).

Page 57: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.6 The whistling riterion on other singularities 491.6.2 Smile shaped slitsTwo smile shaped slits have been tested. They are s hematised in Fig. 1.40 and their features are givenin Tab. 1.6.2.

(a) Front view. (b) Side viewFigure 1.40: Tested smile shaped slits.smile shaped slit F1 F2e (mm) 5 5R (mm) 15 8θ (rad) π/2 0.69Table 1.5: Features of the smile shaped slits.The idea is to ompare this non- ir ular geometry with the previous ir ular ori� es. It appearsthat these smile shaped slits are potentially whistling (Fig. 1.41 and 1.42). Also, the Strouhal numberis very similar (slightly higher) than the one obtained for ir ular ori� es.These results on smile shaped slits ould indi ate that any form of slit or ori� e would be potentiallywhistling. Indeed, all ori� es and slits tested in this study are potentially whistling, ex eption madeby ori� es with a bevel on its upstream edge. This extension of the results needs further study.

Page 58: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

50 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 0.2 0.4 0.6 0.8 1−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f t / Ud

(Pin

−P ou

t)/P in

Figure 1.41: Smile shaped slit (F1): potentially whistling eigenvalues - t = 5 mm, Sd = 63 mm2.

0 0.5 1 1.5 2−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f t / Ud

(Pin

−P ou

t)/P in

Figure 1.42: Smile shaped slit (F2): potentially whistling eigenvalues - t = 5 mm, Sd = 63 mm2.

Page 59: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 511.7 Whistling on�gurationsIn this se tion, on�gurations with no exterior sour e are investigated. A ousti al re�e tions fromboth sides of the ori� e are pla ed, in order to make the ori� e spontaneously whistle for ertainranges of �ow regime. The obje tive is to link the experimentally observed whistling frequen ies withthe previously presented potentially whistling frequen ies.It is not di� ult to obtain whistling from a potentially whistling ori� e. One has to pla e a ousti re�e tion onditions from at least one side of the ori� e. We fo us in the following in a parti ular on�guration, to des ribe more quantitatively those results when the ori� e under �ow whistlesspontaneously.1.7.1 Whistling on�gurationThe following whistling on�guration is studied. In order to provide the a ousti feedba k ne essaryfor whistling to o ur, a ousti re�e tions oe� ients upstream and downstream of the ori� e haveto be su� iently high. For the example des ribed in this se tion, the on�guration used is shown inFig. 1.43. The ori� e tested is t = 5 mm, d = 10 mm (CC10). The a ousti re�e tions used are thefollowing:

Figure 1.43: The studied whistling on�guration: an ori� e; upstream of the ori� e, an expansion hamber; downstream of the ori� e, an open pipe termination, to allow su� ient a ousti feedba k.• upstream of the ori� e (at 0.137 m from the upstream edge of the ori� e): an expansion hamberimposes a high re�e tion oe� ient: |Ru| ≈ 0.8 in the frequen y range 400-2500 Hz, weaklydependent on the �ow velo ity (Fig. 1.44);• downstream of the ori� e (at 0.270 m from the upstream edge of the ori� e): an un�angedopen pipe termination. It imposes a high re�e tion oe� ient: |R| > 0.4 in the frequen y range400-2500 Hz (Fig. 1.45);1.7.2 Comparison between whistling frequen ies and potentially whistling fre-quen iesWhistling frequen ies, as illustrated in Fig. 1.46 and Fig. 1.47, orrespond to Strouhal numbers

fwhistlingt/Ud of 0.2-0.4. They are in well agreement with the potentially whistling frequen ies

Page 60: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

52 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|R|

M0=5.15 10−2

M0=7.37 10−2

Figure 1.44: Chara teristi s of the whistling on�guration: the re�e tion oe� ient of the expansion hamber (seen from the ori� e).

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|R|

without flowM

0=4.97 10−2

room resonances

Figure 1.45: Chara teristi s of the whistling on�guration: the re�e tion oe� ient of the un�angedopen pipe end (seen from the ori� e).

Page 61: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 53determined by the whistling riterion (and presented in Fig.A.10). There is a slight dis repan y forthe low limit, but a good agreement in tenden y.

0.2 0.4 0.6 0.8 1 1.2 1.410

−10

10−8

10−6

10−4

10−2

100

f t / Ud

PS

D (

Pa2 /H

z)whistling frequency f

whistling

2 fwhistling

fwhistling

/2

Figure 1.46: In the whistling on�guration, example of typi al SPD spe trum obtained far downstreamof the ori� e (at mi rophone d4), exhibiting whistling frequen y and harmoni s (M0 = 4.62x10−3).The dis repan y orresponds to a dis repan y in the Strouhal number of 0.03 and in frequen y of140 Hz at its maximal value, around M0 = 7.7x10−3. This may be due to the di�erent �ow onditionimpa ting the upstream edge of the ori� e, be ause the expansion hamber is only at 5D upstream ofthe ori� e. Hen e the �ow onditions between the non-whistling and whistling on�gurations may bedi�erent.1.7.3 Comparison between whistling frequen ies in air and in waterWe add in this se tion the results obtained in hapter 4, when analysing measurements in water inan industrial loop, with high re�e ting a ousti boundary onditions. Whistling frequen ies have beenobserved, in presen e altogether of avitation phenomena.The omparison between our measured instability frequen ies in air is plotted in Fig.1.48. Thisis a spe ta ular result. The values observed in water are quite lose to the values obtained for thepotentially whistling frequen ies for thin ir ular entred ori� es in air. That gives a strong indi ationthat the Strouhal number is not highly sensitive on the ompressibility of the �uid, on the presen eor not of avitation, on the pipe diameter and on the stati pressures in the pipe. This ompletessatisfa torily our study of the Strouhal number, as we have not varies those parameters.

Page 62: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

54 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 0.005 0.01 0.015 0.020.1

0.2

0.3

0.4

0.5

0.6

M0

f t /

Ud

Whistling frequenciesPotentially whistling frequencies

fpeak

finf

fsup

Figure 1.47: Comparison of the whistling frequen ies observed and the potentially whistling frequen iesmeasured (finf and fsup are respe tively the inferior and superior frequen ies of the potentiallywhistling �rst mode, fpeak is the frequen y in this range orresponding to the maximum ratio ofprodu ed a ousti power).

Page 63: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 55

104

105

106

0

0.1

0.2

0.3

0.4

0.5

ReD

=U.D/ν

St t =

f t /

Ud

Whistling frequencies observed in cavitation regime (water, D=7.4cm, P

downstream=2.5 bars)

Potentially whistling frequencies (air, D=3 cm, P

downstream=1 bar)

t/d=0.64, d/D=0.30

t/d=0.64, d/D=0.30

Figure 1.48: Comparison between the whistling frequen ies observed in industrial measurements inwater for a ir ular entred ori� e (analysed in hapter 4), and the potentially whistling frequen ies of ir ular entred ori� es obtained with the whistling riterion.

Page 64: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

56 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.7.4 A model to predi t the instability frequen yIn this se tion, we propose a simple model to predi t the whistling frequen y (as shown in the previousse tion) of an ori� e in an a ousti system with re�e tion oe� ients.The on�guration of the model is illustrated in Fig. 1.49. An ori� e under onstant �ow in a du tis onsidered. It is represented by its s attering matrix under this �ow Se. The upstream Ru anddownstream Rd a ousti re�e tions are lo alized at Lu and Ld from the upstream edge of the ori� e.

Figure 1.49: S heme of the model to predi t the whistling frequen y, in plane wave approximation,using the s attering matrix of the singularity Se and the ara teristi s of the a ousti re�e tions R,Lupstream and downstream of the singularity.The idea is to use a linear model of basi a ousti propagation equations to identify frequen iesfor whi h stationary plane waves exist. Then by feedba k loops, it is assumed that these stationaryfrequen ies an be ampli�ed to reate whistling. Hen e the frequen y of whistling is dedu ed. Itis assumed that there is no shift in frequen y during the ampli� ation and saturation of the waves.This hypothesis is impossible to estimate, as our model is linear, and ampli� ation and saturationphenomena are non-linear.The plane waves propagate in the du ts assuming no attenuation:p+1 (x, ω) = P+

1 ej(ωt−kx), p−1 (x, ω) = P−

1 ej(ωt+kx), (1.58)

p+2 (x, ω) = P+

2 ej(ωt−kx), p−2 (x, ω) = P−

2 ej(ωt+kx). (1.59)The a ousti propagation equations in this on�guration an be expressed at x = 0. The in�uen eof the ori� e: (

P+2

P−1

)

= Se

(

P+1

P−2

)

, (1.60)with:Se =

(

T+e R−

e

R+e T−

e

) (1.61)and the upstream and downstream re�e tions:P+

1 = Ru(x = 0, ω)P−1 , (1.62)

P−2 = Rd(x = 0, ω)P+

2 , (1.63)

Page 65: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 57where Ru(x = 0, ω) = Ru(x = L,ω) e2jkL and Rd(x = 0, ω) = Rd(x = L,ω) e−2jkL.In this system, there are four unknowns, P+1 , P

−1 , P

+2 , P

−2 , with four equations:

1 −Ru 0 0

0 0 −Rd 1

R+e −1 0 T−

e

T+e 0 −1 R−

e

P+1

P−1

P+2

P−2

=

0

0

0

0

. (1.64)There exists a non-vanishing solution if the determinant of the system is zero: this orresponds to theexisten e of stationary plane waves at that frequen y, su h that:

RuRd(T+e T

−e +R+

e R−e ) −RuR

+ −RdR− + 1 = 0 (1.65)The study of the an ellation of the determinant should hen e give the whistling frequen ies reportedin the previous se tion.We apply this model to the whistling on�guration des ribed in the previous se tion. The s atteringmatrix oe� ients used are the ones measured. The re�e tion oe� ients used have been simpli�ed ompared to experiment. The loss is mainly on the phase information, but end orre tions are takeninto a ount (see Fig. 1.50):

Ru(x = 0, ω) = −0.8 e2jk(Lu+0.82a) (1.66)Rd(x = 0, ω) = −[0.73 − 1.5 10−4 (f − 1000)] e−2jk(Ld+t+0.61a) (1.67)In this latter, we have used the end orre tion of an exit of a tube with thin walls (formula of Levine andS hwinger (1948)). Results are illustrated in Fig. 1.51, 1.52 and 1.53. Although re�e tion oe� ientsused are approximate, the model seems to give satisfa tory results. However, further study is neededto obtain more data and on�rm this result.

0 500 1000 1500 2000 2500 3000 3500 40000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

|Ru|

modelexperimental

(a) Upstream of the ori� e 0 500 1000 1500 2000 2500 3000 3500 40000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency (Hz)

|Rd|

modelexperimental

(b) Downstream of the ori� eFigure 1.50: Model to predi t the whistling frequen y: simpli�ed re�e tion oe� ients are applied ompared to measurements.A parametri study is done on the upstream re�e tion oe� ient, as illustrated in Fig. 1.54. Whenvarying its magnitude, it is observed that the whistling frequen y does not hange mu h (few Hz).

Page 66: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

58 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 500 1000 1500 2000 2500 3000 3500 4000−3

−2

−1

0

1

2

Frequency (Hz)

Re(det)Im(det)

experimentalwhistling

f=1080 Hz

model prediction;f≈1130 Hz

Figure 1.51: Model to predi t the whistling frequen y, example 1: the model gives a satisfa torypredi tion of the measured whistling frequen y - M0 = 5.2 10−3.

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5

Frequency (Hz)

|det|

model prediction

Figure 1.52: Model to predi t the whistling frequen y, example 1: the model gives a satisfa torypredi tion of the measured whistling frequen y - M0 = 5.2 10−3.

Page 67: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 59

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

Frequency (Hz)

|det|

experimentalwhistling f=2230 Hz

modelprediction

f≈2340 Hz

Figure 1.53: Model to predi t the whistling frequen y, example 2: the model gives a satisfa torypredi tion of the measured whistling frequen y - M0 = 1.64 10−2.Below a ertain value of the re�e tion oe� ient, the model predi ts no whistling. This is in agreementwith experiments: both re�e tions, upstream and downstream, are ne essary to obtain whistling. It isalso observed that the whistling frequen y, as illustrated in Fig. 1.54, is lose to a λ/2 type frequen yof the resonator of length Lu.

Page 68: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

60 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8300

400

500

600

700

800

900

1000

1100

1200

1300

1400

|Ru|

Fre

quen

cy (

Hz)

frequency predicted by the model

f=2c0/L

u

f=2c0/L

d

f=2c0/(L

u+L

d)

Figure 1.54: Model to predi t the whistling frequen y: parametri study varying the magnitude ofthe upstream re�e tion oe� ient. The frequen y obtained with the model does not vary with themagnitude, and no whistling is obtained when the magnitude of the re�e tion oe� ient is low enough(<0.5 here) - M0 = 1.64 10−2.

Page 69: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 611.7.5 A failed model to predi t the instability with Bode-Nyquist ideaAnother model has been tried to predi t the instability frequen y of an ori� e in an a ousti systemwith re�e tion oe� ients. This model uses the ideas of Bode and Nyquist for the ampli� ation ofopen system. However, it has not given satisfa tory results. The idea is however presented in thefollowing.Experimentally, it is found (see se tion 1.5.5) that the s attering matrix, in the new basis of ve tors(-1,1);(1,1), an be approximately written:S′

e ≈(

µ 0

0 1

)

, (1.68)where µ is the gain asso iated to the ve tor in phase opposition (-1,1). The ve tor in phase (1,1) isunaltered when going through the ori� e.The sour e generates upstream and downstream plane waves. Ea h waves ouple an be de omposedon the basis of ve tor: (-1,1); (1,1). From the previous analysis of S′e, the potentially ampli�ed waveis the one in phase opposition, ollinear to the ve tor (-1,1): the sour e is a dipole.Hen e if the sour e generates (−Π−

1s,Π+2s), it omes after an upstream and downstream a ousti feedba k in the system an ampli� ation of :

(

−Π−1s

Π+2s

)

−→(

−RuΠ−1s

RdΠ+2s

)

=Ru +Rd

2

(

−Π−1s

Π+2s

)

+−Ru +Rd

2

(

Π−1s

Π+2s

)

, (1.69)where Ru and Rd are upstream and downstream re�e tion oe� ients.Next, this wave is ampli�ed by the s attering matrix: the ampli� ation of the omplete return path(or open loop) of the ve tor ollinear to (-1,1) is:(

−Π−1s

Π+2s

)

−→ µRu +Rd

2

(

−Π−1s

Π+2s

) (1.70)Applying Bode and Nyquist theory, an ampli� ation (i.e. instability) o urs at a frequen y if theboth following onditions are obtained:• the gain is superior to the unity, that is:

∣∣∣∣µRu +Rd

2

∣∣∣∣> 1 (1.71)

• the phase delay of the gain is an integer number of 2π: the returning wave is in phase with thegenerated one, that is:phase

(

µRu +Rd

2

)

= 0 (1.72)Unsatisfa tory results have been obtained. The on�guration used is the same as des ribed in theprevious se tion (same re�e tion oe� ients). The example des ribed in the following is obtained forM0 = 1.01 10−2, but four di�erent �ow velo ities and two di�erent on�gurations have been tested.Whistling is observed, as illustrated in Fig. 1.55, at 1776 Hz in the example des ribed. The model

Page 70: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

62 1 Experimental study of a whistling riterion for singularities in air pipe �owpredi ts no whistling, as the magnitude of the gain (Fig. 1.58) is under the unity.However, some results are obtained: the assumptions of the model on the shape of the s attering matrixS′

e are veri�ed (Fig. 1.56), the phase of the gain vanishes around 1820 Hz (Fig. 1.57) and the magnitudeof the gain is maximum at a value of 0.6 in the range 1550-1750 Hz. The unsatisfa tory result of thismodel may be due to ina ura ies when adopting the approximate expression of the s attering matrixS′

e. The magnitude of the gain may be sensitive to this approximation. However, this model is basedon this approximation, so that no improvement of the model is proposed.

1000 2000 3000 4000 5000 600010

−10

10−8

10−6

10−4

10−2

Frequency (Hz)

Pa2 /H

z

SPD at 55D downstream

Figure 1.55: Presentation of the ase presented: the on�guration used is des ribed in the previousse tion, using, from both sides of the ori� e, an expansion hamber and an open pipe end terminationto reate a ousti re�e tions, and a �ow of M0 = 1.01 10−2. The spe trum observed shows a whistlingfrequen y of 1776 Hz.

Page 71: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.7 Whistling on�gurations 63

0 1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frequency (Hz)

Sca

tterin

g m

atrix

coe

ffici

ent (

_)

|Se11

’|=|µ||Se

12’|=|r|

|Se21

’||Se

22’|

Figure 1.56: S attering matrix S′e written in the new basis of ve tors (-1,1);(1,1). The assumption ofthe Bode-Nyquist model that the extra-diagonal oe� ients of the experimental s attering matrix arenegligible seems orre t, as well as the assumption that Se′22 equals the unity - M0 = 1.01 10−2.

0 1000 2000 3000 4000−4

−3

−2

−1

0

1

2

3

4

Frequency (Hz)

Pha

se o

f the

gai

n (_

)

phase(µ (Ru+R

d)/2)

Figure 1.57: Phase of the gain. The appli ation of the Bode-Nyquist model asks for a value of thephase equalling 0 [2π]. Su h a ondition is found around 1820 Hz, lose to the observed whistlingfrequen y (1776 Hz).

Page 72: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

64 1 Experimental study of a whistling riterion for singularities in air pipe �ow

0 1000 2000 3000 40000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

Mag

nitu

de o

f the

gai

n (_

)

|µ (R1+R

2)/2|

Figure 1.58: Magnitude of the gain. The appli ation of the Bode-Nyquist model asks for a value ofmagnitude over the unity, to predi t whistling frequen ies. No su h ondition is found around theobserved whistling frequen y 1776 Hz. However, a maximum value around 0.6 is obtained in the range1550-1750 Hz.

Page 73: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.8 Broadband noise 651.8 Broadband noiseBroadband spe tra are presented in omplements of the previous se tions. The obje tive is to studythe e�e t of the potentially whistling frequen ies on the spe tra obtained in real onditions, that iswithout exterior sour e and in presen e of a ousti re�e tions from both sides of the ori� e.1.8.1 Broadband spe traMeasurements are done in `Frequen y Response' mode: no sour e is used, only turbulen e noise ismeasured. A ousti terminations are the same as for s attering matrix measurements (with a re�e tionof about 6% of the a ousti energy in one round trip).Spe tra as PSD (Power Spe tral Densities) are obtained at the 8 transdu ers. Only the spe trumat mi rophone d4 is presented here. This mi rophone is pla ed at 55D downstream of the ori� e, sothat this observation point if far away from the sour e region.A typi al result for ori� e t = 5 mm, d = 15 mm is given in Fig. 1.59:• the hump form around 5500 Hz seems to orrespond to the ampli� ation due to the �rst transversemode. This frequen y is relatively far from the ut-o� frequen y of the pipe at 6700 Hz without�ow, but we observe experimentally that this hump does not vary with the Ma h number;• the �rst hump form orresponds to potentially whistling frequen ies. This is on�rmed by therepresentation in Strouhal number given in Fig. 1.60. Data ollapse very well in the x- oordinateswith the Strouhal representation. Also, data ollapse well in magnitude by dividing the PSD withthe square of the estimated pressure drop a ross the ori� e (the vena ontra ta oe� ient is takenequal to 0.70) with a lassi al quasi-stationary model (see Hofmans (1998)).1.8.2 Lighthill s aling lawsInvestigations have been lead to verify Lighthill s aling laws: a dipole noise would follow a law in M4

d(Md is the Ma h number at the ori� e), while a turbulen e noise would follow a law in M6d (Nelsonand Morfey, 1981).Results are shown in Fig. 1.61 and 1.62 with 1/3 band o tave spe tra. As a result, it seems thatthe behaviour of the ori� e is more omplex than those simple s aling laws.

Page 74: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

66 1 Experimental study of a whistling riterion for singularities in air pipe �ow

102

103

104

10−10

10−8

10−6

10−4

10−2

100

102

Frequency (Hz)

PS

D (

Pa2 /H

z)

M0=1.86 10−2

M0=3.44 10−2

M0=5.53 10−2

potentially whistlingfrequencies

1st transverse mode

Figure 1.59: Typi al broadband noise spe tra obtained far downstream (55D) of the ori� e: appearan eof a hump of produ tion of a ousti energy, orresponding to the potentially whistling frequen ies -ori� e t = 5 mm, d = 15 mm with various Ma h numbers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.810

−14

10−12

10−10

10−8

10−6

f t / Ud

PS

D / ∆

p2 (H

z−1 )

M0=1.86 10−2

M0=3.44 10−2

M0=5.53 10−2

Figure 1.60: Non-dimensional broadband noise spe tra obtained far downstream (55D) of the ori� e:the hump form of produ tion of a ousti energy orresponds to the potentially whistling Strouhalnumbers (here around 0.2 -0.3) - ori� e t = 5 mm, d = 15 mm with various Ma h numbers.

Page 75: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.8 Broadband noise 67

0 0.1 0.2 0.3 0.4 0.5 0.610

−3

10−2

10−1

100

101

102

103

f t / Ud

PS

D in

1/3

oct

ave

band

s / M d4 (

Pa2 /H

z) M0=1.86 10−2

M0=3.44 10−2

M0=5.53 10−2

Figure 1.61: Evaluation of the non-dimensional noise representation using the Lighthill s aling lawin M4d when assuming a dipole noise: this representation is not satisfa tory for the hump form orresponding to an assumed dipole type sour e of sound - ori� e t = 5 mm, d = 15 mm.

0 0.2 0.4 0.6 0.8 110

−1

100

101

102

103

104

105

f t / Ud

PS

D in

1/3

oct

ave

band

s / M d6 (

Pa2 /H

z) M0=1.86 10−2

M0=3.44 10−2

M0=5.53 10−2

Figure 1.62: Evaluation of the non-dimensional noise representation using the Lighthill s aling lawin M6d when assuming a turbulen e noise: this representation is not satisfa tory for the broadbandspe trum outside the hump form - ori� e t = 5 mm, d = 15 mm.

Page 76: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

68 1 Experimental study of a whistling riterion for singularities in air pipe �ow1.9 Con lusionThis hapter is an experimental study of a whistling riterion of singularities under onstant air �owin a straight pipe. The singularities tested are mainly a range of thin ir ular- entred single-holeori� es, with various thi kness and diameter. The tested air �ow onditions are typi al of nu learpower plant: high Reynolds number (of the order of 104-105), and low Ma h number (of the orderof 10−2 in air). The whistling riterion into a ount is a simple a ousti energy balan e, in our aselimited to a plane-wave propagation, applied to a region en losing the vortex shedding and the ori� e.The idea is to assimilate the whistling with an a ousti power produ tion (physi ally, some energy ofthe �ow is transferred to a ousti energy), and to link this a ousti balan e with the s attering matrixof the ori� e under this �ow.Our experimental results validate the whistling riterion:• on the one hand, using this riterion, ranges of potentially whistling frequen ies are systemati allyfound (se tion 1.5.3), whatever the ori� e tested and the �ow imposed (as long as the ori� ehas no beaver on its upstream edge, and that the �ow is non-vanishing). These frequen ies orrespond to the frequen ies of instability, of type Kelvin-Helmholtz, of the shear layer formedat the separation point on the upstream edge of the ori� e;• on the other hand, our measurements in a tual whistling onditions, that is, when there area ousti re�e ting onditions from both sides of the ori� e (for instan e, using an expansion hamber and an open pipe end termination), show that the whistling frequen ies are lose tothe potentially whistling frequen ies (se tion 1.7). This indi ates that the non-linear pro ess ofsaturation of the self-sustained os illation does not modify mu h the frequen y of instability fromwhi h it starts. A lose study on the level of orresponden e of these two frequen ies has notbeen made;• Additionally, the study of the broadband noise, when only turbulent noise is present be ause thea ousti re�e ting onditions are too low, on�rms that an a ousti produ tion o urs ar theseinstability frequen ies, whi h gives a dire t on�rmation of the validity of the whistling riterion(se tion 1.8).A deep study has been made on the potentially whistling or instability frequen ies. Literature datahave been on�rmed and quantitatively established:• a Strouhal number orresponding to these instability frequen ies has been studied extensively onsingle-hole ir ular- entred ori� es without bevel (se tion 1.5.3). Various s aling variables havebeen tested to de�ne this Strouhal number, but the most satisfa tory ones have proven to be theori� e thi kness, and the ori� e velo ity.The values obtained are quite onstant, between 0.2 and 0.3, on erning the �rst hydrodynami mode and a fully turbulent pipe �ow (pipe Reynolds number above 5 103). This range of valuesis in lose oheren e with literature data from Anderson. The Strouhal number is shown tode rease slightly with the Reynolds number, and to vary slightly with the ori� e thi kness anddiameter. Higher order hydrodynami modes (up to mode three) are present in our data, buthave not been parti ularly studied.

Page 77: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

1.9 Con lusion 69Additionally, it has been observed that, for a �ow lose to the laminar-turbulent transition (pipeReynolds number under 5 103), Strouhal numbers in rease signi� antly. It is attributed to thefa t that the �ow in this ase is of a di�erent kind;• the study of other singularities (se tion 1.6), that is, urved slits, has shown similar results:potentially whistling ranges of frequen y and similar Strouhal number values. This seems to on�rm that the whistling riterion an be applied on any kind of dis ontinuity;• the in�uen e of a bevel on an edge of the ori� e has been studied (se tion 1.6.1). Parti ularly, abevel on the upstream edge of the ori� e is shown to be riti al for whistling: it redu es mu h thepotentiality of whistling. This result is in a ordan e with literature data, and with our a tualwhistling observations;• the in ident wave onditions allowing the instability have been lari�ed (se tion 1.5.5). Themaximum of produ tion of a ousti energy orrespond to an ex itation of the shear layer with amaximum of a ousti velo ity (a minimum a ousti pressure). In other terms, whistling o urswhen the in ident pressure waves from both sides of the ori� e are equal in magnitude and inphase opposition. Complementarily, no energy ex hange o urs between the a ousti �eld and themain �ow when the in ident waves are in phase (velo ity node). Those results are in agreementwith qualitative des riptions in literature;• a dimensionless representation of the amplitude of the eigenvalues from the whistling riterion,representing an a ousti power ratio, has been proposed and is shown to be quite onstant withthe Ma h number (se tion 1.5.6), for a given ori� e. However, when varying the ori� e thi knessand diameter, strong dis repan ies are found: hen e more study is needed to �nd a satisfa torydimensionless representation.In a tual whistling on�gurations, that is without any exterior sour es and a ousti re�e tions fromboth sides of the ori� e, the following results are obtained:• an understanding of the whistling on�gurations is obtained (se tion 1.7.1). The whistling o ursif there is enough a ousti re�e tion (upstream and/or downstream of the ori� e) in the test rig;• a model is proposed (se tion 1.7.4) to predi t the whistling frequen y, given the s atteringmatrix of the ori� e under the �ow, and the two (upstream and downstream) a ousti re�e tion oe� ients. The model gives satisfa tory results but would need more data to be onsidered asvalidated.In perspe tive, numerous studies would worth being made to omplement this �rst study on thiswhistling riterion:• to on�rm this validation work, other singularities would be worth testing, su h as types ofori� es (multi-hole ori� es, thi k ori� es), valves, and the assembly of su essive singularities.The di� ulty when using other geometries is that higher order a ousti mode may propagate.In that ase, the riterion an be applied, but the mathemati al formalism is more ompli ated;

Page 78: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

70 1 Experimental study of a whistling riterion for singularities in air pipe �ow• more study is needed to understand the amplitudes obtained in the energy transfer ratio of the riterion. A omplete non-dimensional representation la ks. This topi an be a very interestingone, as this amplitude is very related to the phenomenon of whistling, and no saturation is intoa ount in this pro ess.• it would be interesting to ompare the theoreti al formulas from theory (Mi halke for instan e) topredi t the instability frequen ies. If su h formulas are found, then the potentiality of whistlingof a on�guration is known without the need of determining experimentally its s attering matrix oe� ients. This would be very interesting from an experimental point of view.• more study is needed to understand why the model inspired by Bode-Nyquist method fails(se tion 1.7.5). New measurements should be made, taking a parti ular are to the measureof the re�e tion oe� ients of the test rig. They were only approximate in our measurement;• to obtain a de�nitely dimensionless Strouhal number, measurements have to be made withdi�erent speed of sound and stati pressure in the pipe. For instan e, measurements shouldbe made in water.Additionally, the dimensionless representation of the broadband noise spe tra, when the ori� e is notwhistling, is not satisfa tory, when following the simple Lighthill s aling laws. The behaviour seemsto be adapted between a dipole sound and a quadrupole sour e. This seems in fa t not surprising, asturbulen e and ampli�ed unstable frequen ies are present, but further study would be needed on thistopi .Finally, this whistling riterion represents a useful tool to design nu lear power plants du ts andprevent from whistling. Its major advantage is its simpli ity, both in its idea (for instan e, we do notneed vortex sound theory, but only a simple energy balan e) and in its appli ation. It `only' needsthe measurement of the s attering matrix of the ori� e under �ow, whi h an be done in any test rigbe ause this matrix does not depend on the a ousti onditions of the test rig.

Page 79: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BibliographyM. Abom, S. Allam, S. Boij, Aero- A ousti s of Flow Du t Singularities at Low Ma h Numbers, 12thAIAA/CEAS Aeroa ousti s Conferen e, AIAA-2006-2687.G. Ajello, Mesures a oustiques dans les guides d'ondes en présen e d'é oulement: mise au pointd'un ban de mesure, appli ation à des dis ontinuités, Thèse de do torat de l'Université du Maine,A adémie de Nantes, 1997S. Allam, M. Abom, Investigation of damping and radiation using full plane wave de omposition indu ts, Journal of Sound and Vibration, 292: 519-534, 2006A. B. C. Anderson, Dependen e of Pfeifenton (pipe tone) frequen y on pipe length, ori� e diameter,and gas dis harge pressure, Journal of the A ousti al So iety of Ameri a, 24: 675-681, 1952.A. B. C. Anderson, Dependen e of the primary Pfeifenton (pipe tone) frequen y on pipe-ori� egeometry, Journal of the A ousti al So iety of Ameri a, 25: 541-545, 1953a.A. B. C. Anderson, A ir ular-ori� e number des ribing dependen y of primary Pfeifenton frequen y ondi�erential pressure, gas density and ori� e geometry, Journal of the A ousti al So iety of Ameri a,4: 626-631, 1953b.A. B. C. Anderson, A jet-tone ori� e number for ori� es of small thi kness-diameter ratio, Journal ofthe A ousti al So iety of Ameri a 26(1): 21-25, 1954.A. B. C. Anderson, Metastable jet-tone states of jets from sharp-edged, ir ular, pipe-like ori� es,Journal of the A ousti al So iety of Ameri a, 27: 13-21, 1955a.A. B. C. Anderson, Stru ture and velo ity of the periodi vortex-ring �ow pattern of a primaryPfeifenton (pipe tone) jet, Journal of the A ousti al So iety of Ameri a, 27: 1048-1053, 1955b.A. B. C. Anderson, Vortex ring stru ture-transition in a jet emitting dis rete a ousti frequen ies,Journal of the A ousti al So iety of Ameri a, 28: 914-921, 1956.Angot, A, Compléments de mathématiques, 6th Ed., Masson et Cie Ed., Paris, 1972.Y. Aurégan, A. Maurel, V. Pagneux, J.-F. Pinton, Sound-Flow Intera tions, Le ture Notes in Physi s,Springer Ed., 2002.Y. Aurégan, R. Starobinsky, Determination of a ousti energy dissipation/produ tion potentiality fromthe a ousti transfer fun tions of a multiport, A usti a, 85: 788-792, 1999.71

Page 80: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

72 BIBLIOGRAPHYY, Aurégan, M, Leroux. Failures in the dis rete models for �ow du t with perforations: an experimentalinvestigation, Journal of Sound and Vibration, 265(1): 109-121, 2003.A. Billon, Étude expérimentale de sons auto-entretenus produits par un jet d'un onduit et heurtantune plaque fendue, Thèse, Université de La Ro helle, 2003.W. K. Blake, A. Powell, The development of ontemporary views of �ow-tone generation, Vol I.,A ademi Press, Orlando, 1986.W. K. Blake, Me hani s of Flow-Indu ed Sound and Vibration, Vol. I & II., A ademi Press.R. Blevins, Applied Fluid dynami s handbook, Krieger Ed., ISBN 0-89464-717-2, 1984.H. Boden, M. Abom, In�uen e of erros on the two-mi rophone method for a ousti properties in du ts,Journal of the A ousti al So iety of Ameri a, 79(2): 541-549, 1986.P. O. A. L. Davies Pra ti al �ow du t a ousti s. Journal of Sound and Vibration, 124 (1): 91-115,1988.P. E. Doak. Flu tuating total enthalpy as a generalized �eld. A ousti a Physi s, 44: 677-685, 1995.P. G. Drazin, W. H. Reid. Hydrodynami instability. Cambridge University Press, 1981.P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y. Aurégan, A. Hirs hberg, M.C.A.M. Peters. Quasisteadyaero-a ousti response of ori� es. Journal of the A ousti al So iety of Ameri a, 110(4): 1859-1872,2001.A. Hirs hberg, J. C. Bruggeman, A. P. J. Wijnands, N. Smits. The Whistler Nozzle and Horn asAero-A ousti Sound Sour es in Pipe Systems. A usti a 68: 157�160, 1989A. Hirs hberg, C. S hram. A primitive approa h to aero ousti s. Le ture Notes in Physi s, SpringerBerlin / Heidelberg Publisher, ISSN: 1616-6361, Volume 586, 2002.C. M. Ho, N. S. Nossier. Dynami s of an impinging jet, part 1: the feedba k phenomenon. Journal ofFluid Me hani s, 105, p. 443-473.G. C. J. Hofmans. Vortex sound in on�ned �ows. PhD Thesis, Te hnis he Universiteit Eindhoven,The Netherlands, 1998.G. Hofmans, R. Boot, P. Durrieu, Y. Aurégan, A. Hirs hberg. Aeroa ousti response of a slit-shapeddiaphragm in a pipe at low Helmholtz number, 1: quasi-steady results. Journal of Sound andVibration, Volume 244, Issue 1, 28 June 2001, Pages 35-56.K. Hourigan, M. C. Welsh, M. C. Thompson, A. N. Stokes. Aerodynami sour es of a ousti resonan ein a du t with ba�es. Journal of Fluids and Stru tures, 4: 345-370, 1990.M. S. Howe. Contributions to the theory of aerodynami sound, with appli ation to ex ess jet noiseand the theory of the �ute. Journal of Fluid Me hani s), 71: 625:673, 1975.I. E. Idel' ik, Memento des pertes de harge (in Fren h), Eyrolles Ed., Paris, 1969.

Page 81: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BIBLIOGRAPHY 73L. V. King, On the ele tri al and a ousti ondu tivities of ylindri al tubes bounded by in�nite �anges,Philosophi al Magazine, 21(7): 128-144, 1936.S. Lang, Algèbre, Dunod Ed., ISBN 2100079808, 2004.H. Levine, J. S hwinger, On the radiation of sound from an un�anged ir ular pipe, Physi al Review,73: 383-406, 1948.J. Lighthill, On sound generated aerodynami ally , Pro eedings of the Royal So iety of London, SeriesA211: 564-587, 1952.C. L. Morfey, Sound transmission and generation in du ts with �ow, Journal of Sound and Vibration,14: 37-55, 1971.P. A. Nelson, C. L. Morfey, Aerodynami sound produ tion in low speed �ow du ts, Journal of Soundand Vibration 79(2): 263-289, 1981.S. Nygard, Modelling of low frequen y sound in du t networks, Li entiate Thesis, KTH, Sto kholm,Sweeden, 2000.M.C.A.M. Peters, A. Hirs hberg, A.J. Reijnen, A.P.J. Wijnands, Damping and re�e tion oe� ientmeasurements for an open pipe at low Ma h and low Helmholtz numbers, Journal of Fluid Me hani s,256: 499-534, 1993.A. D. Pier e, A ousti s: An Introdu tion to Its Physi al Prin iples and Appli ations, M Graw-HillBook Company, New York, 1981.A. Powell, Theory of vortex sound, Journal of the A ousti al So iety of Ameri a, 36, 1964.S. W. Rienstra, A. Hirs hberg, An Introdu tion to A ousti s, Eindhoven University of Te hnology, TheNetherlands, 2003.D. Ro kwell, Os illations of impinging shear layers, AIAA Journal, 21: 645-664, 1983.T. Sarpkaya, A riti al review of the intrinsi nature of vortex-indu ed vibrations, Journal of Fluidsand Stru tures, 19: 389-447, 2004.T. A. Wilson, G. S. Beavers, M. A. De Coster, D. K. Holger, D. Regenfuss, Experiments on the �uidme hani s of whistling, Journal of the A ousti al So iety of Ameri a, 50: 366-372, 1971.G. S. K. Wong, Speed of sound in standard air, Journal of A ousti al so iety of Ameri a, 77 (5):1359-1366, 1985.

Page 82: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),
Page 83: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Chapter 2Aeroa ousti al behaviour of a singleexpansion with the multimodal method2.1 Introdu tionA numeri al method, alled the multimodal method, is introdu ed in this hapter, and applied it tostudy of the aeroa ousti al behaviour of a single expansion. The obje tive is to obtain the a ousti �elds and the a ousti s attering matrix of the on�guration, and ompare them to literature data, inorder to estimate the validity of this al ulation method on this on�guration.This method is a simple al ulation method, already used at the LAUM for di�erent on�gurations(Bi et al., 2006; Leroux et al., 2003). It negle ts vis ous-thermal e�e ts and onsists of the resolutionof the linearized Euler equations under a sheared �ow pro�le in established harmoni regime, using a�nite di�eren e s heme in the transverse dire tion, whereas the evolution in the longitudinal dire tionis simply obtained by propagating the solutions. The �ow pro�le imposed is in ompressible, with ashape lose to the power �ow pro�le typi al of turbulent pipe �ow. It is invariable in the longitudinaldire tion, so that we negle t the expansion of this main �ow in the s attering matrix oe� ient.With applying rigidity ondition of the wall pipe, the solutions obtained are alled modes. Thestudy of the wave numbers of those modes separate them into three types: a ousti modes, propagating(approximately as there is the in�uen e of the main �ow) at the speed of sound, hydrodynami modes, onve ted approximately at the speed of the �ow, and evanes ent modes, with varying wave numbers.Among the hydrodynami modes, one of them, on entrated near a virtual in�exion point of the �owpro�le, appears to be unstable for ertain onditions of the parameters (frequen y, �ow pro�le, Ma hnumber): the real part of its wave number is non-vanishing and makes an exponential ampli� ation ofthe response of this mode.The onne tion of the modes using onditions of ontinuity of the a ousti al variables at thelo ation of the single expansion gives the a ousti s attering matrix of the single expansion. The oe� ients obtained are ompared to experimental data from Ronneberger and some analyti al modelsfor behaviour at limit. 75

Page 84: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

76 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.2 Analyti al problem2.2.1 Problem to solveThe propagation of a sound wave, at a pulsation frequen y ω, en ountering a single expansion in a2D-du t with a sheared mean �ow pro�le, is onsidered.The problem to solve is to �nd the a ousti al re�e tion and transmission oe� ients of thissingularity, and to obtain the a ousti al �elds when applying an ex itation wave.2.2.2 Geometry and �ow hypothesisThe single expansion is a dis ontinuity of du t ross-se tion. It is made by a su ession of two du ts(see Fig. 2.1):• du t I: radius a∗ (in meter), dimensionless radius 1;• du t II: radius b∗ > a∗, dimensionless radius b.

Figure 2.1: Geometry of the problem (in dimensionless ylindri al variables)Du ts studied are two-dimensional, and an have either a re tangular or a ir ular se tion:• in 2D Cartesians (re tangular du t): the oordinate system is (x, y), the x-axis being the dire tionof the �ow, the y-axis the longitudinal dimension;• in 2D axisymmetri ( ir ular du t): the oordinate system is (z, r), the z-axis being the dire tionof the �ow, the r-axis the longitudinal dimension.For reasons of symmetry, only half of the expansion is studied: r = 0 (y = 0) refers to the entre ofthe pipe.2.2.3 Assumption of non-expansion of the main �owAn in ompressible sheared �ow pro�le is imposed in du t I, of Ma h number M(r)ez, where M(r) =

U(r)/c0 (c0 is the speed of sound in the �uid; c0=343 m.s−1 at T=293 K in air). This �ow pro�le goes

Page 85: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.2 Analyti al problem 77into du t II un hanged: there is no expansion of the �ow in the downstream du t, hen e the region1 ≤ r ≤ b in du t II is without �ow.Thus we assume that the physi s of the phenomenon is on entrated at the sudden enlargement:this is where a ousti re�e tions is supposed to mainly o ur, be ause the a ousti �eld is very sensitiveto dis ontinuities of se tions, and not so mu h to the evolution of the �ow in a pipe of onstant se tion.Quantitatively, this assumption of non-expansion of the main �ow is evaluated in Boij and Nilsson(2005). It is shown that the expansion of the �ow does not in�uen e signi� antly the s attering matrix oe� ients of the expansion, whi h indi ates a good validity of this assumption.Finally, the lose agreement between our al ulations and experimental data, for whi h the �owexpands in the downstream du t, shows a posteriori learly the good validity of su h an approximation.2.2.4 Equations of the problem2.2.4.1 Resolution in dimensionless variablesThe dimensional variables are denoted with a '*'. They are made dimensionless using the s ale variablesof the speed of sound in the �uid c0 (c0=343 m s−1 at T=293 K in air), the density of the �uid ρ0(ρ0=1.1 kg m−3 at T=293 K in air) and the the radius of du t I a∗:

z =z∗

a∗, r =

r∗

a∗, p′ =

p′∗

ρ0c20, ρ′ =

ρ′∗

ρ0, (2.1)

v′z =v′∗zc0, v′r =

v′∗rc0, t =

t∗c0a∗

, ω =ω∗a∗

c0. (2.2)The problem is solved in the dimensionless variables: z, r, t, p′, ρ′, v′r, v′z, ω.2.2.4.2 Resolution in established harmoni regimeEstablished harmoni regime is assumed: the al ulation is done for a �xed dimensionless frequen y

ω. The onvention used for the temporal dependen y of the variables is in e+jωt.2.2.4.3 Equations of the problemSimple assumptions are used:• the e�e t of the vis osity is negle ted: the �uid is onsidered as a perfe t �uid;• entropy variations (that is, thermal and vis ous e�e ts) are negle ted: Hen e the speed of soundin the �uid is: c20 = p′∗/ρ′∗;• at initial time, all variables (�uid density, entropy) are uniform.The idea of these assumptions, together with the assumption of the in ompressibility of the main�ow, is that they are onsistent with the Kelvin-Helmholtz type instabilities that we want to model,as those kinds of instabilities are produ ed in a non-vis ous and in ompressible �ow.In this two-dimensional geometry, and under those assumptions, the problem has four variables: p′,

ρ′, v′r, v′z. They are determined by four equations: the equations of mass onservation, the equation of

Page 86: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

78 2 Aeroa ousti al behaviour of a single expansion with the multimodal methodmomentum onservation (here linearized Euler equations as vis osity is ignored) in the two dire tionsand the �uid onstitutive law. The dimensionless equations to be solved are (see details in appendixC with all equations in dimensional variables), in 2D axisymmetri oordinates:• mass onservation equation:

Dp′

Dt= −(

v′rr

+∂v′r∂r

+∂v′z∂z

), (2.3)where the onve tive derivative is: DDt = jω +M(r) ∂

∂z ;• momentum onservation equations, respe tively, in longitudinal and transversal dire tions:

Dv′zDt

+ v′rdM(r)

dr= −∂p

∂z, (2.4)

Dv′rDt

= −∂p′

∂r; (2.5)

• the �uid onstitutive law:c20 =

p′

ρ′. (2.6)It should be noted that the 2D Cartesians and 2D axisymmetri ases are in fa t very similar:they only di�er (see appendix C) from the expression of the Lapla ian: in the ylindri al ase, theLapla ian gets one more term. As a onsequen e, up to here the four previous equations are identi alin Cartesians geometry.2.2.4.4 A ousti al boundary onditionsThe boundary onditions are hosen as the most simple ones:

• the upward wall is onsidered as in�nitely rigid. This gives the ondition v′r = 0, equivalent to∂p′

∂r = 0 using Eq. 2.5;• the entre line of the du t is onsidered as a line of symmetry. This gives also the onditionv′r = 0.2.2.5 Method of resolution2.2.5.1 Resolution in p′ and v′rThe resolution of the previous four equations in the four variables an be redu ed to the resolution ofthe two following equations in variables p′ and v′r:

jωv′r +M(r)∂v′r∂z

= −∂p′

∂r, (2.7)

(1 −M(r)2)∂2p′

∂z2+∂2p′

∂r2+

1

r

∂p′

∂r+ ω2p′ = 2jωM(r)

∂p′

∂z− 2

dM(r)

dr

∂v′r∂z

, (2.8)while the other variables ρ′ and v′z are determined from p′ and v′r:ρ′ =

p′

c20, (2.9)

Page 87: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.2 Analyti al problem 79∂v′z∂z

=Dp′

Dt− (

v′rr

+∂v′r∂r

). (2.10)The numeri al al ulation onsists of the resolution of Eq. 2.7 and 2.8 asso iated with the a ousti alboundary onditions.2.2.5.2 Resolution in a matrix formThe resolution is made simple using a tri k of organisation of the equations, in order to redu e theproblem to the resolution of di�erential equation of �rst-order with onstant oe� ient.If we put the variables in an appropriate olumn manner:E =

p′

dp′/dz

v′r

, (2.11)then it appears that the resolution of Eq. 2.7 and 2.8 omes to the resolution of a �rst order di�erentialequation in a matrix form:

dE

dz= AE, (2.12)with:

A =

0 1 0

2 dMdr

M∂∂r −

∂2

∂r2 + 1

r∂∂r

+ω2

1−M2

2jω1−M2

2jω dMdr

M

− 1M

∂∂r 0 −j ω

M

. (2.13)What is essential to note is that the matrix A is independent of z. Hen e the solutions depend onlyon r and are thus known to be in the form:

E = E(r)e−jkωz, (2.14)where the dimensionless wave number k is a omplex s alar (fun tion of ω).As a onsequen e, we have demonstrated that, assuming a frequen y dependen y in ejωt, thesolutions of our problem ne essarily take the form ej(ωt−kz).2.2.6 Solutions: a ousti , evanes ent and hydrodynami modesSo as to understand the solutions obtained, we onsider the solution obtained for the pressure p′. Themerge of Eq. 2.7 and 2.8 gives the propagation equation in pressure (see appendix C). As demonstratedin the previous se tion, the solution is in the form:p′ = p(r) ej(ωt−kωz). (2.15)The unknowns p and k satisfy the propagation equation, also known as the Pridmore-Brown equation( onve ted equation of the modes in a du t with sheared �ow):

(1 − kM)[(1 − kM)2 + ∆

]p+ 2k

dM

dr

dp

dr= 0, (2.16)

Page 88: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

80 2 Aeroa ousti al behaviour of a single expansion with the multimodal methodand the boundary onditions (whi h onstitutes the dispersion relation for k):dp

dr= 0 for r = 0 and r = 1. (2.17)There is no possible analyti al resolution of unknowns p and k with these two equations 2.16 and2.17. However, we known from similarity with other type of a ousti equations (for instan e, taking avanishing �ow), the solution in pressure is an in�nite sum of modes. In identally, it is worth noting thatthis denomination of `modes' is not the ommon one used in pipe systems: our modes are transverseones, and do not orrespond to any longitudinal onditions.Assuming that the solutions are known, the following mathemati al analysis an give some insight inthe solutions obtained. The aim is to understand some properties of the solutions (we don't demonstratemathemati ally the existen e of these solutions). When onsidering a solution of the problem, we andistinguish two ases (see Vilensky and Rienstra (2005); Félix (2002)):

• the solution is su h that 1 − kM(r) 6= 0, for any r ∈ [0, 1]:A denumerable (due to the boundary onditions) set of solutions may be obtained, satisfying thePridmore-Brown equation:d2p

dr2+

(

1

r+

2k dMdr

1 − kM

)

dp

dr+ ω2

[(1 − kM)2 − k2

]p = 0. (2.18)Solutions are understood without �ow, and we extend this understanding for the �ow ase:� in the parti ular ase M(r) = 0:In the new variable r = r/

ω2 (1 − k2), the previous equation redu es to:d2p

dr2+

1

r

dp

dr+ p = 0. (2.19)This is the well-known Bessel equation of order m = 0: y′′ + y′/r + (1 −m2/x2)y = 0, ofsolutions J i

0(r), i = 1, 2..., whi h are alled a ousti solutions as they propagate at the speedof sound (this omes from the hange of variable from r to r).� in the general ase M(r) 6= 0:As a onsequen e of the non-�ow ase, solutions are supposed onstituted by Bessel solutionsslightly modi�ed by the presen e of the �owM(r). Those solutions are alled a ousti modesand evanes ent modes, and we will see that we obtain them in our al ulations. Below the ut-o� frequen y of the du t, the wave numbers obtained are purely real: those solutionsare neither ampli�ed nor attenuated (i. e., plane wave mode and transverse modes), andthey are alled a ousti modes. Beyond the ut-o� frequen y of the du t, the wave numbersobtained have an imaginary part and a varying real part: those solutions orrespond toexponentially attenuated waves (i. e., transverse modes, also alled evanes ent modes), ata varying speed, and they are alled evanes ent modes.• the solution is su h that it exists r1 ∈ [0, 1] su h that 1− kM(r1) = 0:A ontinuous set of solutions may be obtained. Far away from r = r1, solutions satisfy Pridmore-Brown equation. Around r = r1, the Pridmore-Brown equation degenerates into:

kdM

dr

dp

dr= 0. (2.20)

Page 89: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.2 Analyti al problem 81Hen e around r = r1, the pressure is extremum:p(r) = onstant, (2.21)and, using Eq.2.7, the velo ity takes the expression:

vr =1k − 2M − k(1 −M2)

dMdr

ω

2jp(r). (2.22)As k = 1/M , those waves propagate with the �ow and travel downstream. They are alledhydrodynami modes. In du t I, where the �ow pro�le has no in�exion point, it is observed thatthe wave numbers of those modes are purely real. In du t II, where there is a �ow and a non-�ow region, it is observed that either all wave numbers are purely real, either all wave numbersbut two are purely real, the two omplex wave numbers being omplex onjugate. These twomodes orrespond to an exponentially attenuated hydrodynami mode, and the other one toan exponentially ampli�ed hydrodynami mode. They suppose to appear as a onsequen e ofthe presen e of a virtual in�exion point in the �ow pro�le, at the separation between the �owand the non-�ow regions, between the last dis retization point when in the �ow and the nextdis retization point when in no �ow.To sum up the pre eding dis ussion and anti ipating the results of the numeri al resolution, the onve ted wave equation Eq.2.16 asso iated with the a ousti boundary onditions Eq.2.17 givesdi�erent modes:

• a ousti modes propagating approximately at the speed of sound (slightly modi�ed by the onve tion of the main �ow): they have purely real wave numbers. They represent the two planewave modes (propagating upstream and downstream) and possibly the higher order transversemodes with frequen ies below the ut-o� frequen y of the du t;• evanes ent modes: they have omplex wave numbers: they are attenuated exponentially in thedire tion of their propagation;• hydrodynami modes propagating approximately at the �ow velo ity:� with purely real wave numbers: ea h one propagating at a velo ity M(r), r varying;� in ertain onditions, with omplex wave numbers: one is exponentially attenuated, theother one is exponentially ampli�ed.2.2.7 Determination of the s attering matrixOn e the modes are al ulated in ea h du t segment, at z = 0 (the phase origin orresponding to thelo ation of the expansion), the s attering matrix is dedu ed by linking these modes between ea h otherby de�ning onditions of rossing the dis ontinuity at the expansion.The onditions of rossing the dis ontinuity, for z = 0 and 0 ≤ r ≤ b, are de�ned as the following:

Page 90: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

82 2 Aeroa ousti al behaviour of a single expansion with the multimodal method• we demonstrate (see appendix D) that the linearized onservations of mass, momentum andenergy for the total variables, give the ontinuity of p′, ∂p′/∂zandv′r at the rossing of theexpansion. Hen e, we apply:

p′du t I = p′du t II, (2.23)∂p′ du t I

∂z=∂p′ du t II

∂z, (2.24)

v′r du t I = v′r du t II, (2.25)for z = 0 and 0 ≤ r ≤ 1;• for the upward verti al wall of du t II (at z = 0 and 1 ≤ r ≤ b ), a simple ondition of in�niterigidity is imposed: v′z = 0. In this region, there is no �ow, hen e v′r = 0, so that this ondition,using Eq. 2.4, is equivalent to:

∂p′ du t II∂z

= 0, (2.26)for z = 0 and 1 ≤ r ≤ b.2.3 The multimodal method2.3.1 Imposed �ow pro�leThe imposed �ow pro�le is represented in Fig. 2.2. It takes the form (r = 0 is the entre of the du t,r = 1 is the upward wall):

M(r)

M0= αm (1 − rm) m ≥ 1, (2.27)where the oe� ient αm is a onstant depending of m, de�ned so that the integral of the pro�le onthe du t se tion gives the mean �ow M0:

• in 2D axisymmetri , αm = m+2m so that ∫ r=1

r=0 M(r)rdr = M0;• in 2D Cartesians, αm = m+1

m so that ∫ y=1y=0 M(y)dy = M0.2.3.2 S hli hting turbulent pipe �ow pro�leWe ompare this �ow pro�le with the one proposed by S hli hting (1968) for fully turbulent pipe �owsin ir ular du ts:

M(r)

M(r = 0)= (1 − r)1/a , (2.28)where r is the dimensionless distan e (the pipe radius is the s aling length) to the axe. Its mean �owis given by:

M0 =

∫ r=1

r=0M(r)rdr = M(r = 0)

a2

(1 + a)(1 + 2a). (2.29)The parameter a depends on the pipe Reynolds number, as shown by S hli hting with a �t ofexperimental values in Tab. 2.3.2. For pipe Reynolds number around 104, S hli hting indi ates avalue of a = 7.

Page 91: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.3 The multimodal method 83

0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mach number M(r)

r

m=2, M0=0.1

m=6.6, M0=0.1

m=7, M0=0.1

m=8.8, M0=0.1

Figure 2.2: E�e t of exponent m on the main �ow pro�le in 2D axi-symmetri pipe.Re 2.3 104 1.1 105 1.1 106

a 6.6 7.0 8.8Table 2.1: S hli hting parameter a for a power law �ow pro�le.2.3.3 Comparison of the two �ow pro�lesOur numeri al pro�le and the S hli hting pro�le is illustrated in Fig. 2.3. The shape is similar, butthe slope of the two pro�les is quite di�erent.This seems however a sensible approximation to use this �ow pro�le, be ause we do not know exa tlythe �ow pro�le for the experimental data that we will ompare to. The essential fa t seems that theshape of the two pro�les is similar.The hypothesis is that the s attering matrix oe� ients are not highly sensitive to the �ow pro�leimposed, whi h seems physi ally reasonable.Indeed, we have tested it and obtained that the al ulated s attering matrix oe� ients only displayrelative di�eren es of 10−2, when varying our �ow pro�le parameter m from 0.2 to 8.8 (for M0 = 0.1).Furthermore, as presented in the following, the satisfying omparison of our al ulations using m = 7to experimental data gives an indi ation a posteriori that the s attering matrix oe� ients are notsigni� antly dependent on our �ow pro�le parameter m, and that our �ow pro�le is a satisfying one.2.3.4 Dis retization of the variablesFig. 2.4 illustrates the transverse dis retization in the two du ts. One should note that the advantageof this transverse dis retization is that we get a dis rete number of hydrodynami modes, and not ananalyti ally denumerable set of hydrodynami modes.The dis retization of the r- oordinates is regular with a onstant step h = 1/N between ea h point.

Page 92: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

84 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M(r) / M0

r

Schlichting flow profile a=7Multimodal flow profile m=7

Figure 2.3: Shape of the �ow pro�le and omparison with S hli hting �ow pro�le - du t I, axisym.,N = 50, m = 7, ω = 0.1, M0 = 0.1.The number of points is N in du t I and M in du t II.

(a) Du t I: N points (b) Du t II: M pointsFigure 2.4: Dis retization with a onstant step in the du ts.The dis retized variables are noted in ve tor. For instan e in du t I:P =

P1...PN

, V =

Vr, 1...Vr, N

, M =

M1...MN

.2.3.5 Derivatives expressions in the �nite di�eren e s hemeThe dis retization imposes to approximate the derivatives of the variables.

Page 93: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.3 The multimodal method 85The derivative matri es of �rst order D1 and se ond order D2 are de�ned as (in ylindri al):D1P =

dP

dr, D2P =

d2P

dr2. (2.30)The �nite di�eren e s heme used is a very lassi al one: entred s heme of the se ond order, thatis giving an error of O(h2). Hen e for 2 ≤ i ≤ N − 1, the derivatives get the expression:

D1P|i =Pi+1 − Pi−1

2h, (2.31)

D2P|i =Pi+1 − 2Pi + Pi−1

h2. (2.32)For i = 1 and i = N , that is at the upward wall and at the entre of the du t, the evaluation of thederivative needs the use of a virtual point:

• P0 is the image of P1 in the upward wall: the derivative at i = 1 is D1P|i=1 = P2−P0

2h . As thewall is rigid, dPdr = 0, so that P0 = P1. Hen e:

D1P|i=1 =P2 − P1

2h; (2.33)

• PN+1 is the image of PN in the entre of the du t: the derivative at i = N is D1P|i=N =PN+1−PN−1

2h . As the entre of the du t is an axe of symmetry, dPdr = 0, so that PN+1 = PN .Hen e:

D1P|i=N =PN − PN−1

2h. (2.34)As a result, the derivative matri es D1 and D2, in luding the boundary onditions on their �rstand last line, are tri-diagonal matri es:

D1 =1

2h

−1 1

−1 0 1. . . . . . . . .−1 0 1

−1 1

, (2.35)D2 =

1

h2

−1 1

1 −2 1. . . . . . . . .1 −2 1

1 −1

. (2.36)2.3.6 Dis retized equationsThe al ulation of the modes in du t I and du t II is made at z = 0 as origin of the phases.The equations to solve in unknowns P and V are put in ve tor formalization:

jωV + MdV

dz= −D1,P (2.37)

Page 94: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

86 2 Aeroa ousti al behaviour of a single expansion with the multimodal method(1 − M2)

d2P

dz2+ D2P + D

cyl1 P + ω2P = 2jωM

dP

dz− 2M′ dV

dz. (2.38)where Dc

1 appears for ylindri al geometry:D

cyl1 X|i =

1

riD1X|i. (2.39)Putting onveniently the variables into a ve tor:

X =

P

Q

V

, (2.40)where Q = dP

dz , solving the previous equations omes to solve a �rst-order di�erential equation inmatrix form:AdX

dz= BX. (2.41)with A and B being given in the following se tion, for du t I and du t II.The resolution of the system is hen e a diagonalization problem. As a result, eigenvalues andeigenve tors are found, in number equal to the dimension of the resolution ve tor X.Solutions are of the form: Xn = Xne

λnz, where λn are the eigenvalues and Xn the eigenve torssu h that: λnAXn = BXn.From the al ulated eigenvalues, the physi al wave numbers Kn of the modes written in the onvention e−jKnωx are determined:Kn = jλn/ω. (2.42)2.3.7 Modes determination in du t IIn du t I, the ve tor of resolution has the form:

X =

P

Q

V

l N pointsl N pointsl N points . (2.43)The matri es get the expression (in 2D ylindri al):

A =

IN,N 0N,N 0N,N

0N,N IN,N − M2 2dMdr

0N,N 0N,N M

, (2.44)

B =

0N,N IN,N 0N,N

−D2 − Dcyl1 − ω2IN,N 2jωM 0N,N

−D1 0N,N −jωIN,N

. (2.45)Those expressions are identi al in 2D Cartesians, ex ept that the term D

cyl1 is not present.

Page 95: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.3 The multimodal method 87As X is a ve tor of 3N lines, the resolution in du t I gives 3N eigenvalues Kn with 3N asso iatedeigenve tors of size 3N denoted Ψn:ψn =

Pn

Qn

Vn

l N pointsl N pointsl N points . (2.46)Modes are sorted (see se tion 2.3.9) in fun tion of their wave numbers. We note, in respe t to theirdire tion of propagation, upstream propagating modes by subs ript 'u', and downstream propagatingmodes by subs ript 'd'. As a result, we note the 3N eigenvalues in a olumn ve tor:

...KI

n...

=

(

KId

KIu

)

l 2N pointsl N points . (2.47)Similarly, we note the 3N eigenve tors in a matrix:

. . . ΨI

n . . .

=

(

ΨId ΨI

u

)

=

(

ΨId,1 ΨI

u,1

ΨId,2 ΨI

u,2

)

l 2N pointsl N points (2.48)where Ψd is 3Nx2N and Ψu is 3NxN .To obtain the resulting a ousti �elds after imposing an ex itation wave, and hen e to visualize thea ousti �elds, the solution obtained in du t I is a summation of these modes:

p′(r, z, t) = ejωtPI,dp′

dz(r, z, t) = ejωtQI, v′r(r, z, t) = ejωtVI, (2.49)with:

PI

QI

VI

=

ΨI

d ΨIu

...αI

ne−jKI

nz...

, (2.50)where the αI

n are the amplitudes of the modes determined by the multipli ation of the al ulateds attering matrix of the on�guration (see in the following) by the imposed ex itation wave.2.3.8 Modes determination in du t IIThe di�eren e from du t II to du t I is that there is a non-�ow region in r ≥ 1, hen e the ve tor V iszero in this region: it is no more a variable in this region, hen e the new variable to be onsidered isV|, restri tion of V to the �ow region (r = M −N + 1 to M).In du t II, the ve tor of resolution has the form:

X =

PdPdx

V|

l M pointsl M pointsl N points (2.51)

Page 96: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

88 2 Aeroa ousti al behaviour of a single expansion with the multimodal methodThe matri es get the expression (in 2D ylindri al):A =

IM,M 0M,M 0M,N

0M,M IM,M − M2 2dM|M,N

dr

0N,M 0N,M M|N,N

, (2.52)

B =

0M,M IM,M 0M,M

−D2 − Dcyl1 − ω2IM,M 2jωM 0M,N

−D1|N,M 0N,M −jωIN,N

. (2.53)As X is a ve tor of 2M + N lines, the resolution in du t II gives 2M + N eigenvalues Kn with

2M +N asso iated eigenve tors of size 2M +N denoted Ψn :ψn =

Pn

Qn

Vn

l M pointsl M pointsl N points . (2.54)Modes are sorted, similarly than in du t I:

...KII

n...

=

(

KIId

KIIu

)

l N+M pointsl N points (2.55)

. . . ΨII

n . . .

=

(

ΨIId ΨII

u

)

=

(

ΨIId,1 ΨII

u,1

ΨIId,2 ΨII

u,2

)

l N+M pointsl N points , (2.56)where Ψd is (2M+N)x(M+N) and Ψu is (2M+N)xN .To visualize the solution after an ex itation wave, the solution obtained in du t II is al ulated from(similarly as in du t I):

p′(r, z, t) = ejωtPII,dp′

dz(r, z, t) = ejωtQII, v′r(r, z, t) = ejωtVII, (2.57)with:

PII

QII

VII

=

ΨII

d ΨIIu

...αII

n e−jKII

n z...

, (2.58)where the αII

n are the amplitudes of the 2M + N modes given by the s attering matrix of the singleexpansion applied to the ex itation wave.2.3.9 Numeri al lassi� ation of the modesThe eigenvalues obtained by the resolution are sorted in order to di�erentiate the modes. The modesare lassi�ed as the following into hydrodynami , a ousti and evanes ent modes:

Page 97: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.3 The multimodal method 892.3.9.1 Hydrodynami modesThose modes orresponds to 1 −KnM(rn) = 0. We get N modes in du t I, and also N in du t II (asthe �ow does not expand).They are alled hydrodynami modes, as they are onve ted at the �ow velo ity. Their wave numberis purely real, for all of them, ex ept 2. These two ones have a non-vanishing imaginary part, whi hare omplex onjugates, and represent an exponential attenuation and an exponential ampli� ation.They are numeri ally identi�ed with two onditions:• their wave number is su h that 1/Mmax ≤ ℜ(Kn) ≤ 1/Mmin. This is su� ient to give the stablehydrodynami modes, but not the two unstable ones that have an imaginary wave number;• In pra ti e, we don't know the value of the imaginary part of the unstable hydrodynami mode, so that we use a purely arti� ial riterion, onsisting of a parabola, of expression

ℑ(Kn)2 = A[ℜ(Kn)2 − x2

0

], with �tting parameters x0 ≈ 0.8/max(M0) and A ≈ 5, that we hange if need be, that is, if the number of modes obtained with this algorithm is not N .This use of the parabola has given good satisfa tion in pra ti e, and little di� ulties (see se tion2.4.4.1 when di� ulties appear). One should note that physi al riterions exist (Crighton-Leppington or Briggs-Bers). They ould have been implemented in this al ulation to makereally no ambiguity and di� ulty when identifying the unstable hydrodynami mode.2.3.9.2 A ousti and evanes ent modesThe non-hydrodynami modes are distinguished into a ousti and evanes ent modes:• propagating a ousti modes, that is, plane wave modes and possibly higher order modespropagating for frequen y below the ut-o� frequen y of the du t. They propagate nearly atthe speed of sound (slightly modi�ed y the main �ow), and their wave numbers are purely real.They are numeri ally identi�ed with the ondition of having ℑ(Kn) = 0 and of not being anhydrodynami modes.• what we all evanes ent modes, as their wave number have a non-vanishing imaginary part.They are numeri ally identi�ed without ondition, that is, they represent the remaining modesnot lassi�ed as hydrodynami and a ousti .2.3.9.3 Upstream or downstream propagationThe sense of propagation of the mode whether upstream or downstream is given by:• for hydrodynami and a ousti modes, the real part of their wave number, as they are propagat-ing;• for evanes ent modes, the imaginary part of their wave number, in order to attenuate thosemodes.As a result, we obtain in du t I N (N in du t II) hydrodynami modes onve ted downstream, N (Min du t II) a ousti and evanes ent mode propagating downstream and N (M in du t II) a ousti andevanes ent mode propagating upstream.

Page 98: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

90 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.3.10 S attering matrix determinationThe amplitudes αI of the 3N modes in du t I are linked with the amplitudes αII of the 2M +N modesin du t II applying the onditions of rossing the dis ontinuity of se tion at the expansion. The matrixdetermining this link is alled the s attering matrix S of size (2N +M, 2N +M) de�ned as :S =

(

T+ R−

R+ T−

)

, (2.59)with (

αIId

αIu

)

= S

(

αId

αIIu

)

, (2.60)with `u' referring to upstream propagating modes, `d' to downstream propagating modes, `I' to du t Iand `II' to du t II.The s attering matrix is determined with the 2N +M equations oming from the appli ation of the onditions of rossing the dis ontinuity de�ned previously (se tion 2.2.7):• ontinuity of the variables at the interfa e (3N equations):

PI

QI

VI

=

PII|QII|VII

, (2.61)where PII| and QII| (with Q = dP

dz ) are the restri tion of PII and QII to the region with �ow, orresponding to the interfa e between du t I and du t II.• ondition of rigidity of the verti al upward wall of du t II (M −N equations):

QII|verti al wall = 0N−M,1 (2.62)The numeri al implementation of these equations, Eq. 2.61 and 2.62, is given in the following.Equations are written in a matrix form with sub-matri es:(

ΨId,1 ΨI

u,1

χI1 χI

2

)(

αId

αIu

)

=

(

ΨIId,1 ΨII

u,1

χII1 χII

2

)(

αIId

αIIu

)

, (2.63)where:χI

1 =

(

ΨId,2

0M−N,2N

)

, χI2 =

(

ΨIu,2

0M−N,N

)

, (2.64)χII

1 =

(

ΨIId,2

K1

)

, χII2 =

(

ΨIIu,2

K2

)

, (2.65)K1 = ΨII

d :

0M,1

IdM−N,1

02N,1

, K2 = ΨII

u :

0M,1

IdM−N,1

02N,1

. (2.66)

Page 99: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.3 The multimodal method 91Hen e we �nd:S = S−1

1 S2, (2.67)with:S1

(

αIId

αIu

)

= S2

(

αId

αIIu

)

, (2.68)and:S1 =

(

ΨIId,1 −ΨI

u,1

χII1 −χI

2

)

, S2 =

(

ΨId,1 −ΨII

u,1

χI1 −χII

2

)

. (2.69)

Page 100: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

92 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.4 Single expansion al ulationsWe present in this se tion intermediate results obtained in the al ulations, as a �rst step validationof the method before omparing results with experimental data. We present the shapes of the modesobtained, the onvergen e of the al ulations, the visualization of the a ousti �elds and the di� ultiestypi al of the al ulations.2.4.1 Modes obtained in du t I and du t II2.4.1.1 Wavenumbers obtained in du t I and du t IIThe resolution of the system gives the eigenvalues in the notation exp[j(ωt− ωKnx]. The eigenvaluesKn obtained are sorted in fun tion of their real and imaginary part.Wavenumbers obtained in du t I are illustrated in Fig. 2.5, with a very low number N = 3 pointsof dis retization to help understand the lassi� ation. One should note parti ularly the position ofa ousti modes on the x-axis: lose to 1 and -1, they orrespond to 2 plane waves a ousti modespropagating upstream and downstream.Numeri al investigations show that we obtain other a ousti modes than plane wave modes in loseagreement with analyti al formulae in the vanishing �ow ase: the �rst transverse modes appear forthe dimensionless ω = 3.83, 7.01, . . ., orresponding to the �rst analyti al zeros of the derivative of theBessel fun tion J0 of order 0.

−5 −1 0 1 5 10−60

−40

−20

0

20

40

60

Real(Kn)

Imag

(Kn)

3 hydrodynamic modes

2 evanescent modespropagating downstream

2 evanescent modespropagating upstream

plane wave modepropagating downstream

plane wave mode propagating upstream

Figure 2.5: Classi� ation of the modes from their wave numbers in du t I (axisym., N = 3, m = 7,ω = 0.1, M0 = 0.1): N hydrodynami modes propagating downstream, N a ousti and evanes entmodes propagating downstream and N a ousti and evanes ent modes propagating upstream.

Page 101: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 93Wavenumbers obtained more typi ally in du t I, that is with a large number of modes, are illustratedin Fig. 2.6.

−50 0 50 100 150 200 250 300 350 400

−1000

−500

0

500

1000

Real(Kn)

Imag

(Kn)

Figure 2.6: Wavenumbers obtained typi ally in du t I (axisym., N = 50, m = 7, ω = 0.1, M0 = 0.1):'x' for N hydrodynami modes propagating downstream, '*' for a ousti modes and '+' for evanes entmodes, with N a ousti and evanes ent modes propagating downstream and N a ousti and evanes entmodes propagating upstream.In du t II, similar pro�les of wave numbers are obtained and are illustrated in Fig.2.7 for a lownumber a modes. There is a strong di�eren e with du t I as an unstable hydrodynami mode anappear. That is why the arti� ial parabola is used: to distin t this unstable hydrodynami mode froman evanes ent mode.Wavenumbers obtained more typi ally in du t II, that is with a large number of modes, areillustrated in Fig. 2.8.

Page 102: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

94 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

−4 −1 0 1 4 10−60

−40

−20

0

20

40

60

Real(Kn)

Imag

(Kn)

4 evanescent modes propagating downstream

4 evanescent modes propagating upstream

plane wave mode propagating downstream

plane wave mode propagating upstream

3 hydrodynamic modes, withan unstable hydrodynamic mode

Figure 2.7: Classi� ation of the modes from their wave numbers in du t II (axisym., N = 3, b = 1.5hen e M = 5, m = 7, ω = 0.1, M0 = 0.1): N hydrodynami modes propagating downstream,M a ousti and evanes ent modes propagating downstream and M a ousti and evanes ent modespropagating upstream. The parabola is a purely arti� ial means to distin t the unstable hydrodynami mode from the evanes ent mode.

Page 103: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 95

0 10 20 30 40 50

−1000

−500

0

500

1000

Real(Kn)

Imag

(Kn)

Figure 2.8: Wavenumbers obtained typi ally in du t II (axisym., N = 50, b = 2 hen e M = 100,m = 7, ω = 0.1, M0 = 0.1): 'x' for N hydrodynami modes propagating downstream, '*' for a ousti modes and '+' for evanes ent modes, with M a ousti and evanes ent modes propagating downstreamandM a ousti and evanes ent modes propagating upstream. The parabola is a purely arti� ial meansto distin t the unstable hydrodynami mode from the evanes ent mode.

Page 104: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

96 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.4.1.2 Mode shapes (eigenve tors)In this se tion, we give visualizations of the shapes of the modes obtained. The shapes seem satisfyingthe boundary onditions imposed, and di�erentiate teh a ousti and the hydrodynami modes.The shape of the modes is given by the eigenve tor asso iated with the eigenvalue (the wavenumber). This eigenve tor is onstituted by the pressure P , the derivative of the pressure dP/dzand the transversal velo ity Vr. It is made dimensionless by dividing with the average of the pressure.The �rst a ousti mode is a plane-wave mode, with a quasi- onstant pressure as illustrated inFig. 2.9. Higher order a ousti modes have a Bessel shape satisfying the boundary onditions, asillustrated in Fig. 2.10 and 2.11.Hydrodynami modes are extremum at a varying given point r = r1, as illustrated in Fig. 2.12 and2.13. This is oherent with the mathemati al dis ussion presented in se tion 2.2.6, .

−0.2 0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

r (d

imen

sion

less

)

Mode shape

Re(p) for acoustic mode 1Im(p) for acoustic mode 1

(a) Mode shape in a ousti pressure p

−8 −6 −4 −2 0

x 10−3

0

0.2

0.4

0.6

0.8

1Re(v

r) for acoustic mode 1

Im(vr) for acoustic mode 1

Mode shape

r (d

imen

sion

less

)

(b) Mode shape in transverse a ousti velo ity vrFigure 2.9: Shape of the �rst a ousti mode orresponding to a quasi-plane wave mode in du t I(axisym., N = 50, m = 7, ω = 0.1, M0 = 0.1).

Page 105: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 97

−0.5 0 0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

r (d

imen

sion

less

)

Mode shape

Re(p) for acoustic mode 2Im(p) for acoustic mode 2

(a) Mode shape in a ousti pressure p

−1 0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

r (d

imen

sion

less

)

Mode shape

Re(vr) for acoustic mode 2

Im(vr) for acoustic mode 2

(b) Mode shape in transverse a ousti velo ity vrFigure 2.10: Shape of the se ond a ousti mode in du t I (axisym., N = 50, m = 7, ω = 0.1,M0 = 0.1).

−1 0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

Mode shape

Re(p) for acoustic mode 3Im(p) for acoustic mode 3

r (d

imen

sion

less

)

(a) Mode shape in a ousti pressure p

−6 −4 −2 0 2 4 6 80

0.2

0.4

0.6

0.8

1

r (d

imen

sion

less

)

Mode shape

Re(vr) for acoustic mode 3

Im(vr) for acoustic mode 3

(b) Mode shape in transverse a ousti velo ity vrFigure 2.11: Shape of the third a ousti mode in du t I (axisym., N = 50, m = 7, ω = 0.1, M0 = 0.1).

Page 106: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

98 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

Re(p) for hydrodynamic mode 6Im(p) for hydrodynamic mode 6

Mode shape

r (d

imen

sion

less

)

(a) Mode shape in a ousti pressure p

−5 0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

r (d

imen

sion

less

)

Mode shape

Re(vr) for hydrodynamic mode 6

Im(vr) for hydrodynamic mode 6(b) Mode shape in transverse a ousti velo ity vrFigure 2.12: Shape of the 6th hydrodynami mode in du t II (axisym., N = 50, b = 1.5, m = 7,

ω = 0.1, M0 = 0.1).

−0.2 0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

Re(p) for hydrodynamic mode 12Im(p) for hydrodynamic mode 12

Mode shape

r (d

imen

sion

less

)

(a) Mode shape in a ousti pressure p

−2 0 2 4 6 80

0.2

0.4

0.6

0.8

1

Mode shape

Re(vr) for hydrodynamic mode 12

Im(vr) for hydrodynamic mode 12

r (d

imen

sion

less

)

(b) Mode shape in transverse a ousti velo ity vrFigure 2.13: Shape of the 12th hydrodynami mode in du t II (axisym., N = 50, b = 1.5, m = 7,ω = 0.1, M0 = 0.1.

Page 107: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 992.4.2 Convergen e resultsConvergen e of the 4 s attering matrix oe� ients is studied, in magnitude and in phase. In order toevaluate onvergen e, an estimation of the error between a referen e al ulation (with a high numberof points N) and the urrent al ulation is made:E(X,N,Nref ) =

|X(N) −X(Nref )|X(Nref |

, (2.70)where X is the quantity of interest (i.e. |R+| or phase(R+)).Illustration is given in Fig. 2.14 and 2.15. It is found a onvergen e slope in log-log representationof 1.19 for the illustrated ase.Convergen e results show that N = 150 orresponds to an approximate error of the order of 10−3between a al ulation for N = 400 points. We have hosen to employ N = 150 to ompare those oe� ients with experimental data.10

010

110

210

31e−005

0.0001

0.001

0.01

0.1

1

N

E(|

R+|,N

=40

0)

100

101

102

103

1e−005

0.0001

0.001

0.01

0.1

1

N

E(|

R−|,N

=40

0)

100

101

102

103

1e−005

0.0001

0.001

0.01

0.1

1

N

E(|

T+|,N

=40

0)

100

101

102

103

1e−005

0.0001

0.001

0.01

0.1

1

N

E(|

T−|,N

=40

0)

slope −1.19

slope −1.19

slope −1.19

slope −1.19

Figure 2.14: Example of onvergen e for the magnitude of the oe� ients of the s attering matrix fora single expansion (axisym., ω=1 (f =2164 Hz), M0 = 0.3, m = 10, b =√

2).

Page 108: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

100 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

0 200 400

2.6

2.8

3

N

phas

e(R

+)

[2π]

0 200 400

0.1

0.15

0.2

0.25

N

phas

e(R

−)

[2π]

0 200 4006

6.1

6.2

6.3

6.4

N

phas

e(T

+)

[2π]

0 200 4005.9

6

6.1

6.2

6.3

N

phas

e(T

−)

[2π]

Figure 2.15: Example of onvergen e for the phase of the oe� ients of the s attering matrix for asingle expansion (axisym., ω=1 (f =2164 Hz), M0 = 0.3, m = 10, b =√

2).

Page 109: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 1012.4.3 Visualization of the ex ited �elds2.4.3.1 Ex itation with a plane-waveThe response of the modes is determined by imposing an ex itation ve tor on the al ulated s atteringmatrix: (

αIId

αIu

)

=

(

T+ R−

R+ T−

)(

αI excd

αII excu

)

. (2.71)The ex itation is made of a plane-wave in du t I, of amplitude α = 1, oming from upstream andpropagating downstream, so that the ex itation ve tor is:αI exc

d =

1

0...0

, αII excu =

0...0

. (2.72)The visualizations of the total �elds are given in the following, dis erning from the presen e or not ofan unstable hydrodynami mode.2.4.3.2 The resulting a ousti �elds when the hydrodynami modes are all stableAn example of visualization of the a ousti �elds is shown in this se tion, when sending a plane-wave,in the ase where the hydrodynami modes are all stable.The ex itation in downstream plane-wave and the mat hing of the modes result in getting a response omposed, mainly, by ex itation of the other plane-waves: in du t I, mainly the other plane-wavemode (propagating upward) (see Fig.2.16), and in du t II, mainly the plane-wave mode propagatingdownward (see Fig.2.17). Thus, it appears that the higher order a ousti modes, and the hydrodynami modes, are not, or very negligibly ex ited.The orresponding visualizations are given, for the a ousti pressure in Fig. 2.18. One observesthat the a ousti pressure �eld is a superposition of the two plane-waves (the ex itation one andthe re�e ted one) in du t I, and the transmitted one in du t II. The a ousti velo ity �eld shows avanishing value, ex ept in the region between the two regions of �ow and non-�ow. A narrower x-axiss ale shows, for the a ousti pressure in Fig. 2.19, and for the a ousti transverse velo ity in Fig. 2.20,that those �u tuations orrespond to the ex itation of the �rst hydrodynami mode, whi h is stablein this al ulation.In this ase where hydrodynami modes are all stable, we �nd that the resulting a ousti �eld ismainly omposed of plane-waves (the ex itation plane-wave, and the re�e ted and transmitted ones).The ex ited hydrodynami modes seem negligible in the solution.2.4.3.3 The resulting a ousti �elds when unstable hydrodynami modes are presentAn example of visualization of the a ousti �elds is shown in this se tion, when sending a plane-wave,in the ase where there is an unstable hydrodynami modes. We use the same parameters as for thestable ase, but hanging ω = 0.50 to ω = 0.45.

Page 110: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

102 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

Mode number (N in duct I)

Am

plifi

catio

n α I o

f the

mod

es in

duc

t I

excitation imposed: plane wave mode

propagating downward

main response by reflection:plane wave mode

propagating upward

other responses by reflection:evanescent modes

propagating upward

unexcited acoustic and evanescentmodes propagating downward

Figure 2.16: Response of the modes in du t I when applying an ex itation in plane wave propagatingdownstream in du t I. We see that the a ousti re�e tion at the single expansion o urs, giving anampli� ation to the plane wave mode propagating upstream and se ondary responses from evanes entmodes propagating upstream (N = 70, m = 3.5, ω = 0.5, M0 = 0.1, b = 2).

Page 111: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 103

0 50 100 150 200 250 300 3500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Am

plifi

catio

n α II

of t

he m

odes

in d

uct I

I

main response by transmission:plane wave mode

propagating downward

Mode number (M in duct II)

other responses by transmission:plane wave mode

propagating downward

weak response by transmission:hydrodynamic modes

(all stable here)

Figure 2.17: Response of the modes in du t II when applying an ex itation in plane wave propagatingdownstream in du t I and when all hydrodynami modes are stable in du t II. We see that the a ousti transmission at the single expansion o urs, giving an ampli� ation to the plane wave mode propagatingdownstream and se ondary responses from evanes ent modes propagating downstream, and a weakex itation of hydrodynami modes (N = 70, m = 3.5, ω = 0.5, M0 = 0.1, b = 2).

Page 112: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

104 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

Figure 2.18: Real part of the pressure p′ sending a plane wave ex itation upstream P+1 of amplitude

α = 1 when no unstable hydrodynami modes are present (N = 70, m = 7, ω = 0.5, M0 = 0.1, b = 2).

Figure 2.19: Zoom of the real part of the pressure p′ sending a plane wave ex itation upstream P+1of amplitude α = 1 when no unstable hydrodynami modes are ex ited (N = 70, m = 3.5, ω = 0.5,

M0 = 0.1, b = 2).

Page 113: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 105

Figure 2.20: Zoom of the real part of the transversal velo ity v′r sending a plane wave ex itationupstream P+1 of amplitude α = 1 when no unstable hydrodynami modes are present (N = 70,

m = 3.5, ω = 0.5, M0 = 0.1, b = 2). We see learly the response of a stable hydrodynami modeex ited at the edge of the expansion.

Page 114: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

106 2 Aeroa ousti al behaviour of a single expansion with the multimodal methodThe ex itation results in getting a response omposed, as previously, by plane-waves re�e ted in du tI (similar as for the previous stable ase), but above all here, by the transmitted unstable ampli�edhydrodynami mode in du t II. In fa t, the ampli� ation is very similar to the previous ase (seeFig.2.22), as we have only hange ω from 0.50 to ω = 0.45. The di�eren e is that the hydrodynami mode ex ited is the unstable one. His amplitude is small, but non-vanishing, and will be ome verylarge rapidly, as it is ampli�ed exponentially by propagation.The a ousti �eld is exponentially ampli�ed by this mode. Hen e it is needed to saturate thein�uen e of this mode, in order to make the visualization possible all the same. On the �gures, thevisualization is made using a saturation level of 10 (the ex itation plane-wave has a value of 1) atwhi h all quantities are put if they ex eed this level.Visualizations are given, for the a ousti pressure in Fig. 2.21. The in�uen e of the unstablehydrodynami mode is lear: the saturation expands till all the region of propagation. The visualizationis very di� ult in this ase, as high a ura y is needed to lo ate very lose to the transition from stabilityto instability, in order that the imaginary part of the unstable wave number would not be too high.Close to the transition (at 10−4), we an see more learly, as shown in Fig. 2.22, the in�uen e of theunstable hydrodynami mode on the response downstream of the expansion.

Figure 2.21: Zoom of the real part of the pressure p′ sending a plane wave ex itation upstream P+1of amplitude α = 1 when an unstable hydrodynami mode is ex ited (N = 70, m = 3.5, ω = 0.45,

M0 = 0.1, b = 2).

Page 115: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 107

Figure 2.22: Real part of the pressure p′ sending a plane wave ex itation upstream P+1 of amplitude

α = 1 when an unstable hydrodynami mode is ex ited (N = 70, m = 3.5, ω = 0.4911, M0 = 0.1,b = 2).

Page 116: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

108 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.4.4 Di� ulties in the al ulation2.4.4.1 Adjusting the oe� ients of the parabolaThe orre t identi� ation of the hydrodynami modes is made by the knowing that N modes have tobe found and using the purely arti� ial parabola:Im(K)2 = A(Real(K)2 − x2

0), (2.73)The parameters A and x0 have to be �tted. Evanes ent modes an wrongly be identi�ed as unstablehydrodynami modes, as illustrated in Fig.2.23. In this ase, the al ulation identi�es the mistake, asthe number of hydrodynami modes ex eeds the theoreti al number.The solution is to adjust the oe� ients of the parabola A and x0. Good determination is mostlyobtained for A between 1 and 15 and x0 between 0.6/max(M0) and 0.9/max(M0). In fa t, su h problemin the parabola parameters o urs rarely, taking for example A = 5 and x0 = 0.8.

−5 0 5 10 15 20 25−200

−150

−100

−50

0

50

100

150

200

Real(Kn)

Imag

(Kn)

parabola: A=14, x0=0.7/Mmax

evanescentmode

unstable hydromode

parabola: A=3, x0=0.7/Mmax

Figure 2.23: Adjustment of the parabola parameters to identify the right number of hydrodynami modes - ylindri al oordinates, N = 70, m = 4, ω = 1, M0 = 0.4, b=1.2.The use of a ausality riterion (Crighton-Leppington or Briggs-Bers) is the most satisfying methodto dis ern a ousti and hydrodynami modes. It has not been implemented in this work.2.4.4.2 In some low frequen y asesWhen the frequen y ω is very low, the �rst evanes ent modes upstream and downstream goesnumeri ally on the X-axis, as illustrated in Fig.2.24. In this ase, four propagating a ousti modesare found, with one travelling downstream and three upstream: the al ulation is wrong (also, notransverse mode should propagate for ω < 3.83).

Page 117: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.4 Single expansion al ulations 109The reason for this problem is not identi�ed. However the solution is found: one should in reasesu� iently the number of points N . At some value the al ulation will give good determination of themodes.

−4000 −2000 0 2000 4000 6000 8000−4

−3

−2

−1

0

1

2

3

4x 10

4

Real(Kn)

Imag

(Kn)

2 plane wave modes

badly determinedevanescent modes

Figure 2.24: Jump of the �rst evanes ent modes on the X-axis - ylindri al oordinates, N = 20,m = 10, ω = 0.001, M0 = 0.01, b = 1.5 -. A good determination is obtained for N = 30.

Page 118: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

110 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.5 Single expansion results2.5.1 Results without �ow: omparison with a modelWithout �ow, and in the limit of vanishing frequen y, a quasi-stationary model is studied: the linearizedmass onservation and the linearized Bernoulli equation are applied to a single expansion (see Fig. 2.25).As in the limit of vanishing frequen y, the end orre tion vanishes, one obtains:S1ρ0u

′1 = S2ρ0u

′2, (2.74)

p′1 = p′2. (2.75)

Figure 2.25: Single expansion.The s attering matrix of the single expansion for this model is obtained:R+ =

1 − α

1 + α, R− =

−1 + α

1 + α, (2.76)

T+ =2

1 + α, T− =

1 + α, (2.77)where α = S2/S1 is the ratio of the du t se tion.The omparison to this model is very satisfying for very low frequen ies and very low Ma h numbers,as illustrated in Fig. 2.26 and 2.27.

Page 119: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 111

1 1.5 2 2.5 3 3.5 4 4.5 5−1

−0.5

0

0.5

1

1.5

2

α=SII/S

I

Sca

tterin

g co

effic

ient

sRe(R+) Multimodal calculationRe(R+) theoryRe(T−) Multimodal calculationRe(T−) theory

Figure 2.26: Comparison of single expansion al ulations ℜ(R+) and ℜ(T−), as fun tion of theexpansion ratio of se tions, with an analyti al model in the limit of no �ow and stationary regime(f = 0.1 Hz, M0 = 10−4, N = 30, m = 7).

1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=SII/S

I

Sca

tterin

g co

effic

ient

s

Re(R−) Multimodal calculationRe(R−) theoryRe(T+) Multimodal calculationRe(T+) theory

Figure 2.27: Comparison of single expansion al ulations ℜ(R−) and ℜ(T+), as fun tion of theexpansion ratio of se tions, with an analyti al model in the limit of no �ow and stationary regime(f = 0.1 Hz, M0 = 10−4, N = 30, m = 7).

Page 120: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

112 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.5.2 Results with �ow: omparison with experimental data2.5.2.1 Prin ipal result: good orrelation with experimental dataCal ulations with �ow are ompared with experimental data from Ronneberger (1989), for |R+| andphase(R+). The parameter m = 7 is used in al ulations to ompare with a fully turbulent �ow as inthose experimental data.The e�e t of the �ow pro�le is relatively weak, as illustrated in Fig. 2.28 and 2.29. For instan e, adi�eren e of around 10−2 is obtained between m = 7 and m = 9.In most of the ases, multimodal al ulations are lose to experimental data, for the magnitude andphase of R+, as illustrated in Fig. 2.28, 2.29, 2.30, 2.31, 2.32.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.4

0.45

0.5

0.55

0.6

0.65

M0

|R+|

experimental (Ronneberger Bild 4.1)model Aurégan 1999multimodal m=3 (axisym)multimodal m=7 (axisym)multimodal m=9 (axisym)

Figure 2.28: Comparison of single expansion al ulation |R+|, as fun tion of the mean Ma h numberin the du t, with experimental literature data from Ronneberger (Bild 4.1, η = SI/SII = 0.419, f=900Hz, m = 7,N=150).

Page 121: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.1

0.15

0.2

0.25

0.3

0.35

M0

|R+|

experimental (Ronneberger Bild4.1)model Aurégan 1999multimodal m=3 (axisym)multimodal m=7 (axisym)multimodal m=9 (axisym)

Figure 2.29: Comparison of single expansion al ulation |R+|, as fun tion of the mean Ma h numberin the du t, with experimental literature data from Ronneberger (Bild 4.1, η = 0.779, f=900 Hz,m = 7,N=150.)

Page 122: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

114 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

0 0.1 0.2 0.3 0.4 0.50.45

0.5

0.55

0.6

0.65

0.7

|R+|

M0

experimental (Ronneberger)multimodal m=7 (axisym)

Figure 2.30: Comparison of single expansion al ulation |R+|, as fun tion of the mean Ma h numberin the du t, with experimental literature data from Ronneberger (Bild 4.1, η = 0.346, f=500 Hz,m = 7,N=150.)

Page 123: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 115

0 0.1 0.2 0.3 0.4 0.52.85

2.9

2.95

3

3.05

3.1

3.15

3.2

M0

phas

e(R+

)

multimodal m=7 (cyl)experimental (Ronneberger Bild 4.2)

Figure 2.31: Comparison of single expansion al ulation phase(R+), as fun tion of the mean Ma hnumber in the du t, with experimental literature data from Ronneberger (Bild 4.1, η = 0.346, f=500Hz, m = 7,N=150.)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.5

0.55

0.6

0.65

0.7

0.75

ka (non−dimensional ω)

|R+|

experimental (Ronneberger)multimodal m=7 (axisym.)

Figure 2.32: Comparison of single expansion al ulation |R+|, as fun tion of the mean Ma h numberin the du t, with experimental literature data from Ronneberger (Bild 4.1, η = 0.42, M0=0.3, m = 7,N=150).

Page 124: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

116 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.5.2.2 Comparison with another numeri al method and Kutta onditionThe works of Boij and Nilsson (2003 and 2005) represents another numeri al method to determine thea ousti al properties of a single expansion. The parti ularity of this method is that a Kutta ondition an be implemented or not. It is employed ex lusively on a re tangular du t.We have tried to ompare our results with this numeri al method. In order to do so, The variableHe∗ is proposed by Boij and Nilsson (2003) to s ale ylindri al and re tangular on�gurations. Theidea is to get a dimensionless frequen y orresponding to the same distan e from the frequen y of studyto the ut-o� frequen y of the du t. This gives:

He∗ =kb

kbcut−off, (2.78)where kbcut−off = 3.832 for a ir ular du t, and kbcut−off = π for a square du t. Hen e:

He∗ =1

η

ωrect

π=

1√η

ωcyl

3.832, (2.79)where η = S1/S2.An example of result is given in Fig. 2.33. As already observed, our al ulations are lose toRonneberger's results. The limits are parti ularly well obtained. Also, as already observed andindi ated, the parameter of the �ow pro�le is not riti al for al ulations, whi h is very satisfying, asthe same results are obtained within a relative error of less than 2% when using the range m = 3 and

m = 15 of �ow pro�le parameter. The main di�eren e of level is obtained at a hump, forHe∗/M0 ≈ 1.1.This di�eren e is expe ted to be due to the ampli� ation of the unstable hydrodynami mode, butshould be lari�ed in further study.Comparison with Boij's results indi ates that the Kutta ondition is obtained for low He∗/M0.

Page 125: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 117

0 1 2 3 4 5 6 70.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

He* / M0

|R+ |

numerical: Boij with Kutta conditionnumerical: Boij without Kutta conditionexperimental: Ronneberger (using c

0=320 m/s)

numerical: multimodal method (N=150, m=3)numerical: multimodal method (N=150, m=7)numerical: multimodal method (N=150, m=15)

Figure 2.33: Comparison of single expansion al ulation |R+|, as fun tion of the dimensionlessHelmoltz number, with experimental literature data from Ronneberger and numeri al method fromBoij (η = 0.346, f∗=500Hz).

Page 126: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

118 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.5.2.3 Problemati results: bad orrelation for ertain ases when ω > 0.7Strong di�eren e is found for R+ between numeri al and experimental data, for ω above 0.6-0.7 andfor a high Ma h number. It is illustrated in Fig. 2.34. One should note that this range of parametersis quite extreme.This dis repan y with experimental data has not been lari�ed. We have he ked that the phaseof R+ is well al ulated, as shown in Fig. 2.35. Also, the onvergen e of the results has been he ked arefully. Finally, it would be quite surprising that our al ulations abruptly give su h bad orrelationwith experiments. Consequently, it seems that the �rst question is to know the dis repan ies in theexperimental data, as they orrespond to a quite deli ate measure in this extreme range of frequen y.

0 0.2 0.4 0.6 0.8 1 1.2 1.40.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ka (=non−dimensional ω)

experimental (Ronneberger)multimodal m=7 (axisym)

|R+|

Figure 2.34: Comparison with literature (Ronneberger Bild 4.3) for the magnitude (η = 0.35, M0=0.3,N=150).

Page 127: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 119

0 0.5 1 1.5

0.8*pi

0.9*pi

pi

ka (=ω*)

phas

e(R+

)

experimental (Ronneberger)multimodal m=7 (axisym)

Figure 2.35: Comparison with literature (Ronneberger Bild 4.3) for the phase (η = 0.35, M0=0.3,N=150).

Page 128: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

120 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.5.3 Transition to unstable hydrodynami modeThe transition from stable to unstable hydrodynami mode is illustrated in Fig. 2.36. We use themomentum thi kness of the wall boundary layer δ:δ =

∫ r=1

r=r1

M(r)(1 −M(r))dr, (2.80)where r1 is determined so that for r ≤ r1, M(r) ≥ 0.99M0. δ is dimensionless with the radius a ofdu t I. We �nd a riti al value of ωθ/M0 = k∗θ∗/M0 ('*' denotes dimensional variables) around 0.25in the limit of in�nitely shear layers.

0 50 100 1500.12

0.14

0.16

0.18

0.2

0.22

0.24

1/θ (θ: non−dimensional momentum thickness boundary layer)

St θ =

ω θ

/ M0

2D cartesian2D axisymmetric

m=2

m=2

m=30

m=30

m=10

m=5

m=5

m=10

unstable hydrodynamic mode

stablehydrodynamic mode

Figure 2.36: Determination with the multimodal method of the Strouhal number for the hydrodynami instability transition, as fun tion of the �ow pro�le parameter m linked with the momentum thi knessδ of the boundary layer.The Strouhal number for the transition is given in Mi halke (1965), indi ating a value of k∗θ∗/M0 =

0.25 (also mentioned in Boij and Nilsson (2003); the value has to be divided by two, as it orrespondsto a pipe diameter) for in�nitely thin shear layers and dimensional variables. This is in good agreementwith our numeri al values.

Page 129: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 1212.5.4 Comparison between ir ular and re tangular du t2.5.4.1 A satisfying dimensionless frequen yThe omparison between a ir ular and a re tangular du t gives di�erent results, see Fig. 2.37. Hen e,to make the results dimensionless in frequen y, the proposition from Boij and Nilsson (2003) is studied.The idea is to use a frequen y made dimensionless with the distan e to the ut-o� frequen y: thedimensionless Helmholtz number He∗ is de�ned, as presented in se tion 2.5.2.2.Results for this dimensionless frequen y representation are given in Fig. 2.38. The ollapse issatisfying, espe ially for low Helmholtz number He∗ . 0.25.

0 500 1000 1500 2000 2500 3000 35000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f (Hz)

|R+|

Multimodal calculation axisym.Multimodal calculation cartesians

Figure 2.37: Comparison on |R+| between a ir ular and a re tangular du t, using a similar ratio ofse tions (M0 = 0.3, m = 7, η = 0.35, N = 150).2.5.4.2 Investigation of a hump form on s attering matrix oe� ientsA lo al hump form is sometimes found, as the one visible in Fig. 2.30 around M0 = 0.11. It appearsin our al ulations, and also learly on the previous works of Boij & Nilsson (without explanation).Moreover, on this �gure, it is lear that it exists also in experimental data, in a more smooth form.We have tried to investigate this phenomenon on our al ulation in the ase presented in Fig. 2.30.First, it is lear that this phenomenon is not linked to the transition from stable to unstablehydrodynami modes, as this one in this ase appears around M0 = 0.045.It seems, as observed in Fig. 2.39, that this hump orresponds to a minimum distan e betweenthe unstable hydrodynami mode and the smallest (or losest) evanes ent mode. This is however notobvious. The in�uen e of su h proximity on the s attering matrix oe� ient is not understood. A

Page 130: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

122 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

0.1 0.2 0.3 0.4 0.5 0.6 0.70.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

He*

|R+|

Multimodal calculation axisym.Multimodal calculation cartesians

Figure 2.38: Dimensionless representation of |R+| for a ir ular and a re tangular du t, using a similarratio of se tions (M0 = 0.3, m = 7, η = 0.35, N = 150).physi al explanation for the existen e of this hump form la ks also. Hen e further study would beneeded on this subje t to understand what really happens.

Page 131: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.5 Single expansion results 123

0 20 40 60 80 100 120−60

−40

−20

0

20

40

60

Real(Kn)

Im(K

n)

M0= 0.05M

0= 0.10

M0= 0.15

M0= 0.20

Figure 2.39: Evolution of the modes around the hump form observed around M0 = 0.11 on there�e tion oe� ient in Fig. 2.30 (η = 0.346, f = 500 Hz, N=50; the wave numbers depend weakly onN when N is su� iently high, above 20).

Page 132: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

124 2 Aeroa ousti al behaviour of a single expansion with the multimodal method2.6 Con lusionA numeri al al ulation has been used to determine the a ousti al properties of a single expansion undera shear �ow pro�le. The s attering matrix and the resulting a ousti al �elds when sending ex itationwaves have been al ulated. The multimodal method used is a simple �nite di�eren e resolution inestablished harmoni regime of the linearized Euler equations under in ompressible shear mean �ow.Only the transverse dire tion is solved, then �elds are dedu ed on the longitudinal dire tion simply bypropagation at the imposed frequen y. Vis o-thermal e�e ts are negle ted and, the �ow is assumednot to expand after going through the expansion. The resolution gives a ousti modes, propagating atthe speed of sound, hydrodynami modes, onve ted by the mean �ow, and evanes ent modes, withvarying speed between ea h other. The al ulation of these modes is made in the two du ts, and thex-axis lo ation orresponding to the lo ation of the expansion, and the mat hing of these modes at thatpoint by onditions of ontinuity of the a ousti variables gives the a ousti s attering matrix of the on�guration. In this hapter, the obje tive was to validate this method, parti ularly by omparingwith experimental results.As a result, the al ulations give good satisfa tion. A large number of omparisons has been madeon a large range of the parameters (frequen y, Ma h number, height of the expansion), both with avanishing shear �ow, and with a shear �ow, and a large number of omparisons have been made withtheory and experimental data:• an unstable hydrodynami mode is sometimes present in the du t II. Its existen e is supposedto be linked with the virtual in�exion point of the �ow pro�le at the separation between the�ow and the non-�ow region. The transition from stable to unstable hydrodynami modes is in lose agreement with literature (se tion 2.5.3). This result has been on�rmed by the study ofG. Koojman on the same method (PhD, TU/e Eindhoven);• the method al ulates very satisfyingly the s attering matrix oe� ients of the single expansion.Comparison with simple models is very good for limit ases (no �ow, quasi-stationary), and aboveall omparisons are in general very satisfying with all experimental data found in Ronneberger on erning the magnitude and the phase of the re�e tion oe� ient R+ (se tions 2.5.1 and2.5.2.1);• the method, as it allows both re tangular and ylindri al al ulations, has on�rmed a satisfyingdimensionless Helmholtz number, proposed in literature (Boij and Nilsson, 2005) to plot data forthese two geometries (se tion 2.5.4). This on�rms that the ratio of the frequen y ompared tothe ut-o� frequen y of the pipe is a good dimensionless frequen y in those problems.However, some problems have been pointed out and would need more study:• for some extreme range of parameters (high frequen y and high Ma h number), omparison withexperimental data is bad (se tion 2.5.2.3). We have no lear understanding of this phenomenon.This is not a problem of onvergen e of our al ulations, as it has been he ked. But one shouldnote that it may be due to ina ura ies in the experimental data, as for this extreme range ofparameter, measurements are di� ult to handle;

Page 133: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

2.6 Con lusion 125• a lo al hump form, in the evolution of the magnitude of a re�e tion oe� ient, is sometimesfound, but its signi� ation is not understood (se tion 2.5.4.2). This phenomenon appears in theexperimental data. We have understood that it orresponds approximately to a lose distan e,in the real part and imaginary part of the wave numbers representation, between an evanes entmode and the unstable hydrodynami mode. However, the physi s of the phenomenon is notunderstood, and this study would need further study.As a on lusion, we have onsidered this method as been validated by this single expansion on�guration, and we have de ided to apply it to a more omplex, potentially whistling, on�guration:a double expansion, that is, two su essive single expansions ( hapter 3).In perspe tive, more study should be however be made to larify the unsolved problems, and alsoto use more e� iently its advantages:• the omparison between ylindri al and re tangular du ts is possible with this method. Wehave begun this study, but not deepened it parti ularly in terms of understanding. It would beinteresting to do more study on this topi , as it is hardly overed in literature;• a larger understanding of this method would be given by a deeper understanding of the evanes entmodes found in our al ulations. As the wave numbers of those modes do not larify if they arepropagated or onve ted, we do not know in this study whether they are ompressible modes(that is, a ousti modes) or in ompressible modes (that is, in ompressible-type modes, meaningthat we would obtain them in an in ompressible modelling). To this purpose, an in ompressible al ulation should be done in the same manner of this method to larify whether the evanes entmodes are in ompressible or ompressible.One should note �nally that this method ould not be applied to any �ow on�guration, and toany geometry: the pri e of its simpli ity is that it has a quite restrained �eld of appli ation: the �owentering the expansion must be horizontal, and non-expanding.

Page 134: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

126 2 Aeroa ousti al behaviour of a single expansion with the multimodal method

Page 135: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BibliographyY. Aurégan, Comportement aéroa oustique d'une expansion si�ante, Congrès CFA, Tours, 2006.Y. Aurégan, Comportement aéro-a oustique basse-fréquen e d'une expansion, 14e Congrès Français deMé anique, Toulouse, 1999.C. Bailly, Modélisation du rayonnement a oustique des é oulements turbulents libres subsoniques etsupersoniques, thése, HP 63/94/068, EDF-DER Clamart, 1994.W.P. Bi, V. Pagneux, D. Lafarge and Y. Aurégan, Modelling of sound propagation in a non-uniformlined du t using a Multi-Modal Propagation Method, Journal of Sound and Vibration, 289 (4-5):1091-1111, 2006.S. Boij, B. Nilsson, S attering and absorption of sound at �ow du t expansions, Journal of Sound andVibration, 289 (3): 577-594 , 2006.S. Boij, B. Nilsson, Re�e tion of sound at area expansions in a �ow du t, Journal of Sound andVibration, 260(3): 477-498, 2003.S. Félix, V. Pagneux, Fon tion de Green dans un é oulement isaillé, 16e Congrés Français de Mé anique, Ni e, 2003.Félix, S, Propagation a oustique dans les guides d'ondes ourbes & problème ave sour e dans uné oulement isaillé, Thèse, É ole do torale de l'Université du Maine, Le Mans, Fran e, 2002.M. Leroux, S. Job, Y. Aurégan, V. Pagneux, A ousti al propagation in lined du t with �ow, Numeri alsimulations and measurements. 10th ICSV, Sto kholm, July 2003.A. Mi halke, On spatially growing disturban es in an invis id shear layer, Journal of Fluid Me hani s,23: 521-544, 1965.D. Ronneberger, Theoretis he und experimentelle Untersu hung der S hallausbreitung dur h Quer- hnittsprünge und Lo hplatten in Strömungskanälen, DFG-Abs hlussberi ht. Drittes Physikalis hesInstitut der Universität Göttingen, 1987.H. S hli hting, Boundary Layer Theory, M Graw-Hill, 6th Ed., 1968.G. Vilenski, S. Rienstra, A ousti Modes in a du ted shear �ow, 11th AIAA/CEAS Aeroa ousti sConferen e, Montana, CA, USA, 2005. 127

Page 136: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),
Page 137: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Chapter 3Aeroa ousti al behaviour of a whistlingexpansion3.1 Introdu tionThis hapter is an experimental and numeri al study of the aeroa ousti al behaviour of a whistlingexpansion. The obje tive is to study the potentially whistling frequen y of this on�guration, byapplying the whistling riterion (introdu ed in hapter 1), and then, to obtain some lo al understandingof the behaviour of the a ousti �elds in this on�guration.The multimodal method (introdu ed in hapter 2) is used to al ulate the s attering matrix of this on�guration. Numeri al results are ompared to our experimental data.3.2 Con�guration studiedThe geometry onsidered is an ori� e with a double expansion (see Fig. 3.1) onstituted by:

• upstream, a onstri tion, omposed by an ori� e with a bevel upstream. The idea to use a bevelupstream is that the jet formed at the exit of this onstri tion will be horizontal, hen e allowingnumeri al al ulations on this on�guration;• downstream, a double expansion, omposed by an ori� e with no bevel and a larger diameter.The idea is that this se ond ori� e of length L will reate a feedba k and make this on�gurationpotentially whistling, ompared to an ori� e with a single expansion (as presented in hapter 1).This on�guration is the simplest whistling one on whi h we an apply the multimodal method.Indeed, in order to use the multimodal method, the �ow has to be stabilized so that it forms a jet atthe entran e of the expansion. Consequently, the al ulation of a simple ir ular entred ori� e wasnot possible, and the on�guration of an ori� e with only a bevel upstream is not interesting, as it isnot a potentially whistling on�guration. 129

Page 138: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

130 3 Aeroa ousti al behaviour of a whistling expansion

Figure 3.1: Geometry of the on�guration studied: a onstri tion, forming a jet at x = 0, followed bya double expansion. The lengths are made non-dimensional with the height of the onstri tion a∗ (`1'on the �gure). Md is the Ma h number at the onstri tion (z = 0−).3.3 Experimental results: the on�guration is potentially whistlingExperiments show that this on�guration is a potentially whistling one, applying the whistling riterionpresented in hapter 1, as illustrated in Fig. 3.2 (the other results on this on�guration are reportedin appendix B).The potentially whistling frequen ies are made non-dimensional in a similar manner as for singleori� es (see hapter one). The Strouhal number is based on the length L of the expansion, and thevelo ity Ud at the entran e of the expansion (z = 0−):St =

fL

Ud. (3.1)The �rst mode (�rst peak of the potentially whistling frequen ies) is obtained around 0.2-0.3, asvisible in Fig. 3.3 and in appendix B. This is oherent with the values obtained for the single ori� espresented in hapter 1.One ex eption is onstituted by the aseM0 = 0.56x10−2, be ause the Strouhal number is quite high ompared to 0.2-03. This orresponds to a known phenomenon. This measurement orresponds to alow Reynolds number ReD = U0D/ν = 3.8x103 (using νair = 1.51x10−5 m2 s−1, c0 = 343 ms−1), nearthe laminar-turbulent transition. We have already reported this behaviour in hapter 1 of signi� antin rease of the Strouhal number at pipe Reynolds number under 5x103.3.4 Des ription of the numeri al al ulation methodThe numeri al al ulation of the s attering matrix of this on�guration is made as the following. Thetotal s attering matrix is seen as a ombination of the s attering matrix of the onstri tion with thes attering matrix of the double expansion.The s attering matrix of the onstri tion is obtained at on e by using a simple and lassi a ousti model, whi h is presented in the following se tion.

Page 139: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.4 Des ription of the numeri al al ulation method 131

500 1000 1500 2000 2500 3000 3500 4000−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.56 10−2

M0=0.96 10−2

M0=1.97 10−2

Figure 3.2: Eigenvalues of the a ousti power ratio from the whistling riterion for on�guration:b = 1.5, c = 3, L = 2 (CCb6+CC19) for three Ma h numbers: it appears that this on�guration ispotentially whistling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f L / Ud

(Pin

−P ou

t) / P

in

M0=0.56 10−2

M0=0.96 10−2

M0=1.97 10−2

first mode second mode

Figure 3.3: Strouhal number of the potentially whistling eigenvalues from the whistling riterion for on�guration: b = 1.5, c = 3, L = 2 (CCb6+CC19) for three Ma h numbers: the on�guration ispotentially whistling, exhibiting two su essive modes here.

Page 140: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

132 3 Aeroa ousti al behaviour of a whistling expansionThe di� ulty of the al ulation is represented by the al ulation of the s attering matrix oe� ientsof the double expansion. This al ulation is done using the multimodal method introdu ed in hapter2, and is detailed in the following.The ombination of the two s attering matri es gives the s attering matrix of the whole on�guration(presented in the following).3.4.1 S attering matrix of the onstri tionThe geometry of the onstri tion is shown in Fig. 3.4. A simple in ompressible model is used todetermine the s attering matrix of this onstri tion. We dis ern the ases with �ow and without �ow,as it appears that the e�e tive length is riti al to well model the non-�ow ase.

Figure 3.4: The onstri tion: notations used in models to determine the s attering matrix of the onstri tion, in the plane-wave and in ompressible approximations.3.4.1.1 S attering matrix of the onstri tion with �owAssuming the �ow to be in ompressible, without vis osity and stationary, Bernoulli equation indi atesthat the following quantity is onstant on a streamline:h+

1

2u2 +

∂φ

∂t= ste, (3.2)where h = p/ρ is the enthalpy and φ the velo ity potential su h that u = ∇φ.We linearize at �rst order this expression to obtain a ousti al quantities. As the �ow is onsideredin ompressible, h′ = p′/ρ0 (where ρ0 is the volume density of air). We obtain:

p′

ρ0+ u′U0 = ste, (3.3)negle ting the e�e t of φ′ (whi h leads to an end orre tion purely imaginary).

Page 141: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.4 Des ription of the numeri al al ulation method 133This general expression is applied from far upstream of the onstri tion (denoted by 1, of se tionSp) to the onstri tion (denoted by 2, of se tion Sd), whi h gives the �rst equation:

p′1ρ0

+ u′1U0 =p′2ρ0

+ u′2U0. (3.4)The se ond equation of the model is the mass onservation equation linearized at the �rst order:Sp(ρ1u

′1 + ρ′1U1) = Sdu

′2(ρ2u

′2 + ρ′2U2). (3.5)To obtain the s attering matrix oe� ients orresponding to this model, we use the relations(negle ting the e�e t of the �ow in the propagating upstream and downstream wave numbers):

p′ = P+ + P−, u′ =P+ − P−

ρ0c0, ρ′ =

p′

c20, (3.6)where c0 is the speed of sound in air (c0 = 343 m.s−1 at T=293 K.)The s attering matrix oe� ients of this simple model of onstri tion with �ow are, using η = Sd/Sp:

R+ =1 − η

1 + η.1 +M0

1 −M0, T+ =

2

1 + η.1 +M0

1 + M0

η

, (3.7)R− =

−1 + η

1 + η.1 − M0

η

1 + M0

η

, T− =2η

1 + η.1 − M0

η

1 −M0. (3.8)They are illustrated as fun tion of the Ma h number M0 in Fig. 3.5.3.4.1.2 S attering matrix of the onstri tion without �owWithout �ow, the same previous model is onsidered, ex ept that we take into a ount the end orre tion term, so that:

p′1ρ0

=p′2ρ0

+ jωαLeffu′2, (3.9)where η = Sd/Sp and Leff is an e�e tive length.The s attering matrix oe� ients of this model of onstri tion without �ow are:

R+ =1 − η + jA

1 + η + jA, T+ =

2

1 + η + jA, (3.10)

R− =−1 + η + jA

1 + η + jA, T− =

1 + η + jA, (3.11)where A = ω η Leff/c0.The s attering matrix oe� ients obtained with this model are illustrated in Fig. 3.6.

Page 142: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

134 3 Aeroa ousti al behaviour of a whistling expansion

0 0.05 0.1 0.15 0.2 0.25 0.30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M0

Sca

tterin

g m

atrix

coe

ffici

ents

|R+||R−||T+||T−|

Figure 3.5: S attering matrix of the onstri tion with �ow: appli ation of the in ompressible plane-wave model, for η = 1/9 (η = Sd/Sp), c0 = 343 m.s−1, ρ0 = 1.1 kg.m−3.

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

Frequency (Hz)

Sca

tterin

g m

atrix

coe

ffici

ents

|T+| with Leff

=0.07

|T+| with Leff

=0

|T−| with Leff

=0

|T−| with Leff

=0.07

|R+| and |R−| with Leff

=0.07

|R+| and |R−| with Leff

=0

Figure 3.6: S attering matrix of the onstri tion without �ow: appli ation of the in ompressible plane-wave model, for η = 1/9 (η = Sd/Sp), c0 = 343 m.s−1, ρ0 = 1.1 kg.m−3. The oe� ients dependstrongly on the value of the e�e tive length Leff .

Page 143: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.4 Des ription of the numeri al al ulation method 1353.4.2 S attering matrix of the double expansion with the multimodal methodThe multimodal method is used to obtain the s attering matrix and the a ousti �elds of the doubleexpansion.The geometry of the double expansion is shown in Fig. 3.7. The number of dis retization points isN in du t I, M in du t II and P in du t III (see hapter 2 for more details about the method).

Figure 3.7: Double expansion al ulation with the multimodal method: the inje ted �ow in du t Idoes not expand at its rossing in du t II and du t III. There is no �ow in the regions of du t II andIII orresponding to r > 1. The length of du t II is noted L.Modes are al ulated in du t I, du t II and du t III in the same manner as for the single expansion ase presented in hapter 2.The s attering matrix of the double expansion is then determined: the amplitudes αI of the 3Nmodes in du t I are linked with the amplitudes αIII of the 2P +N modes in du t III. The s atteringmatrix S of the double expansion is then:(

αIId

αIu

)

= S

(

αId

αIIu

)

. (3.12)It is a squared matrix of size (2N +M, 2N +M).Two methods an be used to al ulate this s attering matrix of the double expansion, and arepresented in the following. Both have been implemented, so as to validate al ulations.3.4.3 S attering matrix of the double expansion: method by assemblage ofsu essive matri esThe s attering matri es of the single expansions between du t I / du t II and du t II / du t III are al ulated, in the same manner as for a single expansion. Then, the assemblage of these two su essivematri es gives the s attering matrix of the double expansion.

Page 144: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

136 3 Aeroa ousti al behaviour of a whistling expansionThe s attering matrix A of the single expansion between du t I / du t II gives the following oe� ients, orresponding at the lo ation z = 0:A =

(

R+A(0) T−

A (0)

T+A (0) R−

A(0)

)

. (3.13)The s attering matrix B of the single expansion between du t II / du t III gives the following oe� ients, orresponding at the lo ation z = L:B =

(

R+B(L) T−

B (L)

T+B (L) R−

B(L)

)

. (3.14)Before assembling the two matri es, one should in lude the propagation in the du t II of length L.In other terms, the oe� ients in the two matri es should be expressed at the same lo ation point.The hoi e of the lo ation point should be done numeri ally with are, as exponentials terms appearand may lead to divergen e problems. In this prospe t, a good hoi e of variables is the following:R+(0), T−(L), T+(0), R−(L). Thus s attering matri es are arranged in the following manner

Aarranged =

(

R+A(0) T−

A (0) exp(jKIIu ω)

T+A (0) R−

A(0) exp(jKIIu ω)

)

. (3.15)and:Barranged =

(

R+B(L) exp(−jKII

d ω) T−B (L)

T+B (L) exp(−jKII

d ω) R−B(L)

)

, (3.16)where KIIu are the wave numbers orresponding to upstream propagating mode in du t II, and KII

d hewave numbers orresponding to downstream propagating modes in du t II. One should note that thelength L is riti al but is not visible in these expression of exponentials as the pulsation frequen y ωis made dimensionless with respe t with L.From now on, the assemblage of the two matri es an be done, be ause they express the four oe� ients at the same points. The formula of assemblage is given for a general expression in thefollowing.Let A be the �rst s attering matrix and B the se ond s attering matrix (see illustration in Fig. 3.8),and C he s attering matrix of the whole:Figure 3.8: Assemblage of two s attering matri es: notations used, in plane-wave propagation.

Page 145: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.4 Des ription of the numeri al al ulation method 137A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

, C =

(

C11 C12

C21 C22

)

, (3.17)written in our formalism (`11' for R+, `12' for T−, `21' for T+, `22' for R−). After al ulations, C isgiven by the following expressions (Furnell and Bies, 1989; Bi et al., 2006):C11 =

A11 +B11(A21A12 −A11A22)

1 −A22B11, C12 =

A12B12

1 −A22B11, (3.18)

C21 =A21B21

1 −A22B11, C22 =

B22 +A22(A21A12 −B11B22)

1 −A22B11. (3.19)This assemblage is applied, taking A as matrix Aarranged and B as matrix Barranged. The obtaineds attering matrix of the whole C is noted Carranged:

Carranged =

(

R+C(0) T−

C (L)

T+C (0) R−

C(L)

)

. (3.20)The s attering matrix of the double on�guration Cfinal, expressed at x = 0, is given by:Cfinal =

(

R+C(0) T−

C (L) exp(−jKIIu ω)

T+C (0) exp(jKII

d ω) R−C(L) exp(j(KII

d − KIIu )ω)

)

. (3.21)3.4.4 S attering matrix of the double expansion: method by dire t al ulationAnother method is to al ulate dire tly the s attering matrix of the whole on�guration (the interme-diate single expansion matri es are not al ulated), by al ulating the modes in the three du ts andapplying the relations of passage at the two expansions.(

αIIId

αIu

)

= S

(

αId

αIIIu

) with S =

(

T+ R−

R+ T−

)

. (3.22)Denoting S∗ = S1−1.S2 the whole s attering matrix, we obtain the oe� ients of the s atteringmatrix S:

R+ = S∗|(1:N,1:2N), (3.23)

R− = exp(jKIIId ω).S∗

|(N+1:2N+P,2N+1:2N+P ). exp(−jKIIIu ω), (3.24)

T+ = exp(jKIIId ω).S∗

|(N+1:2N+P,1:2N), (3.25)T− = S∗

|(1:N,2N+1:2N+P ). exp(−jKIIIu ω). (3.26)and denoting XN1,N2

a matrix of N1 lines and N2 olumns, X|N1:N2the onstri tion of the ve tor

X from the line N1 to the line N2, the intermediate matri es are al ulated from:S1

αIu

αIII,Ld

αIId

αII,Lu

= S2

(

αId

αIII,Lu

)

. (3.27)

Page 146: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

138 3 Aeroa ousti al behaviour of a whistling expansionIt is important to use those intermediate phase referen es: αII,Lu and αIII,L

d , so that the exponentials oming from the propagation a ross the expansion exp(jKIIu L) and exp(−jKII

d L) are attenuated(ex ept for the unstable hydrodynami mode in exp(−jKIId L)):

S1 =

ψIu 03N,N+P −ψII

d,rest1 −ψIIu,rest1. exp(jKII

u L)

0M−N,N 0M−N,N+P ψIId,rest2 ψII

u,rest2. exp(jKIIu L)

03N,N −ψIIId,rest1 ψII

d,rest1. exp(−jKIId L) ψII

u,rest1

0P−M,N ψIIId,rest2 0P−M,M+N 0P−M,M

02M−2N,N ψIIId,rest3 −ψII

d,rest3. exp(−jKIId L) −ψII

u,rest3

(3.28)S2 =

−ψId 03N,P

0M−N,2N 0M−N,N+P

03N,2N ψIIIu,rest1

0P−M,2N −ψIIIu,rest2

02M−2N,2N −ψIIIu,rest3

, (3.29)with:ψII

d,rest1 =

(

ψIId |M−N+1:M

ψIId |2M−N+1:2M+N

)

, ψIIu,rest1 =

(

ψIIu |M−N+1:M

ψIIu |2M−N+1:2M+N

)

, (3.30)ψII

d,rest2 = ψIId |P+1:2P−M , ψII

u,rest2 = ψIIu |P+1:2P−M , (3.31)

ψIIId,rest3 = ψIII

d |1:M−NψIIId |M+1:2M−N , ψIII

u,rest3 = ψIIIu |1:M−Nψ

IIIu |M+1:2M−N . (3.32)3.5 Validation of the al ulations3.5.1 Comparison with experimental data - without �owWe ompare the numeri al estimation of the s attering matrix of the whole on�guration to ourexperimental data without �ow. This is a �rst validation step, in order to apply next the methodwith a �ow.The s attering matrix oe� ient are given in Figs. 3.9 and 3.10. It appears that the e�e tive lengthis a very important parameter for the model without �ow and has to be taken into a ount. Hen e,there are strong e�e ts of transverse a ousti modes in this ase, and a model without a ousti length orre tion is quite bad.Cal ulations �t well experimental data using the e�e tive length of Leff = 0.07 as a �t variable. Thequalitative and quantitative evolution of the s attering matrix oe� ients are very well representedwhen taking this value.

Page 147: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.5 Validation of the al ulations 139

0 1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

Frequency (Hz)

|R+|

experimentalnumerical with L

eff=0.07

numerical with Leff

=0

Figure 3.9: Re�e tion oe� ient |R+| for the on�guration studied ( onstri tion and double expansion)in the ase of no �ow: the al ulations are losed to the experimental data, when using a well �ttede�e tive length Leff . The numeri al al ulations are made with a∗=5 mm, b = 2, c = 3, L = 3.6,N=20, Md = 0; the reported experimental data on ern the on�guration CCb6+CC18+CC9 without�ow.

0 1000 2000 3000 40000.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

|T+|

experimentalnumerical with L

eff=0.07

numerical with Leff

=0

Figure 3.10: Transmission oe� ient |T+| for the on�guration studied ( onstri tion and doubleexpansion) in the ase of no �ow: the al ulations are losed to the experimental data, when using awell �tted e�e tive length Leff . The numeri al al ulations are made with a∗=5 mm, b = 2, c = 3,L = 3.6, N=20,Md = 0; the reported experimental data on ern the on�guration CCb6+CC18+CC9without �ow.

Page 148: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

140 3 Aeroa ousti al behaviour of a whistling expansion3.5.2 Comparison with experimental data - with �owWe ompare the numeri al estimation of the s attering matrix to our experimental data with �ow.The s attering matrix oe� ients are given in Fig. 3.11 for |R+|, Fig.3.12 for |R−|, Fig.3.13 for |T+|and Fig.3.14 for |T−| and are dis ussed in the following.

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

|R+|

numerical calculation: N=60numerical calculation: N=100numerical calculation: N=140experimental data

Figure 3.11: Re�e tion oe� ient |R+| for the on�guration studied ( onstri tion and double expan-sion) in the ase of �ow: a good onvergen e is obtained for N ≥ 100. The numeri al al ulations aremade with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental data on ernthe on�guration CCb6+CC19 with M0 = 9.6 10−3.Firstly, onvergen e is rea hed for N ≥ 100 with a relative dis repan y of 10−2. We use then in thefollowing se tions N = 100 as a satisfa tory number of points for the al ulations.The qualitative evolution of the s attering matrix oe� ients is satisfa tory, exhibiting several peaks(modes), as in experiments. The position of the Strouhal modes is lose to the experimental values(see the following se tion for more details).The levels obtained at the limits of the s attering matrix oe� ients are well obtained: the lowfrequen y limit of the four s attering matrix oe� ients is very well obtained; the high frequen y limitof the four s attering matrix oe� ients is very well obtained, ex ept for T+ for whi h the al ulatedlimit is bad: it goes to zero, whereas the experimental limit is around 0.3.But the quantitative level of the s attering matrix oe� ients is entirely satisfa tory. The level ofthe oe� ients is globally under-estimated for the re�e tion oe� ients, and over-estimated for thetransmission oe� ients. More study of this phenomenon is made in se tion 3.5.3.One should note however that those results seem quite su� ient to obtain orre t whistlingfrequen ies, as will be presented in the following, and whi h represents our obje tive. The problemof determination of the magnitudes of the s attering matrix oe� ients is not riti al to our needs,

Page 149: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.5 Validation of the al ulations 141

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

Frequency (Hz)

|R−|

numerical calculation: N=60numerical calculation: N=100numerical calculation: N=140experimental data

Figure 3.12: Re�e tion oe� ient |R−| for the on�guration studied ( onstri tion and double expan-sion) in the ase of �ow: a good onvergen e is obtained for N ≥ 100. The numeri al al ulations aremade with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental data on ernthe on�guration CCb6+CC19 with M0 = 9.6 10−3.

Page 150: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

142 3 Aeroa ousti al behaviour of a whistling expansion

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

|T+|

numerical calculation: N=60numerical calculation: N=100numerical calculation: N=140experimental data

Figure 3.13: Transmission oe� ient |T+| for the on�guration studied ( onstri tion and doubleexpansion) in the ase of �ow: a good onvergen e is obtained for N ≥ 100. The numeri al al ulationsare made with a∗=5 mm, b = 1.5, c = 3, L = 2, Md = 8.67 10−2; the reported experimental data on ern the on�guration CCb6+CC19 with M0 = 9.6 10−3.

Page 151: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.5 Validation of the al ulations 143

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

|T−|

numerical calculation: N=60numerical calculation: N=100numerical calculation: N=140experimental data

Figure 3.14: Transmission oe� ient |T−| for the on�guration studied ( onstri tion and doubleexpansion) in the ase of �ow: a good onvergen e is obtained for N ≥ 100, but the limit for thehigh frequen y is not well obtained. The numeri al al ulations are made with a∗=5 mm, b = 1.5,c = 3, L = 2, Md = 8.67 10−2; the reported experimental data on ern the on�guration CCb6+CC19with M0 = 9.6 10−3.

Page 152: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

144 3 Aeroa ousti al behaviour of a whistling expansionand the dis repan y we obtained is a eptable, onsidering the simpli ity of the approa h used: simplemodel for the behaviour of the onstri tion, and simple assumptions for the multimodal method. Themain obje tive is then presented in se tion 3.6, while a loser look at the meaning of this dis repan yis given in the following se tion.3.5.3 E�e t of the saturation of the unstable hydrodynami modeA problem in the al ulations is that the peak values of the potentially whistling eigenvalues arenot well orrelated with experimental data. We assume this is due to the in�uen e of the unstablehydrodynami mode in our al ulations.In the al ulation of the s attering matrix of the double expansion, exponentials terms are present(see Eq. 3.28). The term in the exponential exp(−jKIId ω) for the unstable hydrodynami mode isexponentially ampli�ed, whereas the other terms of this exponential are in magnitude below the unity.In the illustration ase of previous se tion (Fig. 3.17), the value of the exponential for this unstablemode is 5.6.In order to test the in�uen e of this term, we have saturated it in the al ulation (this is not aimedto represent any physi al phenomenon). The exponential term in exp(−jKII

d ω) for this unstablehydrodynami is put to an arbitrary saturation value. A weak saturation is a saturation level of 5 (inmagnitude), as it is lose to the value 5.6 of the exponential. A strong saturation is a saturation levelof 2, whi h is lose to the value of the other terms of the exponentials (near and below the unity).Results are illustrated in Fig. 3.15 and 3.16. The hypothesis is validated: it appears that themagnitude of the s attering matrix oe� ients, and also the potentially whistling eigenvalues, dependstrongly on the saturation used, at least for potentially whistling frequen ies. Hen e the ampli� ationdue to the unstable hydrodynami mode is riti al to determine the amplitudes of the s attering matrix oe� ients and the potentially whistling eigenvalues. In this ase, a saturation at 2 would give thebest omparison with experimental results.The improvement of the determination of this ampli� ation is problemati . In our al ulations, thisampli� ation is obtained by the multipli ation of the imaginary part of the wave number of the unstablehydrodynami mode with the length L of the double expansion. The value of the imaginary part of thewave number depends on the �ow pro�le imposed, and the exponential ampli� ation is hen e riti allydependent on this value. For instan e, using a �ow parameter m = 3, m = 7 and m = 15 respe tively,the imaginary part of the unstable wave number equals 1.9, 4.4 and 5.3 respe tively (made in du tII with M0 = 0.1, b = 2, ω = 0.1, N = 50). Hen e it is problemati to �nd a more pre ise predi tionof this ampli� ation in our model, unless knowing very pre isely the experimental �ow pro�le. Thisresult is rather oherent physi ally. It is not a surprise that the shape of the boundary layer of the �owpro�le is important to determine the aeroa ousti al response of the system, as this is in this regionthat the main phenomenon, the presen e of an unstable hydrodynami mode, o urs.

Page 153: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.5 Validation of the al ulations 145

0 500 1000 1500 2000 2500 3000 3500 40000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Frequency (Hz)

|R+|

experimental datanumerical calculation: saturated at 2 (N=30)numerical calculation: saturated at 3 (N=30)numerical calculation: saturated at 5 (N=30)numerical calculation: around 5.6 (N=30)

Figure 3.15: Variations of |R+| when saturating numeri ally to a trun ated value the unstable ampli�edhydrodynami mode in the s attering matrix al ulation of the double expansion. The numeri al al ulations are made with a∗=5 mm, b = 1.5, c = 3, L = 2, N=20, Md = 8.67 10−2; the reportedexperimental data on ern the on�guration CCb6+CC19 with M0 = 9.6 10−3.

Page 154: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

146 3 Aeroa ousti al behaviour of a whistling expansion

0 500 1000 1500 2000 2500 3000 3500 4000−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Frequency (Hz)

Rat

io o

f dis

sipa

ted

acou

stic

pow

er (

Pin

−P ou

t)/P in

experimental datanumerical: saturated at 2 (N=30)numerical: saturated at 3 (N=30)numerical: saturated at 5 (N=30)numerical: around 5.6 (N=30)

Figure 3.16: Variations of the potentially whistling eigenvalues when saturating numeri ally to atrun ated value the unstable ampli�ed hydrodynami mode in the s attering matrix al ulation ofthe double expansion. The numeri al al ulations are made with a∗=5 mm, b = 1.5, c = 3, L = 2,N=30, Md = 8.67 10−2; the reported experimental data on ern the on�guration CCb6+CC19 withM0 = 9.6 10−3.

Page 155: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.6 Whistling ability of the on�guration 1473.6 Whistling ability of the on�gurationIn this se tion, we apply the whistling riterion presented in hapter 1 to the numeri al results with�ow presented in the previous se tion and ompare them tour experimental data.3.6.1 Whistling ability of the on�gurationThe potentially whistling eigenvalues dedu ed from the s attering matrix oe� ients previouslypresented are illustrated in Fig. 3.17. The same on lusions ome, than those obtain on the s atteringmatrix oe� ients: a good qualitative evolution is found, the limit behaviour at very low and veryhigh frequen y is orre t, There is however a slight shift in frequen y: the experimental Strouhalnumber, orresponding to the �rst peak, is fpeak 1L/Ud = 0.34 (with f =peak 1= 1000Hz), while thenumeri al Strouhal number is fpeak 1L/Ud = 0.37 (with f =peak 1= 1100Hz). As the model used forthe onstri tion is a simple one, this shift does not seem riti al;The potentially whistling eigenvalues dedu ed from those oe� ients are illustrated in Fig. 3.17.• it appears that the qualitative evolution of the eigenvalues is satisfa tory, exhibiting two peaks(modes), and potentially whistling frequen ies, as in experiments. The orresponding Strouhalnumber is lose to experiments: this al ulation provides satisfa tory Strouhal number forpotentially whistling frequen ies.We note however a slight shift in frequen y: for example for the �rst peak, in experimentsfpeak 1L/Ud = 0.34 (fpeak 1 = 1000Hz), while in al ulations fpeak 1L/Ud = 0.37 (fpeak 1 =

1100Hz), whi h orresponds to a 8% relative dis repan y. As the model used for the onstri tionis a simple one, this shift does not seem riti al (no study has been made to redu e it);• the amplitudes of the peaks are wrong. For example, the peak of the �rst mode is over-estimatedwith a ratio of three. . . This issue is under study in the following se tion.

Page 156: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

148 3 Aeroa ousti al behaviour of a whistling expansion

0 500 1000 1500 2000 2500 3000 3500 4000−2

−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

Rat

io o

f dis

sipa

ted

acou

stic

pow

er (

Pin

−P ou

t)/P in

numerical calculation: N=60numerical calculation: N=100numerical calculation: N=140experimental data

Figure 3.17: Whistling riterion applied numeri ally for the on�guration studied ( onstri tion anddouble expansion) in the ase of �ow: a good onvergen e is obtained for N ≥ 100, and thepotentially whistling frequen ies are obtained satisfa torily, for the two whistling modes, but not theamplitude of the eigenvalues. The numeri al al ulations are made with a∗=5 mm, b = 1.5, c = 3,L = 2, Md = 8.67 10−2; the reported experimental data on ern the on�guration CCb6+CC19 withM0 = 9.6 10−3.

Page 157: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.6 Whistling ability of the on�guration 1493.6.2 Comparison with the whistling ability of a single expansion on�gurationIt is parti ularly interesting to ompare the whistling ability of the on�guration with a similar on�guration without the se ond expansion zone of length L (see Fig.3.18). In fa t, this orrespondsto an ori� e with a bevel upstream, on�guration that has already been studied in hapter 1 as atypi al non-whistling one. We ompare these experimental data with numeri al al ulations, using thes attering matrix of the onstri tion as presented in this hapter and the s attering matrix of a singleexpansion. Results are given in Fig.3.19. The al ulations give a good estimation fo the magnitude,with a dis repan y whi h is not riti al: the main result is that numeri al al ulations predi t the orre t behaviour of the on�guration, that is a non-whistling ability.Figure 3.18: Con�guration studied without a double expansion.This non-whistling ability shows learly, with experimental and numeri al results, that the presen eof the se ond expansion is a ne essary ondition to allow whistling. In fa t, there is a length ofsyn hronisation on this se ond expansion, orresponding to an a ousti and/or hydrodynami feedba k(immediate as the main �ow is in ompressible) toward the separation point of the jet.

Page 158: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

150 3 Aeroa ousti al behaviour of a whistling expansion

500 1000 1500 2000 2500 3000 3500 4000−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency (Hz)

Rat

io o

f dis

sipa

ted

acou

stic

pow

er(P

in−

P out)/

P in

experimental datanumerical calculation

Figure 3.19: Whistling ability of the on�guration without a double expansion, from experimentaland numeri al al ulations. The al ulations give a satisfa tory result that this on�guration is not apotentially whistling one. (The numeri al al ulations are made with a∗=5 mm, b = 3,Md = 8.67 10−2;the reported experimental data on ern the on�guration CCb2 with a bevel rbevel/t = 0.2 downstreamwith �ow Md = 8.67 10−2).

Page 159: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.6 Whistling ability of the on�guration 1513.6.3 Parametri study on the Strouhal numberA parametri study is done on the whistling on�guration, in order to estimate the variations ofthe Strouhal number of the potentially whistling frequen y peak with the variations of the geometri alparameters of the on�guration. The aim is to get better understanding of the aeroa ousti al behaviourof the on�guration in fun tion of the parameters of the problem, and parti ularly the se ond expansion.3.6.3.1 The �ow parameters in�uen e weakly the Strouhal numberWeak variations of the Strouhal number are found on the Strouhal number, when varying the �owparameters:• the �ow pro�le parameter m, as shown in Fig. 3.20. This is oherent with the single expansionresults, where we showed that al ulations are weakly sensitive on the �ow pro�le we impose.Also, it seems a oherent result: as far as the �ow pro�le is typi al of a turbulent �ow (that is,the �ow is not laminar), small variations of its shape are not expe ted to in�uen e greatly theinstability frequen y;• the radius of the jet a, as illustrated in Fig. 3.21. In this illustration, L has values superior tounity. The same result is obtained for values of L inferior to unity. The weak variation obtainedseems oherent with the fa t the the diameter of the jet is not representative of any hara teristi length for the instability;• the Ma h number Md, as illustrated in Fig. 3.22. This result is oherent with experimentaldata presented in hapter 1 (see Fig1.23), where we found a de rease of the Strouhal numberas fun tion of the �ow velo ity. Of ourse, the weak variation obtained is oherent with thede�nition of the Strouhal number as a number made dimensionless using the Ma h number ofthe �ow.

Page 160: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

152 3 Aeroa ousti al behaviour of a whistling expansion

0 5 10 15 200.35

0.4

m (flow profile parameter)

f peak

1 L /

Ud

Figure 3.20: Very weak variations with the �ow pro�le parameter m of the numeri al Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequen y of the �rst modeof the on�guration studied ( onstri tion with double expansion). The al ulations made withMd = 8.67 10−2, L/a = 2, b/a = 1.5, c/a = 3 (length variables on the �gure are in meters).

0 0.01 0.02 0.03 0.04 0.05 0.06

0.38

0.4

0.42

0.44

0.46

a (in meters)

f peak

1 L /

Ud

Figure 3.21: Weak variations with the jet radius a on the numeri al Strouhal number fpeakL/Ua, orresponding to the most potentially whistling frequen y of the �rst mode of the on�guration studied( onstri tion with double expansion). The al ulations are made with Md = 0.1,m = 10, L/a =

2, b/a = 1.5, c/a = 3 (length variables on the �gure are in meters).

Page 161: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.6 Whistling ability of the on�guration 153

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350.25

0.3

0.35

0.4

0.45

0.5

Md

f peak

L /

Ud

Figure 3.22: Moderate variations with the Ma h number at the onstri tion Md on the numeri alStrouhal number fpeakL/Ua, orresponding to the most potentially whistling frequen y of the �rstmode of the on�guration studied ( onstri tion with double expansion). The al ulations are madewith m = 10, L/a = 2, b/a = 1.5, c/a = 3, a = 510−3m (length variables on the �gure are in meters).

Page 162: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

154 3 Aeroa ousti al behaviour of a whistling expansion3.6.3.2 The geometry of the se ond expansion in�uen es strongly the Strouhal numberStrong variations of the Strouhal number are found when varying the hara teristi s of the zone onstituted by the se ond expansion. Typi ally, values for the Strouhal number are obtained between0.2 and 0.5, when varying:• the height b of the �rst expansion, as illustrated in Fig. 3.23. This result points out the signi� antin�uen e of the distan e of the hydrodynami mode to the walls in the ampli� ation zone. Thisis a well-known result in literature. However, this is di� ult to take into a ount in a very simplemodel, that is, the Strouhal number dimensionless frequen y proves not to be onstant, whenvarying the height of the ampli� ation zone;• the length L of the double expansion, as illustrated in Fig. 3.24. This parameter is parti ularlysensitive. A doubling of it an orrespond to a doubling of the Strouhal number. Comparableresult in tenden y has been obtained with the experiments on the right-angle edged ori� es:in Fig. 3.26, we have obtained a strong experimental variation of the Strouhal number whenvarying the thi kness of the ori� e, the diameter and the Reynolds number being onstant(approximately).Another spe ta ular illustration of the strong dependen y with the length of the se ond expansionis given in Fig. 3.25.

1 1.5 2 2.50.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

b / a

f peak

L /

Ud

Figure 3.23: Strong variations with the intermediate expansion radius b on the numeri al Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequen y of the �rst mode ofthe on�guration studied ( onstri tion with double expansion). The al ulations are made withM0 = 0.1,m = 10, L/a = 2, c/a = 3, a = 5.10−3m (length variables on the �gure are in meters).Hen e the instability frequen y varies mu h with the geometry of the se ond expansion. This resultis in agreement with the previous observation that this on�guration is whistling, as there exists this

Page 163: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.6 Whistling ability of the on�guration 155

0 0.5 1 1.5 2 2.5 3 3.5 4 4.50.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L / a

f peak

1 L /

Ud

Figure 3.24: Strong variations with the length L of the double expansion on the numeri al Strouhalnumber fpeakL/Ua, orresponding to the most potentially whistling frequen y of the �rst mode ofthe on�guration studied ( onstri tion with double expansion). The al ulations are made withm = 10, L/a = 2, b/a = 1.5, c/a = 3, a = 5.10−3m (length variables on the �gure are in meters).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.80.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

b / a

f peak

L /

Ud

L=1L=2.5

Figure 3.25: Example of strong variations when varying the length L of the double expansion on thenumeri al Strouhal number fpeakL/Ua. The al ulations are made with m = 10, c/a = 3, a = 5.10−3m(length variables on the �gure are in meters).

Page 164: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

156 3 Aeroa ousti al behaviour of a whistling expansion

0.2 0.4 0.6 0.8 1 1.20.2

0.25

0.3

0.35

0.4

0.45

t / d

St t =

f peak

t/ U

d

d/D=0.33, ReD=8.6x10

4

d/D=0.67, ReD=2.2x104

circular centred orifice − experimental results

Figure 3.26: Experimental variations of the Strouhal number with the variation of the thi kness of right-angled ori� e, the diameter and the Reynolds number being approximately onstant. Data orrespondto the one reported in hapter 1 for ir ular entred ori� es without bevels.se ond expansion. Also, this result has already been pointed out in Aurégan and Testud (2006),using a similar multimodal method, but a simpli�ed one with six modes, and applied on the same on�guration. Moreover, one should note that, in hapter 1, we showed that the Strouhal numberobtained for ir ular entred ori� es depends on the thi kness of the ori� e. This thi kness is a kindof se ond expansion zone, and is omparable to the model investigated in this hapter. This on�rmsour results on this simple on�guration.As a result, the Strouhal number an not be onsidered as a onstant for su h a on�guration,and onsequently no simple model an be found to des ribe the phenomenon of whistling on this on�guration.3.7 Con lusionA potentially whistling on�guration has been studied in this hapter, onstituted by a onstri tionfollowed by a double expansion. The multimodal method has been used to al ulate the s atteringmatrix of the double expansion, and simple in ompressible a ousti models have been used to obtainthe s attering matrix of a onstri tion. The potential whistling ability of this on�guration has beeninvestigated, using the whistling riterion presented in hapter 1.The obje tive of the work has been rea hed: the potentially whistling frequen ies are numeri allypredi ted, in good agreement with experimental data, both without �ow (se tion 3.5.1) and with amean shear �ow (se tion 3.5.2). In this latter ase, the dis repan y is of the order of about 8%,and should be improvable, by using more elaborated models for the onstri tion, and by re�ning themeasurements. It has not been looked for parti ularly.

Page 165: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

3.7 Con lusion 157The omparison with a single expansion on�guration then gives the strong result that the presen eof the se ond expansion is essential to reate whistling potentiality. Parametri studies on thepotentially whistling frequen y on�rm that this zone is riti al to determine the Strouhal number. Weshow also that the parameters of the �ow do not in�uen e strongly the Strouhal number, whi h seemsin agreement with the physi s of the phenomena. Those results are in agreement with the experimentalresults obtained in hapter 1 for right ori� es, where the instability frequen y depends on the thi knessof the ori� e, whi h orresponds to a kind of se ond expansion.

Page 166: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

158 3 Aeroa ousti al behaviour of a whistling expansion

Page 167: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BibliographyY. Aurégan, P. Testud, Comportement aéroa oustique d'une expansion si�ante, Congrès Fran aisd'A oustique, Tours, 2006.Y. Aurégan, Comportement aéro-a oustique basse-fréquen e d'une expansion, 14e Congrès Français deMé anique, Toulouse, 1999.W. P. Bi, V. Pagneux, D. Lafarge, Y. Aurégan, Modelling of sound propagation in a non-uniform lineddu t using a Multi-Modal Propagation Method, Journal of Sound and Vibration, 286: 1091-1111,2006.G.D. Furnell, D.A. Bies, Matrix analysis of a ousti wave propagation within urved du ting system,Journal of Sound and Vibration, 132: 245-263, 1989.

159

Page 168: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),
Page 169: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Chapter 4Noise generated by avitating single-holeand multi-hole ori� es in a water pipeP. Testud, P. Moussou, A. Hirs hberg, Y. Auréganpublished in Journal of Fluid and Stru tures (2006)4.1 Introdu tion4.1.1 MotivationsIn industrial pro esses, avitating �ows are known to sometimes generate signi� ant levels of noiseand high vibrations of stru tures. Some papers have been published in the last years on this topi :Au-Yang (2001); Weaver et al. (2000); Moussou et al. (2004).In parti ular, fatigue issues have been reported re ently for the on�gurations of a avitating valve(Moussou et al., 2001) and a avitating ori� e (Moussou et al., 2003). The examination of the noisegenerated by a avitating devi e, in this study a avitating ori� e, is typi ally an industrial issue. Itprovides information whi h is a basis for a safer design in terms of pipe vibrations.4.1.2 LiteratureIn single-phase �ow, an ori� e generates a free jet surrounded by a dead water pressure region ofuniform pressure, f. Fig. 4.1. The stati pressure rea hes its minimum value Pj in the jet region, also alled the vena ontra ta, and large eddies are generated in the shear layer separating the jet from thedead water region.Two-phase �ow transition o urs when the lowest stati pressure in the �uid falls below the vaporpressure (Brennen, 1995). The level of avitation is usually orrelated with the help of a so- alled avitation number. Di�erent de�nitions exist of the avitation number for avitation in a �owingstream (also alled hydrodynami avitation). They orrespond to di�erent avitation on�gurations,and are usually hosen for onvenien e, so that they an easily be determined in pra ti e:• for wake avitation, that is avitation round a body (i. e. an hydrofoil) or generated by a slit,the avitation number is ommonly de�ned as fun tion of the upstream onditions (Young, 1999;161

Page 170: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

162 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

Figure 4.1: Flow through an ori� e and orresponding evolution of the stati pressure.Brennen, 1995; Fran et al., 1995; Le o�re, 1994):σ =

P0 − Pv12ρLU

20

, (4.1)where U0 is the in�nite upstream �ow velo ity, P0 the ambient stati pressure, Pv the vaporpressure of the liquid and ρL the density of the liquid.• for mixing avitation, that is avitation formed in a jet (i. e. in pumps, valves, ori� es), a similar avitation number, as in the wake avitation, an be used (Young, 1999; Brennen, 1995):

σ =Pref − Pv

12ρLU2

0

, (4.2)where Pref is very often de�ned as the downstream stati pressure.We prefer to use the avitation number, based on the pressure drop a ross the singularitygenerating the jet:σ =

P2 − Pv

∆P, (4.3)where ∆P = P1 −P2 is the pressure drop a ross the ori� e, with P1 the stati pressure upstreamof the ori� e and P2 the downstream stati pressure far away from the ori� e. In this hoi e, wefollow ommon pra ti e in industry (Tullis, 1989; Fran et al., 1995; Le o�re, 1994).One should note that both those avitation numbers lead to very similar lassi� ations as theyare related to ea h other by the pressure drop oe� ient of the singularity.

Page 171: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.1 Introdu tion 163When the pressure Pj has a su� iently low value, intermittent tiny avitation bubbles are produ edin the heart of the turbulent eddies along the shear layer of the jet. This �ow regime transition is alled avitation in eption, and it appears at a avitation number of the order of 1 (when d/D = 0.30)a ording to the data of Tullis (1989). Other referen es (Numa hi et al., 1960; Tullis et al., 1973; Ballet al., 1989; Yan and Thorpe, 1990; Kugou et al., 1996; Sato and Saito, 2001; Pan et al., 2001) are ingood agreement with the values and s ale e�e ts given by Tullis (1989). Some di�eren es result fromthe in�uen e of the variation in the dissolved gas ontent and in the vis osity (Keller, 1994).As the jet pressure de reases further, more bubbles with larger radii are generated, forming a white loud. The pressure �u tuations in rease and a hara teristi shot noise an be heard. A furtherde rease in jet pressure indu es the formation of a large vapor po ket just downstream of the ori� e,surrounding the liquid jet. The regime o urring after this transition is alled super avitation and itexhibits the largest noise and vibration levels. In the super avitation regime, noise is known, see, forexample, VanWijngaarden (1972), to be mainly generated in a sho k transition between the avitationregion and the pipe �ow, at some distan e downstream of the ori� e. Downstream of the sho k, someresidual gas (air) bubbles an persist but pure vapor bubbles have disappeared.Cavitation indi ators are used to predi t the o urren e of avitation regimes. The use of two ofthem has seemed relevant, in view of our experimental results. First, a so- alled in ipient avitationindi ator, noted σi, whi h predi ts the transition from a non avitating �ow to a moderately avitating�ow, that is alled developed avitation regime. Se ond, a so- alled hoked avitation indi ator, noted

σch, whi h predi ts the transition from a moderately avitating �ow to a super avitating �ow, withthe formation and ontinuous presen e of a vapor po ket downstream of the ori� e around the liquidjet. To al ulate both those in ipient and the hoked avitation indi ators, s aling laws are given byTullis (1989). They take into a ount the various pressure e�e ts and size s ale e�e ts, by means ofextensive experiments on single-hole ori� es in water pipe-�ow. For multi-hole ori� es, as mentionedin the same work, less data are available but identi al values are expe ted to hold.Only a few studies provide downstream noise spe tra generated by avitating ori� es (Yan et al.,1988; Bistafa et al., 1989; Kim et al., 1997; Pan et al., 2001). A few omplementary studies give thenoise spe tra reated by avitating valves (Hassis, 1999; Martin et al., 1981). In fa t, it appears that farmore resear h has been developed on submerged water jets (Jorgensen, 1961; Esipov and Naugol'nykh,1975; Franklin and M Millan, 1984; Brennen, 1995; Latorre, 1997). A omprehensive overview of thestate of the art in this domain is given in Brennen (1995).

Page 172: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

164 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipeNomen laturec speed of sound measured down-stream of the ori� e (in m.s−1 ) Sj ross se tion of the jet (in m2)cw speed of sound in pure water (inm.s−1 ) St Strouhal number for thewhistling frequen ycmin minimum speed of sound (inm.s−1 ) t ori� e thi kness (t = 14x10−3 m)d diameter of the single-hole ori� e(d = 2.2x10−2 m) tp pipe wall thi kness (tp = 8x10−3m)deq single-hole equivalent diameterof the multi-hole ori� e (deq =2.1x10−2 m) U volume �ux divided by pipe ross-se tional area (in m.s−1 )dmulti diameter of the holes of the multi-hole ori� e (dmulti = 3x10−3 m) Ud volume �ux divided by ori� e ross-se tional area (in m.s−1 )f0 whistling frequen y (in Hz) Uj volume �ux divided by ori� e jet ross-se tional area (in m.s−1 )D pipe diameter (D = 7.4x10−2 m) β volume fra tion of gas in the wa-terGpp Power Spe trum Density of thepressure (in Pa2/Hz) ∆P stati pressure di�eren e a rossthe ori� e (in Pa)Nholes number of holes for the multi-hole ori� e (Nholes = 47) νwaterkinemati vis osity of water[νwater(310 K) = 7.2x10−7m2 s−1 (Idel' ik, 1969)℄p+,p−

forward, ba kward propagatingplane wave spe tra (in Pa/√Hz) ρw density of water (ρw(310 K) =

994 kgm−3)P1,P2

stati pressure respe tively up-stream and far downstream of theori� e σ avitation numberPj stati pressure at the jet (vena ontra ta) σi in ipient avitation numberPv vapor pressure(Pv(310 K) =5.65x103 Pa(Tullis, 1989)) σch hoked avitation numberS ross-se tion of the pipe (in m2)4.2 Experimental set-up4.2.1 Tested ori� esIn the piping system of Fren h nu lear power plants, a basi on�guration to obtain a pressure dis harge an be realized with a single-hole ori� e. The maximum �ow velo ity an rea h about 10 m.s−1 andthe pressure drop 100 bar a ross the ori� e. This an indu e high vibration levels. The ori� es usedare hosen in order to redu e the pipe vibration to a eptable levels (Caillaud et al., 2006).

Page 173: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.2 Experimental set-up 165In our study, two ori� es have been tested (see Fig. 4.2), as follows.• A single-hole ori� e, ir ular, entered, with right angles and sharp edges. It has a thi kness oft = 14 mm (t/d = 0.64) and a diameter of d = 22 mm (d/D = 0.30), for a pipe diameterof D = 74 mm. It is onsidered as a 'thin' ori� e as t/d . 2 (Idel' ik, 1969). In a sharpedged ori� e �ow, separation o urs at the upstream inlet edge. In a thin ori� e, there is noreatta hment of the �ow within the ori� e.

• A multi-hole ori� e, with Nholes = 47 ir ular right-angled and sharp-edged perforations ofdiameter dmulti = 3 mm. Its total open surfa e is pra ti ally identi al to the single-holeori� e one, as it has an equivalent deq/D = 0.28 ratio. This multi-hole ori� e also has the samethi kness of t = 14 mm (t/dmulti = 4.67). It behaves as a thi k ori� e t/d & 2. The �owreatta hes to the wall within the ori� e.

(a) Single-hole ori� e (b) Multi-hole ori� eFigure 4.2: Front views of the tested ori� es.4.2.2 Test rigThe test-se tion, as shown in Fig. 4.3, onsists out of an open loop with a hydrauli ally smooth steelpipe of inner diameter D = 74 mm and wall thi kness tp = 8 mm. The ori� es are pla ed betweenstraight pipe se tions with lengths respe tively equal to 42 diameters upstream and 70 diametersdownstream.The water is inje ted from a tank lo ated 17 m upstream from the ori� e. The nitrogen pressure inthe tank above the water is ontrolled by a feedba k system to maintain a onstant main �ow velo ity.The water is released at atmospheri pressure 20 m downstream of the ori� e. The temperature is keptequal to 310 K (±1 K) during all experiments.The �ow velo ity U is measured 26D upstream of the ori� e, and the stati pressures P1 and P2 aredetermined respe tively by a transdu er 11D upstream and another 40D downstream of the ori� e.The �u tuating pressures are monitored by means of a ombination of Kistler 701A piezo-ele tri altransdu ers and Kistler harge ampli�ers. The lo ation of the dynami al pressure transdu ers is givenin Fig. 4.4. Upstream, the transdu ers 1 to 3 are positioned, at respe tively 11D, 8D and 5D from the

Page 174: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

166 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

Figure 4.3: S ale s heme of the test rig.ori� e (0.25 m between onse utive transdu ers). Downstream, the transdu ers 4 to 10 are regularlypositioned, from 7D to 39D (0.4 m between onse utive transdu ers).Figure 4.4: Lo ation of the dynami al pressure transdu ers upstream and downstream of the ori� e.4.2.3 Experimental onditions4.2.3.1 Water qualityThe water used is tap water, demineralized, with pH 9 and weak ondu tivity. It is not degassed,hen e it is expe ted to be saturated with dissolved air. The volume fra tion of dissolved gas (denotedby β) is high ompared to other avitation studies. This gas ontent has not been measured, but anestimation, assuming saturation ondition under a temperature of T = 310 K or T = 273 K, gives forthe volume fra tion an order of magnitude around, respe tively, 10−2 or 10−3.It should be pointed out that the presen e of dissolved gas in the water does not mean a presen e of

Page 175: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.2 Experimental set-up 167gas bubbles in the water. Thus, the measured upstream speed of sound does not reveal any presen eof gas bubbles as it is lose to the one in pure water �ow.Corre ting the ompressibility of the water for the in�uen e of the elasti ity of the pipe (diameterD= 7.4x10−2 m, wall thi kness e= 8x10−3 m, Young's modulus E= 2x1011 N m−2, Poisson ratio ζ=0.3), the speed of sound cth in pure water in the pipe is given in fun tion of the speed of sound inpure water cw (Lighthill, 1978):

cth = cw

(

1 + ρwc2w

D(1 − ζ2)

eE

)−0.5

. (4.4)This predi ts a speed of sound of cth=1454 m.s−1 using cw=1523 m.s−1 . The measured speed of soundupstream of the ori� e is 1420 ± 10 m.s−1 .4.2.3.2 Experimental �ow onditionsExperiments are arried out at a onstant �ow by ontrolling the stati pressure upstream of the ori� e.The downstream pressure P2 is imposed by the hydrauli stati head of the 17.2 m high verti al pipedownstream of the ori� e. Ea h experiment lasts about 90 se onds. Pressures and volume �ows areprovided in Table 4.1 for the six experiments on the single-hole ori� e, and in Table 4.2 for the sixexperiments on the multi-hole ori� e.The Reynolds number Re = UD/νwater based on the pipe diameter and the water vis osity variesfrom 2x105 to 5x105; turbulen e is fully developed, as usual in industrial pipes.Table 4.1: Flow onditions for the single-hole ori� e experiments (with standard deviations).Developed avitation︷ ︸︸ ︷

Super avitation︷ ︸︸ ︷

U (m.s−1 ) 1.91 2.38 2.90 3.75 4.08 4.42st. deviation (m.s−1 ) 0.06 0.04 0.04 0.03 0.03 0.05P1 (105 Pa) 6.3 9.2 13.3 21.4 25.0 29.5st. deviation (105 Pa) 0.3 0.3 0.6 1.4 0.7 0.8P2 (105 Pa) 2.7 2.7 2.7 2.8 2.8 2.8st. deviation (105 Pa) 0.0 0.0 0.0 2.0 0.2 1.5

σ 0.74 0.41 0.25 0.15 0.12 0.10Higher �ow regimes have been tested, but the pressure transdu ers downstream delivered no signal,as they were lo ated in a vapor po ket hara teristi of the super avitation regime. As a onsequen e,no a ousti data are available in these onditions, and the orresponding hydrauli onditions are notreported in Tables 4.1 and 4.2.4.2.4 Distin tion of two avitation regimesThe appli ation of Tullis' formulas to our experiments gives the avitation indi ators: σi for thedeveloped avitation and σch for the super avitation. Compared to our observations, those avitation

Page 176: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

168 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipeTable 4.2: Flow onditions for the multi-hole ori� e experiments (with standard deviations).Developed avitation︷ ︸︸ ︷

Super avitation︷ ︸︸ ︷

U (m.s−1 ) 2.08 2.45 2.94 3.65 4.18 4.43st. deviation (m.s−1 ) 0.02 0.04 0.04 0.02 0.02 0.04P1 (105 Pa) 6.5 6.9 12.9 19.8 26.0 28.3st. deviation (105 Pa) 0.1 0.3 0.4 1.2 0.3 0.6P2 (105 Pa) 2.7 2.8 2.8 2.9 3.0 0.9st. deviation (105 Pa) 0.0 0.1 0.1 0.3 1.2 2.1

σ 0.74 0.45 0.28 0.17 0.13 0.03regime indi ators are in good agreement.• For the single-hole ori� e: σi ≥ 0.93, σch = 0.25. The observations, based on listening andon the measured downstream speed of sound, indi ate that all experiments (i.e., σ < 0.74) are avitating. Furthermore, the downstream a ousti properties and parti ularly the shape of thedownstream noise spe tra indi ate that the last three experiments (i.e., σ < 0.25) are in super avitation regime.• For the multi-hole ori� e: σi ≥ 0.87, σch = 0.20. The observations in this ase indi ate that allexperiments (i.e., σ < 0.74) are avitating. The super avitation regime is observed for the lasttwo experiments (i.e., σ < 0.17).4.2.5 A ousti analysis methodIn the frequen y range of the study, only a ousti plane waves propagate. The issue is to determinethe spe tra p+ and p− representing, respe tively, the upstream and downstream traveling plane wavesand for whi h Fourier-like analysis holds.From ea h experiment, time �u tuating-pressure signals are obtained. These data are trun ated toa time interval where the a ousti properties do not evolve signi� antly, i.e., on a duration of about 10s. With the help of a referen e pressure pref, we ompute the ross-spe tral densities Gppref(f), whi hare de�ned as the Fourier Transform of the time orrelation (Bendat and Piersol, 1986). It is worthre alling that, for a small frequen y bandwidth ∆f , the mean- square value of the pressure in thefrequen y range [f, f + ∆f ] is given by Gpp (f)∆f . These ross-spe tra are expressed in Pa2/Hz. Inorder to get a spe tral expression linear with the pressure, we hoose to use the following expression,in Pa/Hz1/2 (see Appendix E for more details):

pn(f) =Gpn(t)pref (t)(f)

Gpref (t)pref (t)(f), (1 ≤ n ≤ 10). (4.5)

Page 177: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.2 Experimental set-up 169For upstream observations, transdu er 1 is hosen as referen e and for downstream observations,transdu er 10 is hosen as referen e.As plane waves propagate, the a ousti pressure at one point is the summation of the forward (inthe dire tion of the �ow) traveling wave p+ and of the ba kward traveling wave p−. We assume thespeed of sound to be identi al in the forward and in the ba kward dire tions, be ause the Ma h numberis low (of the order of 10−3). The identi� ation at ea h transdu er of the lo al speed of sound and ofthe a ousti plane waves is arried out a ording to standard intensimetry te hniques (Davies et al.,1980; Bodén and Abom, 1986; Hassis, 1999).The �nal spe tra represent an average of about 20 spe tra, determined with a time signal of 10 sduration. Ea h intermediate spe trum is determined with a window of 1 s duration, and the su essivewindows have an overlapping ratio of 0.5 (between 0 and 1). This average is made in order to redu ethe random errors.The use of a single referen e mi rophone may give un ertainties for determining standing waves ifthere is a pressure node at a mi rophone. This happens when the re�e tion oe� ient is lose to unity.At low frequen ies (below 500 Hz), this is the ase for developed avitation (see Fig. 4.6). However, asshown in Fig. 4.19, the mi rophones are not lose to the pressure nodes of the standing wave patterns.At higher frequen ies, and for super avitation, the re�e tion oe� ient is so low that we do not expe ta problem (see Figs. 4.6 and 4.7).4.2.6 A ousti boundary onditions on both sides of the ori� e4.2.6.1 A ousti boundary onditions upstream of the ori� eThe a ousti onditions imposed by the test rig upstream of the ori� e are quite re�e ting, as illustratedin Fig. 4.5 by the upstream re�e tion oe� ient R = p−/p+, de�ned as the ratio between the forwardand the ba kward propagating plane waves. These re�e ting hara teristi s are due to multiple partialre�e tions of the a ousti waves on various elements present on the upstream part of the test rig as anopen valve, a few bends and se tion restri tions. Those elements have not been modi�ed in the ourseof the experiments, so that these re�e ting onditions not vary mu h from one experiment to another.4.2.6.2 A ousti boundary onditions downstream of the ori� eThe downstream a ousti boundary ondition depends on the avitation regime, developed avitationregime or super avitation regime.In developed avitation regime (see Fig. 4.6), the downstream re�e tion oe� ient has a magnitude lose to 1 up to 600 Hz, whi h indi ates a strong re�e ting ondition. As the phase is a linear fun tionof the frequen y, the re�e tion point is determined: it orresponds to the lo ation of an open valve (at53D downstream of the ori� e). The avity of this valve is hen e �lled with a very ompressible �uid,i. e. air, imposing an a ousti pressure node p′ = 0.The re�e tion oe� ient shows values above unity in Figs. 4.5 and 4.6. This may be due tomeasurement ina ura ies. Also the presen e of a noise sour e outside the main sour e region ispossible and would give values above unity.

Page 178: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

170 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe10 500 1000 1500

−pi

0

pi

Pha

se (

rad)

10 500 1000 15000

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

Am

plitu

de

U=2.38 m.s−1

Figure 4.5: Typi al a ousti re�e tion oe� ient R = p+p− upstream of the ori� e ( al ulated attransdu er 1).In super avitation regime (see Fig. 4.7), the downstream re�e tion oe� ient falls down below thevalue of 0.5. As a �rst approximation, the pipe termination is then almost ane hoi . This di�eren eof behavior between the developed avitation regime and the super avitation regime is not analysedin the framework of the present study.This variation of the downstream a ousti boundary onditions is spe i� of the test rig. It hassome impa t on the levels of the downstream spe tra. This will be taken into a ount further in thestudy of the downstream noise spe tra.It should be pointed out that, for some frequen ies, the determination of the a ousti al spe tra isina urate. But oheren e values are still good enough, as illustrated in Fig 4.8, to allow a satisfa tory�t of the spe tra to determine the speed of sound, as illustrated in Fig 4.9.4.3 Cavitation regimes4.3.1 Hydrauli model for the pressure drop ∆P a ross the single-hole ori� eA simple model of the hydrauli s of the single-hole ori� e is proposed. The hydrauli onditions(pressure and Ma h number) at the jet of the ori� e are estimated, hen e giving some insight for aphysi al interpretation of the di�erent avitation regimes.This hydrauli model is a simple lassi al Borda-Carnot model, see, for example Durrieu et al.(2001). It assumes an in ompressible stationary single-phase �ow, that is, no e�e t of avitation onthe hydrauli s. Also, the ratio Sj/S between the free jet ross-se tion and the pipe ross-se tion S is onsidered as �xed.

Page 179: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.3 Cavitation regimes 171

10 500 1000 1500−pi

0

pi

Pha

se (

rad)

10 500 1000 15000

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

Am

plitu

de

U=1.91 m.s−1

Figure 4.6: Typi al a ousti re�e tion oe� ient R = p−p+ downstream of the ori� e ( al ulated attransdu er 8) in developed avitation regime.

10 500 1000 1500−pi

0

pi

Pha

se (

rad)

10 500 1000 15000

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

Am

plitu

de

U=3.75 m.s−1

Figure 4.7: Typi al a ousti re�e tion oe� ient R = p−p+ downstream of the ori� e ( al ulated attransdu er 8) in super avitation regime.

Page 180: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

172 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

Coh

eren

ce

Figure 4.8: Example of the oheren e fun tion between 2 su essive transdu ers (single-hole ori� e,U=2.38 m.s−1 , between transdu ers 7 and 8).

0 500 1000 1500 2000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

cos(

ω∆l

/c)

(p6(ω)+p

8(ω)) / p

7(ω)

fit with c=1425 m/s

Figure 4.9: Example of the determination of the speed of sound using a �t on the spe tra for 3 su essivetransdu ers (single-hole ori� e, U=2.38 m.s−1 , middle transdu er: 7).

Page 181: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.3 Cavitation regimes 173Firstly, mass onservation demandsSj Uj = S U. (4.6)Se ondly, the �ow upstream of the jet is assumed to be an invis id steady potential �ow, so that

P1 +1

2ρw U2 = Pj +

1

2ρw U2

j . (4.7)Downstream of the jet, a turbulent mixing region is followed by a uniform �ow of velo ity U . Negle tingfri tion at the walls, and assuming a thin (t/d . 2) ori� e (with no re-atta hment of the �ow insidethe hole of the ori� e), one obtains (Sd is the ross-se tion of the ori� e)S Pj + ρw U2

j Sj = S P2 + ρw U2S. (4.8)The pressure Pj and the velo ity Uj at the jet are dedu ed from Eqs. (4.6)-(4.8). The measuredpressure drop, denoted by ∆Pmeasured, is in this ase equal to the pressure drop a ross the ori� e:∆Pmeasured = P1 − P2. Hen e, denoting by α the ontra tion oe� ient (α = Sj/Sd), this developed avitation model gives

∆Pmeasured12ρwU2

=

[(S

Sj

)2

− 1

]

+

[

2 − 2S

Sj

]

, (4.9)the �rst part representing the enthalpy variation from upstream to the jet, and the se ond part thedissipation from the jet to downstream.Finally, after simpli� ations, we �nd∆Pmeasured

12ρwU2

=

[(D

d

)2 1

α− 1

]2

. (4.10)In super avitation, the downstream stati sensor is in the jet region, measuring Pj . The pressuredrop measured represents the dissipation from upstream to the jet (the �rst part of the pre edingexpression):∆Pmeasured

12ρwU2

=1

α2

(D

d

)4

− 1. (4.11)Figure 4.10 ompares the two models using a ontra tion oe� ient α = 0.65 with experimentalresults (additional experimental results in super avitation, not shown in Table 4.1, are plotted), asfollows.• In the developed avitation regime (U < 3.5 m.s−1 ), theory agrees qualitatively well withexperiments, predi ting ∆P within 15 %.• In the super avitation regime (U > 3.5 m.s−1 ), experimental data agree remarkably well withthe model, predi ting ∆P within 1 %. In identally, we observe that super avitation does notindu e a strong slope variation in the ∆P versus U urve. This is mentioned in Tullis (1989) forori� es of low d/D ratio (approximately under 0.5, whi h is the ase here).As a result, the model is validated as a satisfying broad estimation of the hydrauli s, taking a ontra tion oe� ient of 0.65. This value is reasonable, as it is lose to 0.61 whi h is the theoreti alvalue for sharp-edged ori� es with a jet from a gas to a free spa e exit (Gilbarg, 1960) and it is less

Page 182: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

174 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

1 2 3 4 5 6 7 8180

200

220

240

260

280

300

320

U (m.s−1)

∆Pm

easu

red/(

0.5ρ

wU

2 )

single−hole experimentsthin−hole developed−cavitation model: α=0.65thin−hole super−cavitation model: α=0.65

Figure 4.10: Comparison between the Borda-Carnot model with di�erent ontra tion oe� ients αand the single-hole ori� e measurements.than 0.70, whi h indi ates (Blevins, 1984) that the real radius of urvature of the upstream edge of theori� e is less than 1% of the pipe diameter (this on�rms that this edge is a neat sharp angle edge).Using this model, the pressure and the velo ity at the jet are estimated, see Table 4.3, as follows.• The pressure in the jet Pj is very lose to the vapor pressure of the liquid (Pv=5.65x103 Pa) insuper avitation regime. This is oherent with the stationary presen e of a vapor po ket in thisregion. Hen e, it may be an indi ator of the transition to super avitation regime.• The velo ity Uj is ompared to cmin, an evaluation of the lowest speed of sound in the two-phase region of the jet. An estimation of it an be obtained, see VanWijngaarden (1972): theminimum speed of sound is obtained for a vapor volume fra tion in the jet of β = 0.5, givingcmin =

4γPj/ρw. We �nd (see Table 4.3) very low values: this is oherent, as there is mu hvapor in this region. Comparing those values with the velo ity of the jet �ow Uj , it appearsfrom this rude model that the �ow an be 'supersoni ' in the jet region. This seems relevantin all avitation regimes, hen e this supersoni transition may be hara teristi of the transitionbetween a non- avitating and a avitating �ow: it ould an indi ator of in ipient avitation.Further resear h is needed to on�rm this idea.4.3.2 Hydrauli model for the pressure drop ∆P a ross the multi-hole ori� eSimilarly to the single-hole ori� e, a simple model of the hydrauli s of the multi-hole ori� e is proposed.Contrary to the single-hole ori� e, the multi-hole ori� e has a ratio t/deq over 2 (t/deq = 4.7), sothat ea h ori� e is onsidered as thi k. In that ase, for non avitating �ows, there is re-atta hment of

Page 183: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.3 Cavitation regimes 175Table 4.3: Conditions at the jet using the Borda-Carnot model for the single-hole ori� e.Developed avitation︷ ︸︸ ︷

Super avitation︷ ︸︸ ︷

U (m.s−1 ) 1.91 2.38 2.90 3.75 4.08 4.42Uj (m.s−1 ) 33 41 50 65 71 76cmin (m.s−1 ) 28 30 34 13 _ _Pj (105 Pa) 1.4 1.6 2.0 0.3 _ _the �ow within the ori� es, followed by a turbulent mixing region, whi h orresponds to a �rst energyloss. A se ond energy loss is imposed by the sudden enlargement at the exit of the hole.Following this des ription, and using similar equations as for the single-hole ase, the pressure dropmeasured a ross the ori� e ∆Pmeasured = P1 −P2 for the developed avitation regime is omposed of a�rst part representing the dissipation from upstream to the jet (within the ori� e), and a se ond partrepresenting the dissipation after the jet (Sd is the ross-se tion of the ori� e):

∆Pmeasured12ρwU2

=

[(S

Sj

)2

− 1

]

+

[

2

(

1 − S

Sd

)

+ 2

(S

Sd

)2(

1 − Sd

Sj

)]

. (4.12)The total expression is hen e the following:∆Pmeasured

12ρwU2

= 1 − 2

(D

d

)2

+ 2

(D

d

)4(

1 − 1

α+

1

2α2

)

. (4.13)In the super avitation regime, we assume that there is no reatta hment within the ori� e. Thedownstream stati pressure transdu er is lo ated intermediately between the two pressure losses, sothat the measured pressure loss is given by ∆Pmeasured = P1 − Pj . We should again apply Eq. (4.11)to determine it. As the two ori� es have the same open surfa e, we �nd the same expression as thedeveloped avitation model for the single-hole ori� e.Figure 4.11 shows omparison of this hydrauli model with experiments, as follows.• In the developed avitation regime, the orrelation is not good for α = 0.65. The pressure drop

∆P is underestimated by about 30 %. The thin ori� e equation (Eq. (4.10)), however, performsbetter, indi ating that there is not a full reatta hment within the ori� e. We observe a redu tionof losses for the multi-hole measurements, whi h is oherent as a two-step dissipation indu esless pressure losses than a single step.• In the super avitation regime, the orrelation is again ex ellent, with a predi tion of ∆P within1 %.Conditions at the jet are estimated. We use Eq. (4.10) with α = 0.65 as the most satisfa tory forthis estimation in developed avitation. Results are given in Table 4.4: in the developed avitationregime, we get the same results as in the single-hole ase: the �ow is 'supersoni ' in the sense that

Page 184: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

176 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

1 2 3 4 5 6 7 8140

160

180

200

220

240

260

280

300

320

U (m.s−1)

∆Pm

easu

red/(

0.5ρ

wU

2 )

multi−hole experimentsthick−hole developed−cavitation model: α=0.65thin−hole developed−cavitation model: α=0.65thick−hole super−cavitation model: α=0.65single−hole experiments

Figure 4.11: Evaluation of the multi-hole ori� e model and omparison between the single-hole ori� emeasurements.the jet �ow velo ity is higher than the minimum speed of sound in the region; in the super avitationregime, the estimated pressure at the jet is at the vapor pressure. This also on�rms the result obtainedfor the single-hole ase.Table 4.4: Conditions at the jet using the Borda-Carnot model for the multi-hole ori� e.Developed avitation︷ ︸︸ ︷

Super avitation︷ ︸︸ ︷

U (m.s−1 ) 2.08 2.45 2.94 3.65 4.18 4.43Uj (m.s−1 ) 36 43 51 63 73 77cmin (m.s−1 ) 20 _ 27 _ _ _Pj (105 Pa) 0.7 _ 1.3 _ _ _

4.3.3 Developed avitation visualization and time signalIn the developed avitation regime, bubbles are reated intermittently, as illustrated in Fig. 4.12.The typi al time �u tuating pressure signals obtained are di� ult to distinguish from a non av-itating �ow (see Fig. 4.13). The �u tuations display a symmetri signal around the mean pressure,with hardly any distinguishable bursts oming from the implosion of the bubbles. Those bursts aredis ussed later for super avitation.

Page 185: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.3 Cavitation regimes 177

Figure 4.12: From other experiments at EDF (Ar her et al., 2002), visualization of the developed avitation regime for a single-hole ori� e (d/D = 0.30, t/d = 0.10, D =2.66x10−1 m) with σ = 0.49and U = 1.50 m.s−1 (∆P =3.1x105 Pa, P1 =4.6x105 Pa). White bubble louds are observed aroundthe jet formed at the ori� e.

40 40.05 40.1 40.15−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

Dyn

amic

al p

ress

ure

sign

al a

t sen

sor

9 (1

05 P

a) σ = 0.41

Figure 4.13: Typi al dynami al time pressure signal from a downstream transdu er for the developed avitation regime (here for the single-hole ori� e at σ= 0.41).

Page 186: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

178 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe4.3.4 Whistling phenomenon in developed avitationWhistling is present in every developed avitation regime of single-hole ori� e experiments (it is neverobserved for multi-hole ori� e experiments). Eviden e of whistling is parti ularly given on the upstreama ousti al spe tra, by the sharpness of the fundamental frequen y peak f0 and the existen e of severalharmoni s at exa t multiples of f0 (see an example in Fig. 4.14). The higher harmoni s are typi al ofsteady whistling stabilized by a nonlinear feedba k e�e t as for all self-sustained os illations (Flet her,1979; Ro kwell and Naudas her, 1979).

0 200 400 600 800 1000

104

105

106

107

108

109

Frequency (Hz)

p−2 (

Pa2 /H

z)

U=1.91 m.s−1f 0

0 f 2

Figure 4.14: Dete tion of whistling frequen y f0 with harmoni s on upstream plane wave spe tra p−(here for the single-hole ori� e at U = 1.91 m s−1, f0 = 359 Hz and the �rst harmoni s at 718 Hz).S ant literature has been found on whistling of avitating ori� es in pipes. A vortex sheddingphenomenon in presen e of avitation has been investigated by Sato and Saito (2001), but in theparti ular ase of thi k ori� es (t/d & 2). On thin ori� es, some visualizations (Moussou et al., 2003)made on other EDF experiments have shown the possibility of the presen e of vortex-shedding in avitation regime, as an be seen in Fig. 4.15, from Ar her et al. (2002).The whistling frequen ies are given in Table 4.5. They do not in rease ontinuously with the�ow velo ity, as one would expe t for a hydrodynami os illation edge-tone like (Blake and Powell,1983). The stable frequen y is typi al of an a ousti feedba k whi h reates and maintains the a ousti os illation lose to a resonan e frequen y. This is also revealed by the lo king of the phase of the timepressure signals on su essive sensors, whi h indi ates a standing wave pattern.Upstream of the ori� e, the level of whistling is higher than downstream: hen e the a ousti feedba kis suspe ted to happen predominantly upstream. The upstream re�e tion oe� ient, see Fig. 4.5, ishigh but irregular: no lear a ousti re�e tion point an be identi�ed (as it an be for the avity of avalve downstream, see Se tion 4.2.6.2). This irregular shape is due to the intri a y of the upstreamrig design, with a su ession of elbows, slight restri tions of se tions and some open valves.

Page 187: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.3 Cavitation regimes 179

Figure 4.15: From other experiments at EDF (Ar her et al., 2002), visualization of a avitating andwhistling single-hole ori� e (d/D = 0.30, t/d = 0.10, D =2.6x10−1 m) with σ = 0.35 and U = 1.97m.s−1 (∆P =5.3x105 Pa, P1 =7.2x105 Pa).It is also worth mentioning that the whistling frequen y does not oin ide with any downstreamnatural a ousti frequen y. This is oherent with the a ousti un oupling observed from both sides ofthe ori� e.The single-hole ori� e has a ratio t/d = 0.6, inferior to 2, so that it is onsidered as a thin ori� e.We assume that the whistling phenomenon is in�uen ed by the thi kness of the ori� e t, rather thanits diameter. It is also natural to use the velo ity at the ori� e Ud as a relevant s aling velo ity. Hen ethe Strouhal number is de�ned as St =f0 t

Ud, (4.14)and values are reported in Table 4.5.Table 4.5: Strouhal number St=f0 t

Udof the whistling frequen y f0 (only observed in the single-holeori� e ase).

U (m s−1) 1.91 1.91 2.38 2.38 2.90 2.90c (m s−1) 1390 1200 660 1420 1130 1420f0 (Hz) 359 397 421 436 427 434St 0.23 0.26 0.22 0.23 0.18 0.19The Strouhal number is obtained in the range 0.18-0.26. These values are lose to data on ori� es:Anderson (1953) �nds a Strouhal number around 0.2 for whistling ori� es in air with a free air exit.

Page 188: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

180 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipeIn Anderson's experiments, the ori� es were a bit thinner (with 0.2 ≤ t/D ≤ 0.5, whereas heret/D = 0.19) and the Reynolds numbers smaller (Ud t/νair ∽ 103 with νair the kinemati vis osity ofair, whereas here Ud t/νwater ∽ 105).The multi-hole ori� e is a thi k one, as t/dmulti = 4.7. Hen e it is no surprise that it does notwhistle. The �ow re-atta hes itself inside ea h hole, whi h stabilizes the shear layers of the jet andhen e prevents whistling in the same manner as observed for the single-hole ori� e.4.3.5 Super avitation visualization and typi al time signalIn the super avitation regime, a vapor po ket is reated in the jet region, as illustrated in Fig. 4.16.

Figure 4.16: From other experiments at EDF, visualization of the super avitation regime for a single-hole ori� e.When the vapor po ket expands and rea hes the downstream transdu ers, those transdu ers nolonger deliver any a ousti al signal. This onstitues an eviden e for the existen e of the vapor po ket.It appears that the length of the vapor po ket in reases qui kly with �ow velo ity. The length ofthe vapor po ket in reases from about 7D at U0 = 3.8 m.s−1 to 18D at U0 = 4.4 m.s−1 and is largerthan 38D at U0 = 4.7 m.s−1 for the single-hole ori� e. For the multi-hole ori� e, the length of thevapor po ket in reases from around 7D at U0 = 4.2 m.s−1 to larger than 38D at U0 = 4.5 m.s−1 .The typi al time-�u tuating pressure signals obtained are very di�erent from those in the developed avitation regime (see Fig. 4.17). They are asymmetri around the mean pressure, exhibiting very largepositive spikes, up to 20 bars, linked to the ollapse of bubbles.Fo using on time signals (see an illustration in Fig. 4.18), it is seen that the phenomenon of bubble

Page 189: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.4 Results in the developed avitation regime 181implosion is hara terized �rst by a de rease in negative values of the �u tuating pressure with a hara teristi duration of a tens of millise onds, followed by an abrupt in rease of the pressure, a'spike', with a hara teristi duration of one millise ond. By modeling this bubble volume evolutionwith a monopole sour e, whi h is a ommon and satisfa tory simple model; see, for instan e, Brennen(1995), the �rst de rease is linked with a de rease of the bubble size from its initial size to a value loseto zero; the se ond part of the signal is linked with a pressure sho k wave originating from the abrupt ollision of the water parti les. However, extremely high amplitudes are observed in omparison toBrennen (1995) ( f. his Fig 3.19). This an be due either to the large size of our bubbles, either to thee�e t of on�nement.

40 40.05 40.1 40.15−5

0

5

10

15

20

Time (s)

Dyn

amic

al p

ress

ure

sign

al a

t sen

sor

9 (1

05 P

a) σ = 0.10

Figure 4.17: Spurious pressure pulses (spikes) from ollapsing bubbles on dynami al time pressuresignal from a downstream transdu er in super avitation regime (here for the single-hole ori� e atσ= 0.10).4.4 Results in the developed avitation regimeThe single-hole and the multi-hole ori� e developed avitation regimes are presented together, as theyshow similar a ousti al behavior. Firstly, results on the a ousti features of this avitation regime areintrodu ed: the observed variations of the downstream speed of sound and the presen e of resonan efrequen ies in downstream spe tra. Then the downstream spe tra, depending on those a ousti alfeatures, are presented and dis ussed.

Page 190: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

182 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

47.07 47.075 47.08 47.085 47.09 47.095 47.1−5

0

5

10

15

20

Time (s)

Flu

ctua

ting

pres

sure

(x1

05 P

a)

Figure 4.18: Cavitation peak in super avitation regime (single-hole ori� e at σ=0.10)4.4.1 A ousti features4.4.1.1 Spontaneous variations of the downstream speed of soundFor a �xed set of hydrauli onditions in the developed avitation regime, the downstream speedof sound may spontaneously evolve. For instan e, the single-hole ori� e experiment at U =

2.38 m.s−1 shows the downstream speed of sound evolving from 660 m.s−1 (during the �rst 20 s)to 1420 m.s−1 (till the end of the experiment: 90 s).This variation of the speed of sound indi ates that air bubbles are present, in varying quantity,in the water far downstream of the ori� e. For instan e, a value of 660 m.s−1 indi ates a volumegas fra tion in the water between 10−3 and 10−4, assuming the stati pressure being between Pj andP2 [we use a lassi formula; see, for example, VanWijngaarden (1972)℄. On the ontrary, a value of1420 m.s−1 indi ates a negligible ontent of air in the water, as it is lose to the speed of sound in purewater (whi h equals to 1454 m.s−1 when orre ting for pipe elasti ity, as presented in se tion 4.2.3.1).Cavitation bubbles, when they are formed, are originally mainly onstituted of vapor. During theirlifetime, they are gradually �lled with air, due to the di�usion of the dissolved gas present in thewater surrounding them. As they drift downstream, moving away from their region of reation, theyrea h regions where the pressure re overs higher levels. Pure vapor bubbles annot persist, thosebubbles remaining far downstream of the ori� e are mainly �lled with air (see for example Fig. 4.12).Consequently, the observed variation of the quantity of air bubbles is suspe ted to be due to aninhomogeneity of the dissolved gas ontent in the inje ted water. This inhomogeneity may be relatedto temperature variations in the experimental installations. This hypothesis is all the more plausible asthe water used has not re eived any degassing treatment, hen e having a �u tuating and high dissolvedgas ontent, not measured but estimated around 10−2 or 10−3 (values at saturation onditions for T= 273 K and T = 310 K respe tively). In some experiments, the hange in residual air bubble ontent

Page 191: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.4 Results in the developed avitation regime 183o urs after the water from the pipe segment between the ori� e and the tank has been eva uated and'fresh' tank water has started to �ow through the ori� e.These variations of the downstream speed of sound during ea h experiment have some in�uen eon the a ousti al behavior downstream of the ori� e: the values of the natural frequen ies, appearingdownstream, are altered proportionally with the speed of sound.The propagating waves are subje ted to two-phase �ow damping, as already mentioned by Hassis(1999). As regards this last e�e t, no signi� ant variation of the propagating wave amplitude ould bemeasured along the downstream sensors, but the downstream a ousti al re�e tion oe� ient appearsto vary signi� antly with the downstream speed of sound.4.4.1.2 A ousti al un oupling from both sides of the ori� eAn a ousti al un oupling is observed between a ousti al spe tra upstream and downstream of theori� e: the natural frequen ies present downstream are strongly attenuated on upstream spe tra; thewhistling, when present, is visible on upstream spe tra, but hardly on downstream spe tra; and,furthermore, the ba kground noise on downstream spe tra is higher than the one on upstream spe tra,approximately from a fa tor 2 (for U = 1.91 m.s−1 ) up to 7 (for U = 2.90 m.s−1 ) for the single-holeori� e, and mu h more signi� antly for the multi-hole ori� e, with an approximately onstant fa torof about 10.This a ousti al un oupling is an e�e t of avitation as there is hoking (indi ated in Table 4.3).4.4.1.3 Presen e of natural modes downstreamIn this developed avitation regime, resonan e frequen ies are systemati ally observed in a ousti alspe tra downstream of the ori� e (both for the single-hole and the multi-hole).The a ousti boundary onditions are of a similar type, as the frequen ies are of the form:fn = nf1, f1 being the �rst resonan e frequen y. More pre isely, these a ousti boundary onditions an be identi�ed by extrapolating the standing wave patterns at those resonan e frequen ies. Thisextrapolation is made possible as a series of transdu ers (7 in number) is present downstream of theori� e. As a result, we �nd two a ousti pressure nodes p′ = 0 (see Fig. 4.19), dis ussed above.

• One a ousti pressure node is found far downstream of the ori� e, at 52D (±1D). It is the resultof the in�uen e of a avity of an open valve �lled with air. The re�e tion oe� ient imposed bysu h a avity has been presented in Fig 4.6. The magnitude of the re�e tion oe� ient |R| is lose to 1 , whi h on�rms the a ousti in�uen e of this avity;• Another is found just downstream of the ori� e, at 4D (±1D). It is likely to be aused by a avitation loud.4.4.2 Noise spe tra generated downstreamNoise spe tra generated in the pipe downstream of the ori� e for the developed avitation regime arepresented in this se tion.The downstream transdu ers give a far-�eld measurement, as they are not lo ated in the sour eregion mainly onstituted of bubble implosions lo ated just downstream of the ori� e. The a ousti al

Page 192: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

184 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

−1 0 1 2 3 4 5−1.5

−1

−0.5

0

0.5

1

1.5x 10

4

Distance (m)

Rea

l par

t of t

he c

ross

−sp

ectr

a (P

a/H

z0.

5 )

↑ Orifice ↑ Downstream valve

p’~0 p’~0

Figure 4.19: In the developed avitation regime, two a ousti boundary onditions p′ ≃ 0 are founddownstream of the ori� e, hen e natural frequen ies appear, pointed out by the interpolation ofthe values of the ross-spe tra at those �rst natural frequen ies (here for the single-hole ori� e atU = 2.38 m.s−1 , c=1420 m.s−1 and 5 natural frequen ies: • 188 Hz, N 386 Hz, H 574 Hz, � 770 Hz,� 957 Hz).

Page 193: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.4 Results in the developed avitation regime 185power measured at downstream transdu ers represents the noise generated in the pipe. Under theassumptions of plane-wave propagation and no in�uen e of the �ow (the Ma h number is around10−3), the a ousti al power takes the expression: S (p+2 − p−2

)/(ρwcw) (Morfey, 1971).It is furthermore assumed that the ba kward propagating wave spe trum of p− is small enoughto be negle ted. Even if a ousti al re�e tion is observed to o ur downstream, this estimation of thesour e of noise is onsidered satisfa tory enough as an order of magnitude (this is all the more relevantas logarithmi representation is used). Thus it omes to the sour e power being represented by thequantity Sp+2/(ρwcw).

101

102

103

10−6

10−5

10−4

10−3

10−2

10−1

100

f (in Hz)

S p

+2 /(ρ w

c)

(in W

/Hz)

σ=0.74, c=1280 m/sσ=0.41, c=660 m/sσ=0.25, c=1430 m/s

Figure 4.20: A ousti al power spe tra in developed avitation (single-hole ori� e).Of ourse, this representation is no more valid for the dis rete frequen ies whi h are whistlingharmoni s and resonan e frequen ies, as the ba kward propagating wave has great in�uen e in those ases.The a ousti al power spe tra obtained downstream of the ori� e for the developed avitation regimeare given in Fig. 4.20 for the single-hole ori� e and in Fig. 4.21 for the multi-hole ori� e. The reje tionfrequen y orresponding to a wavelength of half of the distan e between two su essive transdu ersand depending on the measured speed of sound has been ex luded from those results. The followingobservations are made on those spe tra:• spe tra exhibit a hump form in the upper frequen y range (above 200 Hz); this hump form istypi al of avitational noise (Martin et al., 1981; Brennen, 1995);• the single-hole ori� e generates remarkably mu h more noise (by a fa tor of about 102 in the

Page 194: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

186 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

101

102

103

10−7

10−6

10−5

10−4

10−3

10−2

10−1

f (in Hz)

p+2 S

/(ρ c

) (in

W/H

z)

σ=0.74, c=1420 m/sσ=0.45, c=1420 m/sσ=0.28, c=1425 m/sσ=0.17, c=1425 m/s

Figure 4.21: A ousti al power spe tra in developed avitation (multi-hole ori� e).a ousti al power) than the multi-hole ori� e.4.4.3 Nondimensional analysis and representation4.4.3.1 Choi e of the s aling variables for the noise spe traS aling is proposed in order to obtain a dimensionless representation of the a ousti al sour e power.Cavitation noise from the implosions of bubbles is assumed to be predominant in order to s ale thenoise spe tra. Hen e, broadband turbulen e noise from the mixing region downstream, whistling andresonan e frequen ies are not taken into a ount to hoose the s aling variables. This assumption ofpredominan e of avitation noise is globally valid, but seems to fail at low frequen ies (in this work,below 200-300 Hz approximately). Also, it is assumed that whistling does not alter avitation noise,generalizing the hypothesis that broadband noise is not a�e ted by whistling [as shown in Verge (1995)for a �ue organ pipe℄.Following Blake (1986), the amplitude of noise produ ed by avitation should be made dimensionlessby dividing with the downstream pressure, and not the pressure drop, when using a Rayleigh-Plessetbubble dynami model for a spheri al isolated free bubble. However, ring vorti es generated by anori� e are not isolated bubbles in free spa e, so that this s aling should not hold in the ase of thepresent study, as it also does not for sheet avitation on airfoils (Keller, 1994).As we la k a pre ise model, the s aling data are hosen for the sake of simpli ity: the basi idea, asshown in Fig. 4.22, relies on the fa t that, in the developed avitation regime, the bubbles are reated

Page 195: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.4 Results in the developed avitation regime 187

Figure 4.22: Choi e of the variables d and Ud for the s aling of the noise spe tra in the developed avitation regime for the single-hole ori� e.in the mixing high-shear region of the jet.For the single-hole ori� e experiments, the velo ity Ud and the ori� e diameter d are representativeof the onditions in this region, hen e those quantities are used in order to s ale the noise spe train this regime. Furthermore, the s aling pressure is de�ned as the pressure drop ∆P a ross theori� e, whi h is a measure of the kineti energy density in the jet. Hen e for the single-holeori� e in developed avitation, fd/Ud is the nondimensional frequen y and p+2 Ud/(∆P2 d) is thenondimensional magnitude.For the multi-hole ori� e experiments, we assume the noise issuing from in oherent Nholes sour es.Ea h sour e represents the radiation of one hole. It radiates on a hara teristi surfa e of S/Nholes.The strength of ea h sour e is assumed to be independent of the environment of the sour e. Thisassumption is natural, as we have previously supposed (see previous se tion) that the noise generatedby the single-hole ori� e does not depend on the diameter of the pipe. However, it should be pointedout that this assumption is wrong when whistling o urs.In this model, the total a ousti power P measured downstream is a summation of the a ousti power Pea h sour e emitted by ea h sour e [the key element is that sour es are supposed to be in oherentbetween ea h other, see Pier e (1981)℄:

P = Nholes Pea h sour e. (4.15)The a ousti power of ea h sour e Pea h sour e is, by de�nition, the total a ousti intensity �ux Imultiplied the surfa e of this sour e:Pea h sour e = I S/Nholes. (4.16)Hen e the total a ousti power is

P = S I. (4.17)The total a ousti power is onsequently independent of the number of holes. As previously, we ignoreany downstream re�e tions, so that I = p+2/(ρc).This argumentation based on energy onsiderations an also be ondu ted in terms of for es: if thesour e is represented as a for e a ting on the ori� e, taking the form Sp+, the total for e imposed onthe multi-hole ori� e is due to the ontribution of the for es imposed by Nholes equivalent single-holeori� es with open surfa e S/Nholes. Those for es are supposed to be un orrelated with ea h other.Thus the total for e squared equals Nholes times the for e squared due to one hole. As the for e

Page 196: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

188 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipesquared of one hole is (p+S/Nholes)2, the total for e squared is expressed as: Nholes(p+S/Nholes)2, orby simplifying: (p+S)2/Nholes.The s aling of the a ousti power is based on ea h sour e of surfa e S/Nholes. The s aling velo ityis the velo ity at the ori� e, whi h is taken equal to the velo ity of the single-hole ori� e Ud, as theopen surfa e of the two ori� es are very similar, and the s aling length is the diameter of one holedmulti. In on lusion for the multi-hole ori� e in developed avitation: fdmulti/Ud is the nondimensionalfrequen y, and p+2 Ud/(∆P

2 dmulti) is the nondimensional magnitude.4.4.3.2 Nondimensional noise spe tra generated downstreamThe dimensionless a ousti al power spe tra obtained downstream of the ori� e for the developed avitation regime are given in Fig. 4.23 for the single-hole ori� e and in Fig. 4.24 for the multi-holeori� e. The following observations are worth noting.• The s aling for the single-hole ori� e and the multi-hole ori� e is e� ient as the nondimensionalnoise spe tra ollapse for ea h ori� e. This is illustrated in Fig. 4.23 for the single-hole ori� e andFig. 4.24 for the multi-hole ori� e. Hen e it is found that these spe tra do not depend signi� antlyon the avitation number or on the downstream speed of sound. However, the dispersion of thes aling variables is weak, so that additional data should be added to on�rm this result.• The di�erent s aling used for the single-hole and the multi-hole ori� e is rather e� ient as itmakes the levels of the two types of ori� es loser to ea h other. However, the nondimensionallevel of noise of the single-hole ori� e is still higher, with a ratio of 10, than the one of themulti-hole ori� e experiments; see Figs. 4.23 and 4.24.• We ompare the avitation noise with a standard turbulen e noise from a non avitating ori� ein the low frequen y range. Indeed, in this range of frequen y, the level of noise is expe ted to bemainly determined by turbulen e noise (Martin et al., 1981). We use a nondimensional turbulen enoise level proposed by Moussou (2005). In this model, the s aling is based on empiri al dataobtained with simple singularities (single-hole ori� e, valve) in water-pipe �ow: the level of noiseis assumed to depend only on a Strouhal number based on the pipe diameter and the pipe �owvelo ity. We apply this model with the values of the pipe diameter D and a pipe �ow velo ityof 2.20 m.s−1 and ompare it to the single-hole ori� e nondimensional noise, see Fig. 4.23. Asexpe ted, the turbulen e level �ts rather well the avitation noise at low frequen ies, with a goodestimation of the slope; the avitation noise is mu h stronger than the turbulen e noise abovethe low-frequen y range, whi h is a well-known result (Brennen, 1995).4.5 Results in the super avitation regime4.5.1 A ousti featuresThe super avitation experiments exhibit two main di�eren es ompared to the developed avitationexperiments, as follows.• The downstream speed of sound appears to be quite onstant during ea h experiment.

Page 197: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.5 Results in the super avitation regime 189

10−1

100

10−6

10−5

10−4

10−3

10−2

10−1

100

f d/Ud (10<f<2000 Hz)

p+2 U

d / (∆

P2 d)

σ=0.74, c=1280 m/sσ=0.41, c=660 m/sσ=0.25, c=1430 m/s

Figure 4.23: Non-dimensional a ousti al power spe tra in developed avitation (single-hole ori� e).Straight line: dimensionless turbulen e level estimation of Moussou (2005).

10−2

10−1

10−6

10−4

10−2

f dmulti

/Ud (10<f<2000 Hz)

p+2 U

d / (∆

P2 dm

ulti)

σ=0.74, c=1430 m/sσ=0.45, c=1430 m/sσ=0.28, c=1430 m/sσ=0.17, c=1435 m/s

Figure 4.24: Non-dimensional a ousti al power spe tra in developed avitation (multi-hole ori� e).

Page 198: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

190 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

101

102

103

10−4

10−3

10−2

10−1

100

101

f (in Hz)

p+2 S

/(ρ c

) (in

W/H

z)

σ=0.15, c=280 m/sσ=0.15, c=1420 m/sσ=0.12, c=120 m/sσ=0.12, c=1310 m/sσ=0.10, c=1230 m/sσ=0.10, c=340 m/s

Figure 4.25: A ousti al power spe tra in super avitation (single-hole ori� e).• No resonan e frequen ies are found on downstream spe tra. The downstream re�e tion oe� ientis mu h lower than in the developed avitation ase (as previously shown in Fig. 4.7). In this ase, the avity of the downstream valve does not re�e t the a ousti waves.As for the developed avitation ase, strong a ousti un oupling is observed from both sides of theori� e. The e�e t is mu h more obvious here, with an average ratio between downstream and upstreampower spe tra of about 2 to 30 for the single-hole ori� e ase, and about 10 to 50 for the multi-holeori� e ase.4.5.2 Noise spe tra generated downstreamNoise spe tra obtained downstream are given in Fig. 4.25 for the single-hole ori� e and in Fig. 4.26 forthe multi-hole ori� e (as previously, the reje tion frequen ies being ex luded). We note the followingpoints.• The typi al avitational hump form is observed, as in the developed avitation ase, but withmu h more eviden e. The level of the hump is higher than for the developed avitation regime;also, the frequen y peak is smaller: those tenden ies when the avitation number in reases on�rm literature data (Brennen, 1995).• Also, as in the developed avitation ase, the single-hole ori� e is learly more noisy (with anapproximate fa tor of 10 on a ousti al power spe tra) than the multi-hole ori� e.

Page 199: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

4.6 Con lusion 191

101

102

103

10−4

10−3

10−2

10−1

100

101

f (in Hz)

p+2 S

/(ρ c

) (in

W/H

z)

σ=0.03, c=1400 m/sσ=0.13, c=1010 m/sσ=0.13, c=700 m/s

Figure 4.26: A ousti al power spe tra in super avitation (multi-hole ori� e).An important result is illustrated in Figs. 4.26 and 4.27: the part of the spe tra su eeding thehump peak frequen y depend strongly on the downstream speed of sound. Two-phase �ow attenuationsphenomena are supposed to be the ause of this observation.4.6 Con lusionA single-hole and a multi-hole avitating ori� e in a water pipe have been studied experimentally underindustrial onditions, i.e., with a pressure drop varying from 3 to 30 bars and a avitation number inthe range 0.03 ≤ σ ≤ 0.74.In the regime of developed avitation, whistling is observed for the single-hole ori� e. This o ursat a Strouhal number based on the ori� e thi kness with a value lose to 0.2.Our results indi ate that in the developed avitation regime, a multi-hole ori� e is mu h moresilent than a single-hole ori� e with the same total ross-se tional opening. This might be partiallyexplained by the absen e of orrelation between the sound produ ed by di�erent holes in the absen eof whistling. No su h di�eren e is found in super avitation. This is explained by the fa t that, in thesuper avitation regime, sound is produ ed far downstream of the ori� e rather than in a near regiondownstream of the ori� e.A nondimensional noise sour e is proposed for the developed avitation regime ( f. Se tion 4.4.3).The sour e model seems satisfa tory for the developed avitation ase.The results presented are ertainly limited and all for further resear h. In parti ular, it ould be

Page 200: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

192 4 Noise generated by avitating single-hole and multi-hole ori� es in a water pipe

101

102

103

10−4

10−3

10−2

10−1

100

101

f (in Hz)

p+2 S

/(ρ c

) (in

W/H

z)

σ=0.15, c=1420 m/sσ=0.15, c=1300 m/sσ=0.15, c=610 m/sσ=0.15, c=280 m/s

Figure 4.27: Super avitation (single-hole ori� e): in�uen e of the speed of sound on the noise spe tra.interesting to vary the shape of the ori� es and repeat the experiments with degassed water.

Page 201: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BibliographyAnderson, A. B. C., 1953. A ir ular-ori� e number des ribing dependen y of primary Pfeifentonfrequen y on di�erential pressure, gas density and ori� e geometry. Journal of the A ousti al So ietyof Ameri a, 25, 626-631.Ar her, A., Boyer, A., Nimanbeg, N., L'Exa t, C., Lemer ier, S., 2002. Résultats des essais hydrauliqueset hydroa oustiques du tronçon PTR 900 sur la bou le EPOCA (in Fren h). EDF R&D, Te hni alNote HI-85/02/023/A, Fran e.Au-Yang, M. K., 2001. Flow-Indu ed Vibration of Power and Pro ess Plant Components: a Pra ti alWorkbook. ASME Press, New-York.Ball, J. W., Tullis, J. P., Stripling, T., 1975. Predi ting avitation in sudden enlargements. ASCEJournal of the Hydrauli s Division, 101, 857-870.Bendat, J. S., Piersol, A. G., 1986. Random Data - Analysis and Measurement Pro edures (2ndEdition). Wiley-Inters ien e Ed., ISBN 0-471-04000-2.Bistafa, S. R., Lau hle, G. C., Reethof, G., 1989. Noise generated by avitation ori� e plates. ASMEJournal of Fluids Engineering 111, 278-289.Blake, W. K., 1986. Me hani s of Flow-Indu ed Sound and Vibration (Vol. II). A ademi Press,Orlando.Blake, W. K., Powell, A., 1983. The development of ontemporary views of �ow-tone generation. InRe ent Advan es in Aeroa ousti s, Springer-Verlag, New York.Blevins, R., 1984. Applied Fluid dynami s handbook. Krieger Ed., ISBN 0-89464-717-2.Bodén, H., Abom, M, 1986. In�uen e of errors on the two-mi rophone method for a ousti propertiesin du ts. Journal of the A ousti al So iety of Ameri a 79 (2).Brennen, C. E., 1995. Cavitation and bubble dynami s. Oxford University Press.Caillaud, S., Gibert, J. R., Moussou, P., Cohen, J., Millet, F., 2006. E�e t on pipe vibrations of avitation in an ori� e and in globe-style valves. In ASME Pressure Vessels and Piping DivisionConferen e, Pro eedings PVP2006-ICPVT11-93882, Van ouver, Canada.Davies, P. O. A. L., Bhatta harva, M., Bento Coelho, J. L., 1980. Measurement of plane wave a ousti �elds in �ow du ts. Journal of Sound and Vibration 72 (4), 539-542.193

Page 202: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

194 BIBLIOGRAPHYDurrieu, P., Hofmans, G., Ajello, G., Boot, R., Aurégan, Y., Hirs hberg, A., Peters, M. C. A. M., 2001.Quasisteady aero-a ousti response of ori� es. Journal of the A ousti al So iety of Ameri a 110 (4),1859-1872.Esipov, I. B., Naugol'nykh, K. A., 1975. Cavitation noise in submerged jets. Soviet Physi s A ousti s21 (4), 404-405.Franklin, R. E. and M Millan, J., 1984. Noise generation in avitating �ows, the submerged jet. ASMEJournal of Fluids Engineering 106, 336-341.Fran , J. P., Avellan, F., Belahadji, B., Billard, J. Y., Briançon-Marjollet, L., Fré hou, D., Fruman,D. H., Karimi, A., Kueny, J. L., Mi hel, J. M., 1999. La avitation (in Fren h). ISBN 2.7061.0605.0,Presses Universitaires de Grenoble.Flet her, N. H., 1979. Ex itation Me hanisms in Woodwind and Brass Instruments, A usti a 43 (1),63-72.Gilbarg, G., 1960. Jets and avities. In Handbu h der Physik (Vol. 9), P�ügge, S. (Ed.), Springer,311-445.Hassis, H., 1999. Noise aused by avitating butter�y and monovar valves. Journal of Sound andVibration 225, 515-526.Idel' ik, I. E., 1969. Memento des pertes de harge (in Fren h). Eyrolles Ed., Paris.Jorgensen, D. W., 1961. Noise from avitating submerged water jets. Journal of the A ousti al So ietyof Ameri a 33 (10), 1334-1338.Keller, A. P., 1994. New S aling Laws for Hydrodynami Cavitation In eption. In 2nd Inter. Symp.On Cavitation (2), Tokyo, Japan, 327-334.Kim, B. C., Pak, B. C., Cho, C. H., Chi, D. S., Choi, H. M., Choi, Y. M., Park, K. A., E�e tsof avitation and plate thi kness on small diameter ratio ori� e meters. Flow Measurement andInstrumentation 8, 85-92.Kugou, N., Matsuda, H., Izu hi, H., Miyamoto, H., Yamazaki, A., Ogasawara, M., 1996. Cavitation hara teristi s of restri tion ori� es, ASME Fluids Engineering Division Conferen e, FED-Vol. 236(1), San Diego, California, 457-462.Latorre, R., 1997. Bubble avitation noise and the avitation noise spe trum. A ta A usti a 83, 424-429.Le o�re, Y., 1994. La avitation, traqueurs de bulles (in Fren h). Hermes Ed., Paris, ISBN 2-86601-409-X.Lighthill, J., 1978. Waves in Fluids. Cambridge University Press.Martin, C. S., Medlarz, H., Wiggert, D. C., Brennen, C. E., 1981. Cavitation in eption in spool valves.ASME Journal of Fluids Engineering 103, 564-576.

Page 203: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BIBLIOGRAPHY 195Morfey, C. L., 1971. A ousti energy in non-uniform �ows. J. Sound Vib. 14 (2), 159-170.Moussou, P., Cambier, C., La hene, D., Longarini, S., Paulhia , L., Villouvier, V., 2001. Vibrationinvestigation of a Fren h PWR power plant piping system aused by avitating butter�y valves. InPVP-Vol. 420-2, Flow-Indu ed Vibration: Axial Flow, Piping Systems, Other Topi s, 99-106, ASMEPress.Moussou, P., Caillaud, L., Villouvier, V., Ar her, A., Boyer, A., Re hu, B., Benazet, S., 2003. Vortex-shedding of a multi-hole ori� e syn hronized to an a ousti avity in a PWR piping system. InPVP-Vol. 465, Flow-Indu ed Vibration PVP2003-2086, 161-168, ASME Press.Moussou, P., Lafon, Ph., Potapov, S., Paulhia , L., Tijsseling, A., 2004. Industrial ases of FSI due tointernal �ows. In 9th International onferen e on pressure surges, Chester (UK), Volume 1, 167-184,BHR Group Limited.Moussou, P., 2005. An attempt to s ale the vibration of water pipes. Pro eedings 71217 of PVP, ASME,Denver, Colorado, USA.Numa hi, F., Yamabe, M., Oba, R., 1960. Cavitation e�e t on the dis harge oe� ient of the sharp-edged ori� e plate. ASME Journal of Basi Engineering, 1-11.Pan, S. S., Xiang, T., Wu, B., 2001. Investigating to Cavitation Behavior of Ori� e Tunnel.CAV2001, 4th Symposium on Cavitation, California Institute of Te hnology, Pasadena, USA(http:// av2001.library. alte h.edu/222).Pier e, A. D., 1981. A ousti s: An Introdu tion to Its Physi al Prin iples and Appli ations. M Graw-Hill Book Company, In ., New York.Ro kwell, D., naudas her, E., 1979. Self-sustained os illations of impinging free shear layers. AnnualReview of Fluid Me hani s 11, 67-94.Sato, K., Saito, Y., 2001. Unstable Cavitation Behavior in a Cir ular-Cylindri al Ori� e Flow.CAV2001, 4th Symposium on Cavitation, California Institute of Te hnology, Pasadena, USA(http:// av2001.library. alte h.edu/318).Tullis, J. P., As e, M., Govindajaran, R., 1973. Cavitation and size s ale e�e ts for ori� es. ASCEJournal of the Hydrauli s Division, 417-430.Tullis, J. P., 1989. Hydrauli s of Pipelines: Pumps, Valves, Cavitation, Transients. Wiley Inters ien eEd., New York.Verge, M. P., 1995. Aeroa ousti s of on�ned jets. Thesis, Te hnis he Universiteit Eindhoven, theNetherlands, ISBN-90-386-0306-1.Van Wijngaarden, L., 1972. One-dimensional �ow of liquids ontaining small gas bubbles. Journal ofFluid Me hani s 16, 369-396.

Page 204: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

196 BIBLIOGRAPHYWeaver, D. S., Ziada, S., Au-Yang, M. K., Chen S. S., Païdoussis, M. P., Petitgrew, M. J., 2000.Flow-Indu ed Vibration of Power and Pro ess Plant Components: Progress and Prospe ts. ASMEJournal of Pressure Vessel Te hnology, 122, 339-348.Yan, Y., Thorpe, R. B., Pandit, A. B., 1988. Cavitation noise and its suppression by air in ori� e �ow.In Symposium on Flow-Indu ed Noise, Chi ago, Ill., Vol. 6, 25-39, ASME, New-York.Yan, Y., and Thorpe, R. B., 1990. Flow regime transitions due to avitation in the �ow through anori� e. Int. J. Multiphase Flow, 16 (6), 1023-1045.Young, F. R., 1999. Cavitation. Imperial College Press, London, ISBN 1-86094-198-2.

Page 205: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Chapter 5End orre tion of single expansions andori� es5.1 Introdu tionThis hapter is a preliminary investigation of the model of a ousti end orre tion, for single expansionsan ir ular entred ori� es.Simple singularities (like expansions, restri tions and ori� es) in du t without �ow an be featuredfor their inertial a ousti al e�e ts at low frequen y by a so- alled end orre tion, using an in ompressibleand no dissipative model. The end orre tion represents the a ousti inertan e of the ori� e, that is,the real part of the a ousti indu tan e (the imaginary part, the a ousti rea tan e, represents thedissipation by vis osity, and is not studied in the model). We assume in this study that there is nore�e tion from both sides of the singularity onsidered. This represents a se ondary orre tion to betaken into a ount, for example in industrial onditions.Without �ow, formulas exist in literature to estimate the end orre tion of single expansions, in a lowfrequen y approximation. It is interesting to ompare those formulas with our multimodal al ulationsfor single expansions, and to ompare them with our experimental results on ori� es without �ow.With �ow, very few results exist in literature. We present results obtained and try to understandthem by use of the pre eding non-�ow models.No lear understanding of the phenomena observed has been obtained in presen e of �ow, due tothe omplexity of the behaviour of the end orre tion. However, we have found interesting to reportthe most signi� ant behaviours en ountered. Consequently, this se tion of end orre tion with �owbrings experimental observations.5.2 End orre tion: single expansion without �ow5.2.1 Model of end orre tion: single expansion without �owA single expansion is onsidered (illustrated in Fig 5.1). It is onstituted by a �rst du t of radiusa (se tion S1), followed by a du t of radius b > a (se tion S2). We introdu e the model of end orre tion for this single expansion, following Pier e (1981); Kergomard and Gar ia (1986); Rienstra197

Page 206: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

198 5 End orre tion of single expansions and ori� esand Hirs hberg (2003).

Figure 5.1: Single expansion in du t without �ow.The �ow is assumed to be in ompressible. Hen e the equation of onservation of mass, at �rstorder, is written:S1u

′1 = S2u

′2 = Q. (5.1)As a simple model, the momentum onservation equation is written:

p′1 = p′2 + jωLQ, (5.2)where L is the a ousti inertan e (real number) of the ori� e, expressed in kgm−2 (the quantity La/ρis non-dimensional). The a ousti inertan e represents the e�e ts due to inertia (that is, the nonuniformity of the streamlines). The end orre tion ∆l (real number expressed in m) is linked to thea ousti inertan e with:∆l = S1

L

ρ0(5.3)This model an be physi ally interpreted as the following (see illustration in Fig. 5.2): the a ousti alair mass m′ = LS1 vibrates due to the pressure di�eren e p′1 − p′2 a ross the ori� e, while the �uiddensity and the a ousti al �ow rate are onstant from both sides of the ori� e. This a ousti al airmass is lo alized at the dis ontinuity of se tions: no phase shift is taken into a ount in this model,hen e the singularity is onsidered as a ousti ally ompa t: this is a low frequen y model.5.2.2 Determination of the end orre tion from multimodal al ulation: singleexpansion without �owThe end orre tion is al ulated with the multimodal method on single expansion. The method toobtain the end orre tion from the al ulations is explained in the following.Plane-wave propagation in both du ts is assumed, so that:

p′1 = P+1 + P−

1 , p′2 = P+2 + P−

2 , (5.4)

Page 207: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.2 End orre tion: single expansion without �ow 199

Figure 5.2: Model of end orre tion for a single expansion in du t.u′1 =

P+1 − P−

1

ρ0c0, u′2 =

P+2 − P−

2

ρ0c0, (5.5)with ρ0 = 1.1 kgm−3 and c0 = 343 ms−1 in air at T = 293K.The end orre tion is determined from the s attering matrix oe� ients using the following relations(the equations of the model, Eqs. 5.1 and 5.2, are ombined with the previous equations, Eqs. 5.4 and5.5):

∆l =−2c0γω

ℜ(j

T+

)

=−2c0ω

ℜ(j

T−

)

, (5.6)=

−2c0ω

ℜ(

j

1 −R+

)

=−2c0γω

ℜ(

j

1 −R−

)

, (5.7)where ℜ(X) is the real part of X, and γ = S2

S1is the ratio of se tions. These four equations are fourdi�erent means to determine the end orre tion. The model assumes them to be identi al.5.2.3 Literature data: single expansion without �owAnalyti al formulas are known from literature, in the vanishing Helmholtz number limit:

• single expansion: α = a/bA modal de omposition method an be used to estimate the end orre tion analyti ally. Asimpli�ed de omposition method (with six modes) is presented in Aurégan et al. (2001), givingthe formula:∆lAuregan

a=

(1 − α)2(1 − α2)(15 − 2α− α2)

24when ka→ 0. (5.8)This formula gives results lose to those obtained from an exa t de omposition method Kergo-mard and Gar ia (1986);

Page 208: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

200 5 End orre tion of single expansions and ori� es• in�nite downstream se tion: α→ 0This is alled in literature du t with in�nite ba�e, or du t with a �anged opening. The modelof Rayleigh gives an analyti al formula for the end orre tion (Rayleigh, 1896; Pier e, 1981):

∆lRayleigh

a= 0.8282, when ka→ 0. (5.9)5.2.4 Numeri al results: single expansion without �owIn this se tion, we ompare the al ulations with these formulas.Results are presented in Fig. 5.3 for very low frequen y. Our al ulations are onverged with 20modes, as the Ma h number and the frequen y are very low. Also, the determination from the fours attering matrix oe� ients gives very similar results. Values obtained are in good agreement withthe analyti al formulas, with a slight under-estimation of the end orre tion ompared to the exa tand simpli�ed de omposition method. The limit for α→ 0 is well obtained in al ulations.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ratio of the radii a/b

End

cor

rect

ion ∆

l/a

Aurégan et al. 2001Kergomard & Garcia 1986multimodal calculation

Rayleigh 1896

Figure 5.3: End orre tion for single expansion without �ow, in the low frequen y limit k a → 0 -numeri al al ulations with M0 = 10−4, k a = 10−4, N = 20.Results are illustrated in Fig. 5.4 when varying the frequen y. It appears that the end orre tionin reases signi� antly, up to rea h a maximum at the �rst ut-o� frequen y of the se ond du t.

Page 209: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.2 End orre tion: single expansion without �ow 201

0 1 2 3 3.83

0.8

1

1.2

1.4

1.6

1.8

2

k b

End

cor

rect

ion

∆l /

a

determination with T+

determination with T−

determination with R+

determination with R−

Auregan et al. 2001

Figure 5.4: End orre tion for single expansion with �ow - numeri al al ulation with a/b = 0.18,M0 = 10−4, N = 15.

Page 210: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

202 5 End orre tion of single expansions and ori� es5.3 End orre tion: ori� e without �ow5.3.1 Determination of the end orre tion from measurements: ori� e without�owThe end orre tion model is applied to ori� es. Our experimental data on ir ular entred ori� es areused. We re all that those results of the s attering matrix oe� ients have been presented in hapter1 and have been obtained with a su� iently low ex itation frequen y so as it orresponds to a linearresponse of the ori� e.The ori� e is seen as a su ession of a restri tion and an expansion. The model of end orre tion anbe applied to a restri tion without hange, ex ept the se tion ratio is inverse. Hen e the end orre tionis determined using the equations used for a single expansion (Eqs. 5.6 and 5.7), taking γ = 1. The end orre tion hen e obtained orresponds to an os illating mass in the pipe se tion. To get an os illatingmass in the ori� e se tion, we have to multiply the result by the ratio of the se tions Sd/Sp (Sp is thepipe ross-se tion, Sd the ori� e ross-se tion), so that:∆l = =

Sd

Sp

−2c0ω

ℜ(j

T+

)

=Sd

Sp

−2c0ω

ℜ(j

T−

)

, (5.10)=

Sd

Sp

−2c0ω

ℜ(

j

1 −R+

)

=Sd

Sp

−2c0ω

ℜ(

j

1 −R−

)

. (5.11)5.3.2 Literature data and models: ori� e without �owModels have been proposed in literature, dis erning if the ori� e is thin or thi k (using t/a as thethi kness-to-radius ratio of the ori� e):• thin ori� e: t/a≪ 1In this on�guration, Rayleigh has al ulated the velo ity potential and obtained the end orre tion using the prin iple of minimum kineti energy to obtain the a ousti inertan e andthe end orre tion (Rayleigh, 1896; Pier e, 1981):

∆lthin

a= π/2, when ka→ 0. (5.12)

• thi k ori� e: t/a≫ 1In this on�guration, the ori� e an be seen (following Pier e (1981)) as a su ession of arestri tion, followed by a length, about the thi kness t of the ori� e, on whi h the velo itypotential is uniform and an expansion. The end orre tion is the sum of three omponents. The omponents of the restri tion and the expansion are taken as the same, and we use the formula ofAurégan et al. (2001). The end orre tion of the uniform velo ity potential zone is approximatelythe thi kness of the ori� e t, hen e we obtain:∆lthick

a=t+ 2∆lAuregan

a, when ka→ 0. (5.13)

Page 211: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.3 End orre tion: ori� e without �ow 2035.3.3 Experimental results: ori� e without �owResults are presented for ir ular- entred right-angled ori� es (with t = 5 mm in Figs. 5.5, 5.6, 5.7,and with t = 10 mm in Figs. 5.8, 5.9, 5.10) and for an ori� e with a bevel (Fig. 5.11). They are plottedin fun tion of the Helmholtz number at the ori� e f a/c0.Firstly, it is observed that end orre tions are quite small, of the order of the millimetre. Hen evariations due to measurement ina ura ies are visible (whereas those measurements are pre ise, anddi� ult to improve signi� antly). Also, the determination with the four oe� ients does not givesimilar values. Both observations are ertainly related, indi ating a high sensitivity of the model tomeasurements ina ura ies.Se ondly, the orrelation with the model for thi k ori� es is good. It systemati ally gives a betteragreement than the Rayleigh formula for a thin ori� e, for ori� es su h that 0.4 ≤ t/a ≤ 1.33. Also,data are all the more lose to the thi k ori� e model as the ori� e is thi k in experiments.The end orre tion obtained for an ori� e with a small rounded bevel upstream is presented inFig. 5.11. Surprisingly, the behaviour seems identi al to the one obtained for an ori� e without bevel:no di�eren e an be made. This observation would need more data to be validated.

0 0.05 0.1 0.15

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thin (Rayleigh)

thick (model)

Figure 5.5: End orre tion for ori� e without �ow - experimental results with ori� e t = 5 mm, a = 12.5mm (t/a = 0.40).

Page 212: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

204 5 End orre tion of single expansions and ori� es

0 0.02 0.04 0.06 0.08 0.1 0.120.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thin (Rayleigh)

thick (model)

Figure 5.6: End orre tion for ori� e without �ow - experimental results with ori� e t = 5 mm, a = 7.5mm (t/a = 0.66).

0 0.01 0.02 0.03 0.04 0.05 0.061.4

1.6

1.8

2

2.2

2.4

2.6

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thick (model)

thin (Rayleigh)

Figure 5.7: End orre tion for ori� e without �ow - experimental results with ori� e t = 5 mm, a = 5mm (t/a = 1.00).

Page 213: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.3 End orre tion: ori� e without �ow 205

0 0.02 0.04 0.06 0.08 0.1 0.12 0.140.4

0.6

0.8

1

1.2

1.4

1.6

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thick (model)

thin (Rayleigh)

Figure 5.8: End orre tion for ori� e without �ow - experimental results with ori� e t = 10 mm, a = 12mm (t/a = 0.84).

0 0.02 0.04 0.06 0.08 0.1 0.120.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thick (model)

thin (Rayleigh)

Figure 5.9: End orre tion for ori� e without �ow - experimental results with ori� e t = 10 mm, a = 10mm (t/a = 1.00).

Page 214: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

206 5 End orre tion of single expansions and ori� es

0 0.02 0.04 0.06 0.08 0.11.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thick (model)

thin (Rayleigh)

Figure 5.10: End orre tion for ori� e without �ow - experimental results with ori� e t = 10 mm,a = 7.5 mm (t/a = 1.33).

0 0.01 0.02 0.03 0.04 0.05 0.061.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Helmholtz number f a / c0 (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

with T+

with T−

with R+

with R−

thick (model)

thin (Rayleigh)

Figure 5.11: End orre tion for ori� e without �ow - experimental results with ori� e with a small(r = 1mm) rounded bevel upstream t = 5 mm, a = 5 mm (t/a = 1) .

Page 215: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.4 End orre tion: single expansion with �ow 2075.4 End orre tion: single expansion with �ow5.4.1 Model of end orre tion: single expansion with �owThe model of end orre tion is extended to a on�guration with a onstant mean �ow M0. In thispurpose, we use the ideas presented by Ajello (1997).In presen e of a mean �ow, it is onvenient to use the variables of the a ousti al mass velo ity m′and total a ousti al enthalpy Π′ (for more details, see se tion 1.3.2 in hapter one). One should notefor example that, without �ow, Π′ orresponds to p′/ρ0 and m′ to ρ0v′. The extension of the model ofend orre tion under onstant mean �ow is made with these new variables, as we de�ne the equationsto be:

m′1 = m′

2, (5.14)Π′

1 = Π′2 + jωLS1m

′1/ρ

20, (5.15)where m′ = (Π+ − Π−)/c0 and Π′ = (Π+ + Π−)/ρ0 (with Π+ = (1 + M0)P

+, Π− = (1 −M0)P−).These equations are identi al to Eqs.5.1 and 5.2 when no �ow is present. The end orre tion is de�nedas:

∆l = S1L

ρ0. (5.16)5.4.2 Determination of the end orre tion from measurements: single expansionwith �owUsing the above relations, the end orre tion ∆l is determined from the four al ulated s atteringmatrix oe� ients. The expressions obtained are similar as for the non-�ow ase, ex ept that thes attering matrix oe� ients under mean �ow are into a ount, so that:

∆l = =−2c0γω

ℜ(j

T+e

)

=−2c0ω

ℜ(j

T−e

)

, (5.17)=

−2c0ω

ℜ(

j

1 −R+e

)

=−2c0γω

ℜ(

j

1 −R−e

)

, (5.18)where the s attering matrix oe� ients under onstant mean �ow M0 are de�ned as:R+

e =1 +M0

1 −M0R+, R−

e =1 −M0

1 +M0R−, (5.19)

T+e = T+, T−

e = T−. (5.20)5.4.3 Literature data: single expansion with �owFor single expansion with �ow, no literature theory has been found. We an only assume that in thehigh frequen y limit ka→ ∞, the behaviour will follow the non-�ow behaviour.It should be pointed out however that for a di�erent on�guration, that is an exit of a du t withthin walls (�anged pipe termination), Rienstra (1983) has obtained a formula for the end orre tion inpresen e of �ow, for small Ma h numbers M0:∆lRienstra

a= 0.2551

1 −M20 when ka→ 0 and ka/M0 → 0 . (5.21)

Page 216: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

208 5 End orre tion of single expansions and ori� es5.4.4 Numeri al results: single expansion with �owResults obtained show a large dissimilarity of the four end orre tions determined with the fours attering matrix oe� ient, in the limit ka/M0 → 0. This work is in progress.5.5 End orre tion: ori� e with �ow5.5.1 Determination of the end orre tion from measurements: ori� e with �owThe model of ori� e end orre tion under onstant mean �ow is similar, in its ideas, to the model ofthe single expansion with �ow.The end orre tion for ori� e under onstant mean �ow is obtained from measurements using:∆l = =

Sd

Sp

−2c0ω

ℜ(j

T+e

)

=Sd

Sp

−2c0ω

ℜ(j

T−e

)

, (5.22)=

Sd

Sp

−2c0ω

ℜ(

j

1 −R+e

)

=Sd

Sp

−2c0ω

ℜ(

j

1 −R−e

)

. (5.23)5.5.2 Models using literature data: ori� e with �owNo formulas are present in literature for end orre tion of ori� e under onstant �ow. The di�eren ewith the non-�ow ase is that the �ow forms a jet, whi h hen e ould hange mu h the end orre tion ompared to the non-�ow ase.Even if no literature data are available on the subje t, a physi al analysis is proposed here to getsimple formulas in the high and low Strouhal number limits. We separate the several ontributionsof the end orre tion: ∆lup is the end orre tion of the upstream part of the ori� e, ∆ldown of thedownstream part. We use the variable of the Strouhal number at the ori� e, fa/Ud (Ud is the ori� evelo ity), as it is demonstrated that, in presen e of low, this variable should be preferred to theHelmholtz number ka (Rienstra, 1983):• in the high Strouhal number limit: ka/Md → ∞A behaviour similar to the non-�ow ase is expe ted: we use the formula orresponding to thelimit ka→ 0, whi h gives ∆lup = ∆ldown = ∆lAuregan, while the end orre tion within the ori� eis approximately its thi kness t, so that we assume:

∆l

a=

∆lAuregan + t+ ∆lAuregan

a. (5.24)

• in the low Strouhal number limit: ka/Md → 0The e�e t of the upstream edge on the �ow separation, and so on the end orre tion, is riti al(Rienstra, 1983). Hen e we di�erentiate the ases with the kind of the upstream edge of theori� e:� the upstream edge is a right angleThe �ow separates at the upstream edge. The end orre tion is assumed to be mainly dueto the jet, hen e ∆lup = 0, and the end orre tion due to the jet is assumed to followRienstra formula ∆ldown = ∆lRienstra (whi h however does not orrespond exa tly to the

Page 217: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.5 End orre tion: ori� e with �ow 209 on�guration). The thi kness of the ori� e has no e�e t on the end orre tion, as the �ow isseparated, and while there is no reatta hment of the �ow within the ori� e. This is the asewhen the ori� e is thin. When the ori� e is thi k, the reatta hment of the �ow is assumedto add an end orre tion approximately of the thi kness of the ori� e. Hen e we assume:∆l

a=

∆lRienstra

a, thin ori� e (5.25)

∆l

a=t+ ∆lRienstra

a, thi k ori� e (5.26)� the upstream edge is a bevelThere is no �ow separation at the upstream edge. The end orre tion upstream ould bethe same as a restri tion without �ow ∆lup = ∆lAuregan. The end orre tion downstream,where there is a jet, follows Rienstra formula ∆ldown = ∆lRienstra, and the end orre tiondue to the ori� e thi kness is taken into a ount. Hen e we assume:

∆l

a=

∆lAuregan + t+ ∆lRienstra

a. (5.27)5.5.3 Experimental results: ori� e with �owComparison with our experimental data for ir ular- entred right-angled ori� es with �ow gives thefollowing observations.From data, we �nd that the evolution of the end orre tion is qualitatively the same for all ori� es(Fig. 5.12 gives a typi al example): in the low frequen y limit, there is a threshold, followed by anin rease of the end orre tion to attain a maximum, followed then by a de rease of the end orre tionto rea h apparently a threshold limit.For thin ori� es (Fig. 5.12), the two limits proposed are satisfying. The high Strouhal numberlimit seems well obtained, but we la k higher frequen y data to evaluate if the limit is really attainedand draw de�nite on lusions. What is spe ta ular is how mu h the low Strouhal number limit iswell obtained. This is spe ta ular, as the model proposed uses formula not orresponding to our on�guration.The e�e t of the thi kness of the ori� e is spe ta ular. It is illustrated in Fig. 5.13. When theori� e is thi k, the end orre tion is mu h higher than for a thin ori� e. Our model for thi k ori� e issystemati ally satisfying to �t well the data of thi k ori� es. As the di�eren e is lear from the end orre tion value between a thin and a thi k ori� e, we an de�ne experimentally thi k ori� es: theyare found in the range t/d ≥ 2, whi h is in agreement with literature (the �ow re-atta hment o ursfor t/d ≥ 2).Similarly as in the non-�ow ase, results for ori� es with a large diameter d ≥ 20 mm give a dis repan yof the four values of the end orre tion determined by the four s attering matrix oe� ients.It is observed that for low Ma h numbers, underM0 = 0.03, the end orre tion shows systemati allystrong variations in the low Strouhal limit, as illustrated in Fig. 5.14.Results for ori� es with a bevel upstream show that our model in the low Strouhal limit is not wellsatis�ed (Fig. 5.15). The orrelation seems good when an elling the upstream ontribution of theend orre tion, that is with the end orre tion ∆l/a = (t+ ∆lRienstra)/a. However, this result needsfurther study, as few data are available (two ori� es).

Page 218: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

210 5 End orre tion of single expansions and ori� es

0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f a / Ud (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

determination with T+

determination with T−

determination with R+

determination with R−(∆l

Auregan + t + ∆l

Auregan)/a

∆lRienstra

/a

Figure 5.12: End orre tion with �ow - thin ori� e t = 5 mm, a = 8.5 mm (t/a = 0.58),M0 = 2.55 10−2.

0 0.2 0.4 0.6 0.8 1 1.20

0.5

1

1.5

2

2.5

3

3.5

4

f a / Ud (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

determination with T+

determination with T−

determination with R+

determination with R−(∆l

Auregan + t + ∆l

Auregan)/a

∆lRienstra

/a(t+∆l

Rienstra)/a

Figure 5.13: End orre tion with �ow - thi k ori� e t = 5 mm, a = 5 mm (t/a = 1), M0 = 3.8 10−3.

Page 219: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

5.5 End orre tion: ori� e with �ow 211

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4−1

−0.5

0

0.5

1

1.5

2

2.5

f a / Ud (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

determination with T+

determination with T−

determination with R+

determination with R−

(∆lAuregan

+ t + ∆lAuregan

)/a∆l

Rienstra/a

Figure 5.14: End orre tion with �ow - thin ori� e t = 5 mm, a = 8.5 mm (t/a = 0.58),M0 = 5.71 10−2.

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

f a / Ud (with 400≤ f≤4000 Hz)

End

cor

rect

ion ∆

l / a

determination with T+

determination with T−

determination with R+

determination with R−(∆l

Auregan + t + ∆l

Auregan)/a

∆lRienstra

/a(t+∆l

Rienstra)/a

Figure 5.15: End orre tion with �ow - thin ori� e with bevel upstream (CCb2, rbevel/t = 0.2) t = 5mm, a = 5 mm, (t/a = 1.00), M0 = 7.4 10−3.

Page 220: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

212 5 End orre tion of single expansions and ori� esAs a result, we have reported those experimental observations on the end orre tion of ori� es with�ow. This is a di� ult task, as the quantity of our data (around 60) showed that it is quite di� ultto draw a ommon behaviour for all ori� es, or to observe ommon behaviours between some of them.Indeed, the end orre tion with �ow has a very omplex behaviour, and it is di� ult to understand thesubtleties of su h a model. Moreover, it is a simple model, developed without �ow, so it is questionablewhether it is sensible to understand it thoroughly in the ase with �ow.5.6 Con lusionThe a ousti model of end orre tion is investigated for single expansions, using our numeri al al ulations, and for ori� es, using our experimental data. We studied the non-�ow ase and the�ow ase.Without �ow, results are in good agreement with literature models both for ori� es (experimentaldata) and single expansions (numeri al al ulations using the multimodal method).In presen e of a onstant mean �ow, experimental observations are reported for the end orre tionof ir ular entred ori� es. In parti ular, good agreement is obtained with the literature modelsintrodu ed, in the low and high Strouhal number limits, when di�erentiating the ori� es into thinand thi k ones. But for ommon frequen ies, the behaviour of the end orre tion appears to be quitedi� ult to des ribe. It varies mu h from an ori� e to another, and with the Ma h number of the �ow.Even if no lear understanding has been obtained, these experimental observations seem useful, as verys ar e literature exist in this ase with �ow.

Page 221: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

BibliographyG. Ajello. Mesures a oustiques dans les guides d'ondes en présen e d'é oulement: mise au pointd'un ban de mesure, appli ation à des dis ontinuités. Thèse de do torat de l'Université du Maine,A adémie de Nantes, 1997 .Y. Aurégan, A. Debray, R. Starobinski. Low frequen y sound propagation in a oaxial ylindri al du t: appli ation to sudden area expansions and to dissipative silen ers. Journal of Sound and Vibration,243(3): 461-473, 2001.J. Kergomard, A. Gar ia. Simple dis ontinuities in a ousti waveguides at low frequen ies: riti alanalysis and formulae. Journal of Sound and Vibration, 114(3): 465-479, 1986.M.C.A.M. Peters, A. Hirs hberg, A.J. Reijnen, A.P.J. Wijnands. Damping and re�e tion oe� ientmeasurements for an open pipe at low Ma h and low Helmholtz numbers. Journal of Fluid Me hani s,256: 499-534, 1993.A. D. Pier e. A ousti s: An Introdu tion to Its Physi al Prin iples and Appli ations. M Graw-HillBook Company, New York, 1981.J. W. S. Rayleigh. The theory of sound. Vol. 2, 2nd Ed. Ma millan, 1986.S. W. Rienstra. A small Strouhal number analysis for a ousti wave-jet �ow-pipe intera tion. Journalof Sound and Vibration, 86: 539-556, 1983.S. W. Rienstra, A. Hirs hberg. An Introdu tion to A ousti s, Eindhoven University of Te hnology,2003.

213

Page 222: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

214 Con lusion générale

Page 223: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Con lusion généraleCe travail avait pour obje tif de mieux omprendre les mé anismes de génération de bruit par lessingularités d'é oulement en onduit, en régime fortement turbulent.Nous nous sommes essentiellement intéressés au phénomène de si�ement, et partiellement au bruitde avitation.Résultats majeursLe résultat majeur de ette étude est onstitué par la validation expérimentale d'un ritère desi�ement de singularité en onduit sous é oulement. Ce ritère utilise la mesure de la matri e dedi�usion a oustique d'une singularité sous é oulement pour déte ter les fréquen es d'instabilité de ette on�guration, dans l'hypothèse de propagation d'ondes planes dans les onduits. Nous avons testé enair sur la bou le du LAUM une large gamme (19) de diaphragmes ir ulaires entrés �ns (ave unratio d'épaisseur sur diamètre inférieur à 1.5). On montre qu'en onditions a oustiques réverbérantesdans le onduit, les fréquen es de si�ement apparaissant sont es fréquen es d'instabilité prédites parle ritère. Le grand intérêt de e ritère est sa simpli ité théorique et sa relative fa ilité de mise enoeuvre industrielle.Deux résultats importants ont été obtenus on ernant la méthode numérique, appelée méthodemultimodale, utilisée pour prédire le omportement aéroa oustique d'une on�guration si�ante:• le oe� ient de ré�exion R+ d'un élargissement brusque sous é oulement est très bien prédit,en amplitude et en phase, par la méthode multimodale, par omparaison ave les donnéesexpérimentales existantes (Ronneberger). Comme les autres oe� ients de la matri e de di�usionobtenus par ette méthode sont très pro hes de modèles analytiques simples dans la limite quasi-stationnaire, et dans la limite sans é oulement, on en déduit que ette méthode donne de façonsatisfaisante la matri e de di�usion a oustique d'un élargissement brusque;• les fréquen es d'instabilité, obtenues par appli ation du ritère d'instabilité sur une on�gurationsi�ante, onstituée par une restri tion ontinue de se tion suivie de deux élargissements brusquesde se tion, sont bien prédites (<10% en erreur relative) par la méthode multimodale. La grandesimpli ité des modèles utilisés rend e résultat intéressant. Les niveaux de ratio de puissan ea oustique dissipée sont bien prédits dans les limites hautes et basses fréquen es, et dans leurévolution qualitative.Les analyses d'essais e�e tuées en eau, sur un diaphragme droit monotrou et un diaphragme droitmultitrou, ont apporté un résultat important, du fait de la présen e de si�ement déte tée en régime de215

Page 224: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

216 Con lusion généralefaible avitation pour le diaphragme droit monotrou. Les nombres Strouhal de si�ement observés sur ette bou le (en eau, diamètre du tuyau de 7.4 m, pression statique aval de 2.7 bar) ave eux obtenussur la bou le du LAUM (en air, diamètre du tuyau 3 m, pression statique aval 1 bar) sont similaires,entre 0.2 et 0.3 pour un nombre de Reynolds dans le tuyau supérieur à 104. Cette omparaison indiqueque le nombre Strouhal ne varie pas sensiblement ave le diamètre du tuyau, la pression statique dansle tuyau et surtout la ompressibilité du �uide. Ce sont es paramètres qui n'on pas été variés sur labou le du LAUM.Autres résultatsNous détaillons dans la suite les résultats majeurs et nous présentons les autres résultats de e travail.Validation d'un ritère de si�ement des singularités en onduitDans le premier hapitre, nous avons présenté l'étude expérimentale d'un ritère de si�ementproposé par Aurégan and Starobinsky (1999) pour des singularités d'é oulement en onduit droit,en propagation d'ondes planes dans les tuyaux. Ce ritère utilise la mesure de la matri e de di�usiona oustique de la singularité sous é oulement et onsiste en un bilan a oustique de part et d'autre de lasingularité, pour mettre en éviden e les fréquen es de produ tion de puissan e a oustique, nomméesalors fréquen es potentielles de si�ement ou fréquen es d'instabilité. Cette étude a validé e ritèresur des diaphragmes droits ir ulaires entrés sans biseau, et aussi des diaphragmes ave biseau etquelques fentes dé entrées.Ce travail expérimental a mis en éviden e, pour la première fois, des gammes de fréquen e potentiellede si�ement (se tion 1.5.3). Ces fréquen es potentielles de si�ement ont été systématiquementtrouvées sur les diaphragmes droits, sauf à très faible é oulement et ex epté les singularités onnuespour être très peu si�antes (diaphragmes ave biseaux à l'amont).Des mesures de si�ement (se tion 1.7) ont permis de montrer que les fréquen es de si�ementobservées en on�guration de type industrielle, 'est à dire sans sour e extérieure et ave des ré�exionsa oustiques de part et d'autre de la singularité, orrespondent à es fréquen es d'instabilité. Dansune telle on�guration, un modèle a été proposé (1.7.4), utilisant la mesure de la matri e de di�usionet la mesure des oe� ients de ré�exion amont et aval, permettant de prédire de façon satisfaisantel'existen e de si�ement et la valeur de la fréquen e de si�ement. Ce modèle né essiterait toutefoisune validation sur plus de données. Un autre modèle, inspirée du ritère de Bode-Nyquist, ne donnepas de bons résultats, sans que nous en ayons bien ompris la raison.Nous avons montré que le nombre de Strouhal le plus satisfaisant pour adimensionnaliser lesfréquen es potentielles de si�ement est basé sur l'épaisseur du diaphragme et la vitesse d'é oulementau niveau de du diaphragme (se tion 1.5.3). Les valeurs obtenues sont remarquablement onstantespour les 19 diaphragmes �ns testés (en variant l'épaisseur du diaphragme, son diamètre, et le nombrede Ma h), lorsque l'é oulement est à turbulen e pleinement développée (nombre de Reynolds supérieurà 5 103). Les nombres Strouhal de si�ement potentiel sont obtenus entre 0.2 et 0.3, e qui est en trèsbon a ord ave la littérature (mesures d'Anderson (1953)).Nous montrons que la on�guration géométrique du bord amont du diaphragme est très importantepour déterminer ou non son potentiel si�ant: si e bord est biseauté, le diaphragme n'est plus si�ant.

Page 225: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Con lusion générale 217Ce résultat est un a ord ave la littérature existante sur e sujet.Nous montrons (se tion 1.5.5) que, pour réer l'instabilité, les ondes planes de pression in identessur la singularités doivent être de même amplitude et en opposition de phase. Cela orrespond à uneex itation en vitesse a oustique de la ou he de isaillement instable. Inversement, nous montrons qu'unex itation en ondes de pression en phase, orrespondant à une ex itation en pression a oustique auniveau de la ou he de isaillement du diaphragme, ne provoque ni produ tion ni dissipation d'énergiea oustique. Ces résultats sont ohérents ave la littérature existante.En on lusion de ette étude, une nouvelle méthodologie est appli able à EDF pour prédire lesgammes de si�ement potentielles de singularité en onduit. Elle onsiste à mesurer la matri e dedi�usion de la singularité sous l'é oulement onsidéré, et à appliquer le ritère de si�ement sur ettemesure (diagonalisation d'une matri e 2x2). L'avantage d'une telle méthode est sa simpli ité, et lefait que la mesure de la matri e de di�usion soit indépendante des onditions aux limites de la bou le.Le résultat majeur est l'obtention de gammes de fréquen es non-si�antes, 'est à dire pour lesquellesla singularité ne si�era jamais, quelles que soient les ré�exions a oustiques dans le onduit. Si les onditions a oustiques dans le onduit sont onnues, l'utilisation du modèle élémentaire de si�ementpermet de prédire le si�ement ou le non-si�ement sur les gammes de fréquen es de si�ement potentiel.Validation d'une méthode de al ul pour prédire les fréquen es potentielles desi�ement d'une expansion si�anteLes hapitres 2 et 3 on ernent la modélisation aéroa oustique d'élargissements brusques de se tion,par une méthode numérique appelée méthode multimodale.Cette méthode de al ul numérique est une résolution modale des équations d'Euler linéariséesen régime harmonique établi, par un s héma aux di�éren es �nies (le plus simple). Les onditions dera ord des hamps a oustiques permettent d'obtenir la matri e de di�usion de l'ensemble. La méthodedonne les hamps a oustiques en tous points et la matri e de di�usion a oustique de la on�gurationétudiée. On utilise des hypothèses simples: les pertes visqueuses et thermiques sont négligées, lesparois du tuyau sont rigides. L'é oulement imposé est un jet isaillé in ompressible, indépendant de ladire tion de propagation: il est supposé invariable dans sa propagation (il ne se re olle pas aux parois).La méthode est validée sur un élargissement brusque ( hapitre 2) et appliquée ( hapitre 3) surune expansion si�ante (biseau amont suivi d'un double élargissement brusque de se tion). L'obje tifre her hé de ette étude numérique a été atteint: les fréquen es potentielles de si�ement de la on�g-uration si�ante sont bien al ulées, en omparaison ave les fréquen es mesurées expérimentalementsur ette on�guration.Le hapitre 2 est la validation de la méthode multimodale sur un élargissement brusque. Nousmontrons que la méthode donne des résultats très satisfaisants, omparés aux résultats expérimentaux(se tion 2.5.2.1), pour le oe� ient de ré�exion R+. Les modèles analytiques dans ertaines limitesde paramètres de fréquen e et d'é oulement sont bien retrouvés également, pour tous les oe� ientsde la matri e de di�usion. Des points né essiteraient des é lair issements: la présen e d'une forme debosse sur ertains résultats de oe� ients de ré�exion, la di�éren e entre le al ul et la mesure pourdes valeurs extrêmes des paramètres (haute fréquen e et for nombre de Ma h), et la di�éren e entreun tuyau re tangulaire et un tuyau ir ulaire.Le hapitre 3 est l'appli ation de la méthode multimodale sur une expansion si�ante. Les

Page 226: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

218 Con lusion générale omparaisons ave les expérien es e�e tuées montrent une prédi tion satisfaisante des fréquen espotentielles de si�ement de la on�guration. Nous avons alors mené des études paramétriques surl'in�uen e des paramètres de l'é oulement et de la géométrie que le nombre de Strouhal instable.Nous montrons que le nombre de Strouhal de la on�guration est peu variable ave les paramètresd'é oulement: le paramètre numérique imposé pour la forme du pro�l, le nombre de Ma h del'é oulement et le diamètre du jet. Par ontre, le nombre Strouhal varie de façon importante ave les paramètres de la zone d'ampli� ation de l'instabilité: la hauteur et la longueur du premierélargissement. Dans une telle on�guration don , nous montrons l'importan e ritique de ette zone,et en onséquen e un modèle simple de des ription du phénomène de si�ement semble impossible, tantle nombre Strouhal varie ave es paramètres géométriques.En omplément à ette étude sur la méthode multimodale, le travail e�e tué dans la thèse de GerbenKoojman à l'Université te hnique d'Eindhoven (Pays-Bas) devrait apporter des é lair issements: étudesur un é oulement uniforme, et dans d'autres on�gurations.Analyses de spe tres de bruit de diaphragme monotrou et multitrou, en régime de avitation et de si�ementLe hapitre 4 présente une étude expérimentale de spe tres de bruit typiques obtenus sur desdiaphragmes monotrou et multitrou, en régime de avitation et parfois de si�ement.Une adimensionnalisation des spe tres de avitation est proposée, en distinguant deux régimes de avitation ( avitation faible dite ' avitation développée' et avitation forte site 'super avitation'):• en régime de faible avitation, une bonne adimensionnalisation est obtenue. Une forme en bossedu spe tre est mise en éviden e, typique du régime de avitation. Il s'agit d'un résultat ohérentave la littérature, mais non quanti�é jusque là en terme de bruit émis par un diaphragmemonotrou. De plus, les si�ements observés orrespondent à des nombres de Strouhal pro hesde eux obtenus en air (nombre Strouhal autour de 0.2-0.3). L'observation de si�ement en on omitan e ave de la avitation est un résultat jamais reporté dans la littérature à notre onnaissan e;• en régime de forte avitation, il apparaît que la quantité d'air résiduelle dans l'eau en aval dudiaphragme, après di�usion dans les bulles de avitation de vapeur, a�e te de façon spe ta ulaireles spe tres, e qui représente un résultat nouveau.Ces résultat sont à véri�er en testant la répétabilité des essais analysés, et l'in�uen e de la quantitéde gaz dissous dans l'eau utilisée. En e�et, e paramètre pourrait être important, surtout pour lerégime de faible avitation, et il n'a pas été mesuré ni ontr�lé pendant es essais.Résultats pour le modèle de orre tion de bout de diaphragme sous é oulementLe hapitre 5 est l'étude expérimentale et numérique du modèle a oustique de orre tion de boutappliqué à des élargissements brusques et les diaphragmes:• sans é oulement, les modèles analytiques simples proposés dans la littérature, pour la orre tionde longueur de diaphragme très �ns et très épais, sont très satisfaisants en omparaison ave les

Page 227: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Con lusion générale 219 orre tions de longueur expérimentales que nous avons obtenues expérimentalement au LAUM.De même, les orre tions de longueur obtenues par la méthode multimodale sur un élargissementbrusque donnent de bons résultats par omparaison ave la littérature.• ave é oulement, très peu de littérature existe, 'est pourquoi les résultats expérimentauxprésentés sur les diaphragmes sont intéressants. Cependant, il apparaît que le omportementde la orre tion de longueur est omplexe, ave des variations en fon tion de la fréquen e, dunombre de Ma h, et e i d'un diaphragme à l'autre. Ces omportements sont parti ulièrementdi� iles à synthétiser et à omprendre.Perspe tivesCritère de si�ementEn perspe tive, la ontinuation de l'étude du ritère de si�ement est envisageable. Il serait intéressantde tester les autres singularités que l'on peut ren ontrer en tuyau de entrale nu léaire: vannes, robinets,diaphragmes multitrou. A priori, le ritère de si�ement devrait s'appliquer sur es organes. L'intérêtserait de valider l'appli ation industrielle un tel ritère. Dans ette optique, il serait intéressant devéri�er les résultats trouvés en eau (reportés au hapitre 4), 'est à dire que le nombre de Strouhal nevarie pas sensiblement en hangeant de ompressibilité de �uide. L'intérêt serait alors que la mesurede la matri e de di�usion serait su�sante en air, e qui évite d'utiliser une bou le en eau pour ettemesure.Dans ette optique d'appli ation industrielle, il serait intéressant de valider le modèle élémentairede prédi tion des fréquen es de si�ement en onditions a oustiques réverbérantes sur de plus amples on�gurations (nous avons obtenu de bons résultats ave e modèle, mais sur peu de mesures). Deplus, il serait très intéressant de omprendre pourquoi le modèle de type Bode-Nyquist que nous avonstenté é houe. Il est surprenant qu'un tel modèle donne de mauvais résultats, alors qu'il nous sembleplus adapté que le modèle élémentaire.Sur e ritère d'instabilité, une perspe tive importante et intéressante nous semble aussi de mieux omprendre le ratio de puissan e a oustique dissipé par l'organe, 'est à dire les amplitudes quenous avons obtenues sur la représentation des valeurs propres de la matri e énergétique. Nousavons ommen é une adimensionnalisation très satisfaisante ave le nombre de Ma h pour un ori� edonné, mais nous avons montré que ette adimensionnalisation doit en ore prendre en ompte les ara téristiques géométriques des diaphragmes. L'intérêt serait d'obtenir une ompréhension plus �nedes phénomènes d'intera tion a oustique-é oulement lo aux. Un moyen envisageable serait d'utiliserune analogie aéroa oustique, par exemple l'analogie de Howe.Approfondissement de la méthode multimodaleL'obtention d'un mode hydrodynamique instable par la méthode multimodale est satisfaisante, mais saprésen e ne nous semble pas tout à fait omprise. La présen e de ette instabilité semble due au ritèrede Rayleigh, 'est à dire la présen e d'un point d'in�exion virtuel sur le pro�l d'é oulement. Cependant,nous avons du mal à omprendre l'appli ation de e ritère sur un pro�l dis rétisé d'é oulement.

Page 228: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

220 Con lusion généraleLes problèmes se ondaires ren ontrés et que nous avons rapportés sur la méthode multimodale sontles autres perspe tives d'approfondissement de la méthode.Étude d'un élargissement brusqueEn�n, il faut noter que la omparaison des géométries artésiennes et ylindriques est appropriée ave ette méthode multimodale. Comme e genre d'étude est rare dans la littérature, il semble intéressantd'utiliser ette méthode pour mieux omprendre la di�éren e entre es 2 géométries.

Page 229: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendix AMeasurements on ori� es: potentiallywhistling frequen iesIn this appendix, all the measurements made are presented in the potentially whistling eigenvalue form.

500 1000 1500 2000 2500 3000−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency (Hz)

(Pin

−P ou

t)/P in

M0 = 1.15 10−2

M0 = 2.13 10−2

M0 = 3.27 10−2

Figure A.1: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 3 mm, d = 20 mm(CC1).221

Page 230: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

222 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Frequency (Hz)

(Pin

−P ou

t)/P in

M = 3.37 10−2

M0 = 3.37 10−2

M0 = 4.99 10−2

M0 = 6.36 10−2

M0 = 8.36 10−2

M0 = 10.91 10−2

Figure A.2: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 23 mm(CC2).

Page 231: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 223

500 1000 1500 2000 2500 3000 3500 4000−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=1.26 10−2

M0=2.42 10−2

M0=3.34 10−2

M0=4.89 10−2

M0=6.11 10−2

M0=6.74 10−2

M0=10.79 10−2

Figure A.3: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 21 mm(CC3).

500 1000 1500 2000 2500 3000 3500 4000−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=3.48 10−2

M0=4.19 10−2

M0=5.1610−2

M0=6.15 10−2

M0=6.60 10−2

M0=7.49 10−2

M0=8.78 10−2

Figure A.4: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 19 mm(CC4).

Page 232: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

224 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=2.07 10−2

M0=4.87 10−2

M0=5.94 10−2

M0=6.81 10−2

Figure A.5: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 7 mm, d = 24 mm(CC5).

500 1000 1500 2000 2500 3000 3500 4000−1

−0.5

0

0.5

1

1.5

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.41 10−2

M0=0.85 10−2

M0=1.24 10−2

Figure A.6: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 3 mm, d = 10 mm(CC6).

Page 233: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 225

500 1000 1500 2000 2500 3000 3500 4000−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=2.55 10−2

M0=4.20 10−2

M0=5.71 10−2

M0=6.77 10−2

Figure A.7: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 17 mm(CC7).

500 1000 1500 2000 2500 3000 3500 4000−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=1.90 10−2

M0=2.60 10−2

M0=3.46 10−2

M0=4.28 10−2

M0=5.52 10−2

Figure A.8: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 15 mm(CC8).

Page 234: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

226 Appendi es

500 1000 1500 2000 2500 3000−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=3.28 10−2

M0=5.32 10−2

M0=8.37 10−2

M0=10.65 10−2

Figure A.9: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 8 mm, d = 20 mm(CC9).

500 1000 1500 2000 2500 3000 3500 4000−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.52 10−2

M0=1.06 10−2

M0=1.64 10−2

Figure A.10: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CC10).

Page 235: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 227

500 1000 1500 2000 2500 3000 3500 4000−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.33 10−2

M0=0.78 10−2

M0=1.18 10−2

Figure A.11: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 8 mm(CC11).

500 1000 1500 2000 2500 3000 3500 4000−1

−0.5

0

0.5

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.31 10−2

M0=0.83 10−2

M0=1.14 10−2

M0=1.66 10−2

Figure A.12: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 6 mm, d = 9 mm(CC12).

Page 236: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

228 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.26 10−2

M0=0.41 10−2

M0=0.67 10−2

M0=0.85 10−2

Figure A.13: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 7 mm(CC13).

500 1000 1500 2000 2500 3000−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.38 10−2

M0=0.74 10−2

M0=1.27 10−2

Figure A.14: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 10 mm, d = 10 mm(CC14).

Page 237: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 229

500 1000 1500 2000 2500 3000−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.42 10−2

M0=0.74 10−2

M0=10.30 10−2

Figure A.15: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 15 mm, d = 10 mm(CC15).

500 1000 1500 2000 2500 3000 3500 4000−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=4.19 10−2

M0=7.13 10−2

Figure A.16: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 25 mm(CC16).

Page 238: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

230 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=3.81 10−2

M0=6.60 10−2

Figure A.17: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 10 mm, d = 24 mm(CC17).

500 1000 1500 2000 2500 3000 3500 4000−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.77 10−2

M0=3.29 10−2

M0=5.44 10−2

M0=7.41 10−2

M0=10.01 10−2

Figure A.18: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 10 mm, d = 20 mm(CC18).

Page 239: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 231

500 1000 1500 2000 2500 3000 3500 4000−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=3.59 10−2

M0=5.11 10−2

M0=8.40 10−2

Figure A.19: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 10 mm, d = 15 mm(CC19).

500 1000 1500 2000 2500 3000 3500 4000−1

−0.5

0

0.5

1

1.5

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.25 10−2

M0=0.54 10−2

M0=0.77 10−2

M0=1.18 10−2

Figure A.20: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CCb2) with the bevel downstream.

Page 240: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

232 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.25 10−2

M0=0.54 10−2

Figure A.21: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CCb2) with the large bevel upstream.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000−4

−3

−2

−1

0

1

2

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.41 10−2

M0=0.76 10−2

M0=1.36 10−2

Figure A.22: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CCb4) with the small bevel downstream.

Page 241: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 233

500 1000 1500 2000 2500 3000 3500 4000 4500 5000−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.50 10−2

M0=0.77 10−2

Figure A.23: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CCb4) with the small bevel upstream.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.25 10−2

M0=0.40 10−2

M0=0.68 10−2

M0=0.77 10−2

Figure A.24: The eigenvalues of the a ousti power ratio, obtained for ori� e t = 5 mm, d = 10 mm(CCb5: 2 beavels).

Page 242: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

234 Appendi es

500 1000 1500 2000 2500 3000 3500 4000−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.42 10−2

M0=0.98 10−2

M0=1.23 10−2

Figure A.25: Potentially whistling eigenvalues of smile shaped slit F1: t = 5 mm, Sd = 63 mm2.

500 1000 1500 2000 2500 3000 3500 4000−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.38 10−2

M0=1.01 10−2

Figure A.26: Potentially whistling eigenvalues of smile shaped slit F2: t = 5 mm, Sd = 63 mm2.

Page 243: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendix BMeasurements on double ori� e:potentially whistling frequen ies

500 1000 1500 2000 2500 3000 3500 4000−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.62 10−2

M0=0.93 10−2

M0=1.89 10−2

Figure B.1: Eigenvalues of the a ousti power ratio from the whistling riterion for on�guration:b = 1.2, c = 3, L = 2 (CCb6+CC22) - various Ma h numbers.

235

Page 244: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

236 Appendi es

0 0.2 0.4 0.6 0.8 1 1.2 1.4−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f L / Ud

(Pin

−P ou

t) / P

in

first mode

second mode third mode

Figure B.2: Strouhal number of the potentially whistling eigenvalues from the whistling riterion for on�guration: b = 1.2, c = 3, L = 2 (CCb6+CC22) - various Ma h numbers.

500 1000 1500 2000 2500 3000 3500 4000−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.80 10−2

M0=1.83 10−2

Figure B.3: Eigenvalues of the a ousti power ratio from the whistling riterion for on�guration:b = 1.5, c = 3, L = 1 (CCb6+CC8) - various Ma h numbers.

Page 245: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 237

0 0.2 0.4 0.6 0.8 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f L / Ud

(Pin

−P ou

t) / P

in

Figure B.4: Strouhal number of the potentially whistling eigenvalues from the whistling riterion for on�guration: b = 1.5, c = 3, L = 1 - various Ma h numbers (CCb6+CC8).

500 1000 1500 2000 2500 3000 3500 4000−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=0.42 10−3

M0=0.76 10−3

Figure B.5: Eigenvalues of the a ousti power ratio from the whistling riterion for on�guration:b = 2, c = 3, L = 2 (CCb6+CC18) - various Ma h numbers.

Page 246: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

238 Appendi es

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f L / Ud

(Pin

−P ou

t) / P

in

Figure B.6: Strouhal number of the potentially whistling eigenvalues from the whistling riterion for on�guration b = 2, c = 3, L = 2 (CCb6+CC18) - various Ma h numbers.

500 1000 1500 2000 2500 3000 3500 4000−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Frequency (Hz)

(Pin

−P ou

t)/P in

M0=4.7 10−3

M0=9.6 10−3

Figure B.7: Eigenvalues of the a ousti power ratio from the whistling riterion for on�gurationCCb6+CC18+CC9: b = 2, c = 3, L = 3.6.

Page 247: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 239

0 0.2 0.4 0.6 0.8 1−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

f L / Ud

(Pin

−P ou

t) / P

in

Figure B.8: Strouhal number of the potentially whistling eigenvalues from the whistling riterion for on�guration b = 2, c = 3, L = 3.6 (CCb6+CC18+CC9) - various Ma h numbers.

Page 248: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

240 Appendi es

Page 249: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendix CA ousti al propagation equations undersheared mean �owThis se tion presents the demonstration of the a ousti al propagation equation under sheared mean�ow M0(y)ex (that is in ompresssible mean �ow). Vis osity and entropy variations are also negle ted.Fluid me hani s equationsThe equations of �uid me hani s are applied to the general quantities (dimensional): the pressurep , the velo ity v and the �uid density ρ. The vis osity is negle ted:

• Mass onservation equation:∂ρ

∂t+ (v.∇)ρ = −ρdiv(v). (C.1)

• Momentum onservation equation:The �uid is onsidered as perfe t: Euler equations are onsidered:ρ∂v

∂t+ ρ(v.∇).v = −∇p (C.2)Linearization of Navier Stokes equationsThe previous �uid me hani s equations are linearized at �rst order, giving a ousti equations. Weintrodu e: v = U0(y) + v′, ρ = ρ0 + ρ′, p = p0 + p′.The mean �ow is supposed of the form: U0(y) = U0(y)ex. It is in ompressible.At inital state, the �uid is onsidered as uniform, so that ρ0 is a onstant of spa e and time.The �ow is assumed isentropi , and at uniform entropy at the initial state, so that: c20 = p′

ρ′ .• Mass onservation equation:

∂ρ′

∂t+ (U0(y).∇)ρ′ + (v′.∇)ρ0 = −ρ0div(v

′) − ρ′div(U0(y)) (C.3)241

Page 250: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

242 Appendi esFrom the assumptions, div(U0(y)) = 0, (v′.∇)ρ0 = 0 and c20 = p′

ρ′ . The previous equation redu esto:∂p′

∂t+ (U0(y).∇)p′ = −ρ0c

20div(v

′) (C.4)In 2D Cartesians, one has: (U0(y).∇)ρ′ = U0(y)∂ρ′

∂x and div(v′) = ∂v′

∂x + ∂v′

∂y , hen e:∂p′

∂t+ U0(y)

∂p′

∂x= −ρ0c

20(∂v′x∂x

+∂v′y∂y

). (C.5)In 2D ylindri al, one has: (U0(r).∇)ρ′ = U0(r)∂ρ′

∂z and div(v′) = v′rr + ∂v′r

∂r + ∂v′z∂z , hen e:

∂p′

∂t+ U0(r)

∂p′

∂z= −ρ0c

20(v′rr

+∂v′r∂r

+∂v′z∂z

). (C.6)• Momentum onservation equation:The linearization gives:

ρ0∂v′

∂t+ ρ′

∂U0

∂t+ ρ′(U0.∇)U0 + ρ0(v

′.∇)U0 + ρ0(U0.∇)v′ = −∇p′ (C.7)In 2D Cartesians: ∂U0

∂t = 0, (U0(y).∇)U0(y) = 0, (v′.∇)U0(y) = v′ydU(y)

dy ex, U0(y).∇ =

U(y) ∂∂x , ∇p′ = ∂p′

∂x ex + ∂p′

∂y ey. Hen e in the longitudinal and transversal dire tion, one gets:ρ0∂v′x∂t

+ ρ0U(y)∂v′x∂x

+ ρ0v′y

dU(y)

dy= −∂p

∂x, (C.8)

ρ0

∂v′y∂t

+ ρ0U0(y)∂v′y∂x

= −∂p′

∂y. (C.9)In 2D ylindri al: ∇p′ = ∂p′

∂r er + ∂p′

∂z ez. Hen e in the longitudinal and transversal dire tion, onegets:ρ0∂v′r∂t

+ ρ0U0(r)∂v′r∂r

= −∂p′

∂r, (C.10)

ρ0∂v′z∂t

+ ρ0U0(r)∂v′z∂z

+ ρ0v′r

dU0(r)

dr= −∂p

∂z. (C.11)Propagation equation: Lilley equationThe propagation equation in pressure is obtained by multiplying D

Dt with the mass onservation equa-tion (Eq. C.8 in Cartesians, Eq. C.9 in ylindri al).In 2D Cartesians, as DDt(

∂∂y ) = ∂

∂y ( DDt) − dM

dy∂∂x , one gets:

D2p′

Dt2− c20∆p

′ = 2ρ0c20

dU(y)

dy

∂v′y∂x

, (C.12)with ∆p′ = ∂2p′

∂x2 + ∂2p′

∂y2 and DDt = ∂

∂t + U(y) ∂∂x .

Page 251: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendi es 243The propagation equation in the variable p′ is (known as Lilley equation, see Bailly (1994)):D

Dt

(D2

Dt2− c20∆

)

p′ + 2c20dU(y)

dy

∂2p′

∂x∂y= 0 (C.13)If the �ow is uniform: dU/dy = 0, the lassi al propagation equation of order 2 in derivative is obtained.In the ase of a sheared �ow: dU/dy 6= 0, it is of order 3 in derivative.In 2D axisymmetri , it takes a similar form, only the expression of the Lapla ian di�ers from theCartesians ase:

D

Dt

(D2

Dt2− c20∆

)

p′ + 2c20dU(r)

dr

∂2p′

∂z∂r= 0 (C.14)where ∆p′ = 1

r∂p′

∂r + ∂2p′

∂r2 + ∂2p′

∂z2 and DDt = ∂

∂t + U(r) ∂∂z .C.0.0.1 Equation of the modes: Pridmore-Brown equationA time-frequen y dependen e of the variables in ejωt is assumed. Solutions are demonstrated (seese tion 2.2.5.2) to take the form: ej(ωt−kx). Lilley equation be omes then what is known as Pridmore-Brown equation, that is the equation of the modes in a du t with a sheared �ow:

(ω − kU)[(ω − kU)2 + c20∆

]p′ + 2c20k

dU(y)

dy

∂p′

∂y= 0. (C.15)That is, if ω − kU 6= 0:

∆p′ +2k dU(y)

dy

ω − kU

∂p′

∂y−(ω − kU

c0

)2

p′ = 0. (C.16)In 2D Cartesians:∂2p′

∂y2+

2k dU(y)dy

ω − kU

∂p′

∂y+

[(ω − kU

c0

)2

− k2

]

p′ = 0. (C.17)In 2D axisymmetri :∂2p′

∂r2+

1

r+

2k dU(y)dy

ω − kU

∂p′

∂r+

[(ω − kU

c0

)2

− k2

]

p′ = 0. (C.18)

Page 252: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

244 Appendi es

Page 253: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendix DDemonstration of the ontinuity of thea ousti variables at the expansionThis se tion presents the demonstration of the ontinuity of the a ousti variables p′, ρ′, v′x, v′y and oftheir derivative ∂d/∂dx at the rossing of the expansion. The geometry is given in Fig. 2.1). The �owis assumed non-vis ous, isentropi , and the mean �ow is assumed in ompressible.D.1 Continuity of the a ousti variablesLaws of mass onservation, momentum onservation in the x-dire tion and in the y-dire tion, andenergy onservation, give the �uid me hani s equations, at the expansion:ρIvx,I = ρIIvx,II , (D.1)

ρIv2x,I + PI = ρIIv

2x,II + PII , (D.2)

(ρIvx,I).vy,I = (ρIIvx,II).vy,II , (D.3)hI +

v2x,I + v2

y,I

2= hII +

v2x,II + v2

y,II

2, (D.4)where h is the enthalpy: dh = dp/ρ for isentropi �ow.Eq. D.3 is simpli�ed using Eq. D.1:

vy,I = vy,II . (D.5)Linearized at �rst order, those equations give the a ousti equations:ρ′Ivx,I + ρIv

′x,I = ρ′IIvx,II + ρ′IIv

′x,II , (D.6)

ρ′Iv2x,I + 2ρIvx,Iv

′x,I + P ′

I = ρ′IIv2x,II + 2ρIIvx,IIv

′x,II + P ′

II , (D.7)v′y,I = v′y,II , (D.8)

p′IρI

+ vx,Iv′x,I =

p′II

ρII+ vx,IIv

′x,II , (D.9)245

Page 254: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

246 Appendi esAs the �ow is isentropi , p′ = c20ρ′. The assumption of in ompressiblity imposes ρ′I = ρII = ρ0. Thepattern of the �ow gives also: vx,I = vx,II = U0(y). After some al ulations, Eq. D.6 and D.9 give the ontinuity of v′x, p′, ρ′:

v′x,I = v′x,II , p′I = p′II , ρ′I = ρ′II . (D.10)Eq. D.8 gives the ontinuity of v′y:v′y,I = v′y,II , (D.11)and Eq. D.9 is automati ally satis�ed by those onditions.D.2 Continuity of the derivatives of the a ousti variablesAs there is no dis ontinuity in the y-dire tion, the derivatives of the a ousti variables in the y-dire tionare ontinuous.The ontinuity for the derivative in the x-dire tion an be demonstrated. Mass onservation,momentum onservation in hte x-dire tion and y-dire tion, linearized at �rst order give:

∂ρ′

∂t+ ρ0

∂ρv′x∂x

+ U0∂ρ′

∂x+ ρ0

∂v′y∂y

= 0, (D.12)ρ0

(∂v′x∂t

+ U0∂v′x∂x

+ v′ydU0

dy

)

= −∂p′

∂x, (D.13)

ρ0

(∂v′y∂t

+ U0

∂v′y∂x

)

= −∂p′

∂y. (D.14)Eq. D.14 gives the ontinuity of the derivative of v′y:

∂v′y I

∂x=∂v′y II

∂x. (D.15)Eq. D.12 and D.13 give the ontinuity of the derivative of v′x and p′:

∂v′y I

∂x=∂v′y II

∂x,

∂p′I∂x

=∂p′II

∂x. (D.16)

Page 255: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

Appendix EA ousti analysis methodWe assume that only plane waves propagate in the pipe. First, ross-spe tral density fun tions Gpprefare used. They are well suited to a ousti analysis, be ause they eliminate non-propagating noisepresent in time measurements. Indeed, if we de ompose time pressure measurements p(t) into a non-propagating signal pnon prop(t) and a propagating one, we have:p(t) = p+(t) + p−(t) + pnon prop(t). (E.1)Having de�ned and �xed a referen e sensor and applying the ross-spe tral density fun tions, weget an expression where the non-propagating pressure is removed be ause it is not orrelated to thepropagating pressure:

Gp(t)pref(t)(ω) = Gp+(t)pref(t)(ω) +Gp−(t)pref(t)(ω). (E.2)Se ond, we de�ne quantities Gppref/√Gprefpref whi h an be handled like Fourier Transforms, andwhi h are almost independent of the referen e pressure. Indeed, if we assume a perfe t oheren ebetween the point of observation and the referen e sensor, we have|Gppref |2

GppGprefpref = 1. (E.3)In this ase the quantity Gppref/√Gprefpref does not depend on the referen e sensor. In pra ti e, thereferen e sensor is taken losest to the points of observation.Finally, we al ulate plane waves. Considering two onse utive sensors, denoted n and n+ 1, planewaves propagation and the linearity hara teristi s of the ross-spe tral density fun tion giveGp+

n+1pref(ω) = Gp+

n pref(ω) e−jωτ , (E.4)Gp−n+1

pref(ω) = Gp−n pref(ω) e+jωτ , (E.5)with τ being the time of �ight of the wave between the two sensors. For the sake of ease, we note pnfor Gpnpref/√Gprefpref . By means of Eqs. (E.2), (E.4) and (E.5), we get the plane wave spe tra:p+

n (ω) =pn(ω) e+iωτ + pn+1(ω)

2 j sin(ωτ), (E.6)247

Page 256: A c adémie de Nantes - Le Mans Universitycyberdoc.univ-lemans.fr/theses/2006/2006LEMA1011.pdf · Sam, Thomas le gen til barbare, Josselin o eil-de-lynx, Khaled futur ministre (mektub),

248 Appendi esp−n (ω) =

pn(ω) e−iωτ + pn+1(ω)

−2 j sin(ωτ), (E.7)for upstream measurements (1 ≤ n ≤ 2) and downstream measurements (4 ≤ n ≤ 9). These spe traare expressed in Pa/√Hz.The re�e tion oe� ient is de�ned as p− /p+ downstream of the ori� e, and by p+ /p− upstream,be ause we assume the sour e of sound to be lo ated in the region of the ori� e. For example, if a zeropressure ondition is lo ated far downstream of the ori� e, and if T is the time of �ight toward thispressure node, the re�e tion oe� ient at this urrent point is −e−2jωT .